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Low-complexity robust decentralized MPC: a foundational algorithm

for constrained coalitional control

P. A. Trodden and P. R. Baldivieso Monasterios

Abstract— We present a low-complexity robust decentralized
MPC formulation for linear time-invariant subsystems that are
subject to state and input constraints and coupled via dynamics.
The proposed approach is a simple application of tube-based
robust MPC to each subsystem, but with some enhancements
that make the scheme more applicable to problems with higher-
order subsystem dynamics, such as those arising in coalitional
control: we remove explicit reliance on invariant sets, and
achieve robust stability and feasibility via simple constraint
scalings, determined by solving an LP. In the second part of
the paper, we apply the approach to coalitional constrained
control, and develop theoretical results on recursive feasibility
under time-varying coalitions, including the existence of finite
dwell times for coalitional switching.

I. INTRODUCTION

Decentralized and distributed forms of model predictive

control have emerged as techniques for controlled large-scale

constrained systems of subsystems [1]. The main challenge

is how to handle the disturbances between subsystems that

arise as a consequence of coupled dynamics, in order that

guarantees of constraint satisfaction, recursive feasibility, and

closed-loop stability are achieved. In addressing this, the

literature is broadly split in two [2]: iterative methods, based

upon distributed optimization, employ the repeated exchange

of information between subsystems as they solve their optimal

control problems, while non-iterative methods use the tools

of robust control to achieve the same guarantees.

In this paper, following the latter class of approaches, we

develop a simple and low-complexity approach to decen-

tralized MPC (DMPC) for state-coupled linear subsystems

subject to state and input constraints. Each subsystem is

controlled by a model predictive controller, and no on-line

communication between controllers takes place. We employ

the well-known concept of tube-based MPC [3]–[6], which

has found application to distributed MPC before [7]–[10],

but with some modifications that enhance the applicability of

the technique to higher-order dynamics: we employ simple

scalings of constraints in the optimal control problems, rather

than exact constraint restrictions, to handle the additive

uncertainty in the dynamics, and we show how these scalings

may be computed by solving by a single linear programming

(LP) problem for each controller. There is no need to explicitly

characterize or compute a robust invariant set, and the optimal

control problem for each subsystem employs no invariant sets,

which are a bottleneck for tube-based MPC of higher-order

systems. We note that [11, Chapter 3] describes a scheme
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for obtaining simple constraint restrictions, via solving an LP,

that also avoids computing a robust invariant set; it assumes a

linear control law for the tube control law, while here we use

optimized robust control invariant set synthesis method [12]

to obtain a similar result. The price of broader applicability

is conservatism: we design robustness of each subsystem to

the whole interaction of each coupled neighbour—an aspect

improved upon in [7]–[10]—although this is mitigated by the

choice of tube controller; for this, we employ the optimized

robust control invariance method of [12], which is, for the

same disturbance set, known to result in smaller uncertainty

tubes than those associated with a linear tube controller [13].

An example instance of higher-order subsystem dynamics is

those arising in coalitional control [14]–[16]. The coalitional

control paradigm considers that, for a large-scale system,

a basic decomposition into subsystems is known, but that

it may be advantageous to system performance to group

subsystems into coalitions and control each coalition as a

single, coordinated entity. We consider this problem in the

second part of the paper, assuming that the overall system is

partitioned into time-varying coalitions, each controlled by the

proposed low-complexity DMPC. We study the properties of

the feasibility regions of the time-varying controlled system,

and establish conditions under which recursive feasibility does

or does not hold. Moreover, we show that there exist finite

dwell times that allow recursively feasible partition switching.

These results hold independent to how the coalitions are

selected over time; as such, they are fundamental in that

apply to all coalition selection schemes. Finally, we discuss

some practical options for ensuring recursive feasibility of

the overall coalitional control scheme, which may serve to

guide the development of any coalition selection scheme.

The organization of this paper is as follows. The next

section outlines the setting, including some preliminary

notions and definitions relevant to decentralized control and

coalitional control, and defines the problem. In Section III,

the proposed decentralized tube-based MPC approach is

developed, including its design algorithm, and analysed to

establish its closed-loop properties of recursive feasibility and

stability. Section IV considers the configuration of the system

of subsystems into time-varying coalitions, and analyses and

discusses the issue of recursive feasibility of the overall

control scheme. Conclusions are made in Section V.

Notation and basic definitions: The sets of non-negative

and positive reals are denoted, respectively, R0+ and R+. I≥0

is the set of non-negative integers, and Ia:b the set of integers

between a < b. For a, b ∈ R
n, a ≤ b applies element by

element. For X,Y ⊂ R
n, the Minkowski sum is X ⊕ Y ,



{x + y : x ∈ X, y ∈ Y }; for Y ⊂ X , the Minkowski

difference is X⊖Y , {x ∈ R
n : Y +x ⊂ X}. For X ⊂ R

n

and a ∈ R
n, X⊕a means X⊕{a}. AX denotes the image of

a set X ⊂ R
n under the linear mapping A : Rn 7→ R

p, and

is given by {Ax : x ∈ X}; similarly, κ(X) = {κ(x) ∈ R
p :

x ∈ X} denotes the image of X ⊂ R
n under the mapping

κ : Rn 7→ R
p. A set R is robust control invariant (RCI) for a

system x+ = f(x, u, w) and constraint set X, U and W if (i)

R ⊂ X and (ii) for all x ∈ R, there exists a u = µ(x) ∈ U

such that x+ = f(x, u, w) ∈ R, ∀w ∈ W; the control law

u = µ(x) is said to be invariance inducing over the set R. A

polyhedron is an intersection of a finite number of halfspaces,

and a polytope is a closed and bounded polyhedron.

II. SETTING AND PROBLEM STATEMENT

A. The system of subsystems and control objective

We consider the problem of controlling a large-scale,

discrete-time, linear time-invariant system

x+ = Ax+Bu, (1)

where x ∈ R
n, u ∈ R

m are the state and control input, and

x+ is the state at the next instant of time. We suppose that

a basic decomposition or partitioning of (1) into a number,

M , of independently actuated subsystems is known. The

dynamics of subsystem i ∈ M , {1, . . . ,M} are

x+

i = Aiixi +Biui + wi with wi ,
∑

j∈Mi

Aijxj ,

where xi ∈ R
ni , ui ∈ R

mi are the state and input of

subsystem i ∈ V , with x = (x1, . . . , xM ), u = (u1, . . . , uM ).
That is, the subsystems are non-overlapping in that they

share no states or inputs, but interconnected because the off-

diagonal block matrices in A give rise to dynamic coupling

between subsystems, visible in the exogenous term wi. The

set of coupled neighbours of subsystem i is defined as

Mi ,
{

j ∈ M \ {i} : Aij 6= 0
}

.

Assumption 1 (Controllability). For each i ∈ V the pair

(Aii, Bi) is controllable.

The system is constrained via local, independent constraints

on the states and inputs of each subsystem. For subsystem i,

xi ∈ Xi ui ∈ Ui.

Assumption 2 (Constraint sets). The sets Xi ⊂ R
ni and

Ui ⊂ R
mi are polytopes, each containing the origin in its

interior.

The control objective is to regulate the states of the system

to the origin, while satisfying all constraints and minimizing

the quadratic objective function

∞
∑

k=0

x⊤(k)Qx(k) + u⊤(k)Ru(k)

where Q , diag(Q1, . . . , QM ) and R , diag(R1, . . . , RM ).

Assumption 3 (Positive definite stage cost). Qi and Ri are,

for each i ∈ M, positive definite matrices.

B. Coalitions of subsystems and partitions of the system

In the context of this problem, it has been shown, via

a range of theory, applications and case studies [14]–[16],

that closed-loop performance may benefit from grouping

subsystems into coalitions.

Definition 1 (Coalition of subsystems). A coalition of

subsystems is a non-empty subset of M.

A coalition of subsystems operates as a single entity,

controlled by a single coalitional controller that replaces (or

coordinates) the local subsystem controllers. The grouping

of the subsystems into coalitions in this way induces an

alternative partitioning of the system.

Definition 2 (Partition of the system). A partition of the

system is an arrangement of the M subsystems into C ≤ M
coalitions: formally, the partition of M = {1, . . . ,M} is the

set C = {1, . . . , C}, satisfying the following properties:

1) Coalition c ∈ C contains subsystems Cc ⊂ M; the

cardinality of Cc is Mc.

2) Coalitions are non-overlapping: Cc ∩ Cd = ∅ for all

c 6= d.

3) Coalitions cover the set of subsystems:
⋃

c∈C Cc = M.

These definitions cover the simplest cases of (i) a single,

grand coalition of all subsystems (C = 1, C1 = V) (the

centralized partition) and (ii) the basic partitioning of the

system, in which each subsystem is a coalition (C = M , C =
V , Ci = {i} for each i ∈ M) (the decentralized partition).

The set of all possible partitions is

ΠM , {C : C is a partition of M}.

Given a partition C ∈ ΠM, the state and input of coalition

c are, respectively, xc = (xi)i∈Cc
and uc = (ui)i∈Cc

. The

states of coalition c evolve as

x+
c = Accxc +Bcuc + wc,

where the matrices Acc and Bc contain, as sub-blocks, the

matrices of the subsystems within the coalition: Acc =
[Aij ]i,j∈Cc

, Bc = diag(Bi)i∈Cc
. Similar to the basic decom-

position into subsystems, the coalitions remain coupled via

their dynamics: coalition c is coupled with coalition d via

the matrices Acd

[

Aij

]

i∈Cc,j∈Cd,d 6=c
so that

wc ,
∑

d∈Mc

Acdxd where Mc ,
{

d ∈ C : Acd 6= 0
}

.

Assumption 4 (Controllability of coalitions). For any parti-

tion C ∈ ΠM, each pair (Acc, Bc), for c ∈ C, is controllable.

III. SIMPLE DECENTRALIZED MPC FOR TIME-INVARIANT

COALITIONS

We first consider the scenario where the set of subsys-

tems M are arranged into a collection of fixed coalitions

{C1, . . . , CC}. The aim is for each coalition, acting as a

single entity, to regulate its combined state to the origin,

while respecting constraints and—to this end—each coalition



is equipped with a model predictive controller.1 Due to the

coupling between coalitions, manifested as the disturbance

wc =
∑

d∈Mc
Acdxd for coalition c, consideration needs

to be given to handling interactions adequately in order to

achieve constraint satisfaction and stability.

Among the numerous distributed and decentralized MPC

schemes, algorithms based on robust techniques have the

advantage of achieving feasibility and stability guarantees

without any inter-agent iterations. The application of a simple

tube-based approach [3], [13], as a prototype for the ensuing

development, is briefly described next.

If, for the coalition dynamics x+
c = Acc + Bcuc + wc, a

constraint-admissible RCI set Rc, with associated control

law κ̃c(·), is available, then it can be guaranteed that the

coalitional system, under

uc = κ̄c(x̄c) + κ̃c(xc − x̄c),

is closed-loop stable, recursively feasible and satisfies all

constraints. Here, ūc = κ̄c(x̄c) = u0
c(0; x̄c) is the first control

in the optimized sequence obtained by solving a conventional

MPC problem, using the nominal (deterministic) model

x̄+
c = Accx̄c +Bcūc (2)

and subject to state and input constraint sets tightened by,

respectively, Rc and κ̃c(Rc).
More sophisticated, less conservative approaches are pos-

sible, building on this fundamental technique, e.g., [8]–[10].

There are, however, some features of the coalitional control

problem that render such approaches impractical:

1) The coalition dynamics may be of high order, even if

the constituent subsystem dynamics are of low order.

2) Though assumed fixed for now, the coalitions will vary

in time, both in size and membership.

These features raise significant challenges for controllers built

upon invariant sets, for these are difficult to compute, and

complex to represent, for higher-order system dynamics, and

impractical to re-compute on-line, as would be necessitated

in response to a coalition changing in membership.

In the remainder of this section, we address this challenge

by developing a simple and low-complexity robust decen-

tralized MPC algorithm. The approach is a simplification of

the “nested” DMPC scheme developed in [17]. Constraint

restrictions in the primary MPC formulation are achieved

via simple scalings of Xc and Uc rather than Xc ⊖Rc and

Uc ⊖ κ̃c(Rc). We find that the closed-loop properties of the

scheme rely only on the implicit existence of an RCI set, with

the implication for design and implementation that there is no

need to either explicitly characterize or compute the RCI set,

or impose it anywhere in the MPC constraints. Consequently,

the dependency on invariant sets is minimized, while stability

and feasibility guarantees are retained, making the approach

more suitable for higher-order dynamics.

1The MPC problem for a coalition can be solved by a single agent in the
coalition (a leader), or distributed among several members, but these details
are beyond the scope of this paper.

A. MPC controller for coalition c ∈ C
The MPC controller, following conventional tube-based

MPC, employs the nominal prediction model (2) but simpler

constraint restrictions than previously described. For coalition

c ∈ C with (nominal) state x̄c:

Pc(x̄c) : V
0
c (x̄c) = min

ūc

{

Vc(x̄c, ūc) : ūc ∈ Uc(x̄c)
}

where Vc is the finite-horizon regulation cost

Vc(x̄c,uc) =

N−1
∑

j=0

x̄⊤
c (j)Qcx̄c(j) + ū⊤

c (j)Rcuc(j),

with Qc , diag(Qi)i∈Cc
, Rc , diag(Ri)i∈Cc

and Uc(x̄c) is

defined by the following constraints for j ∈ I0:N−1:

x̄c(0) = x̄c,

x̄c(j + 1) = Accx̄c(j) +Bcūc(j),

x̄c(j) ∈ αx
cXc,

ūc(j) ∈ αu
cUc,

x̄c(N) = 0,

where Xc ,
∏

i∈Cc
Xi and Uc ,

∏

i∈Cc
Ui.

The simple choice of the origin as terminal set is to facili-

tate the applicability to higher-order dynamics. Conditions

on, and selection of, the constraint set scaling parameters

αx
c , α

u
c ∈ (0, 1) is described later.

Solving this problem yields the control sequence

ū
0
c(x̄c) , {ū0

c(0; x̄c), . . . , ū
0
c(N − 1; x̄c)},

and applying the first term of the sequence to the system

induces the implicit feedback law

κ̄c(x̄c) = ū0
c(0; x̄c).

The domain of problem Pc(x̄c), and the control law, is

XN
c , {x̄c : Uc(x̄c) 6= ∅}.

B. Overall robust controller

Closing the loop with uc = κ̄c(x̄c) alone does not

guarantee constraint satisfaction, feasibility and stability for

the true coalition dynamics x+
c = Accxc + Bcuc + wc,

because the disturbance wc =
∑

d∈Mc
Acdxd is omitted

in the prediction model.

The control law is, therefore, and in the spirit of tube-based

robust MPC, complemented with a second term κ̃c(xc − x̄c)
associated with an admissible RCI set. The resulting two-term

policy is a feedback control law on the true state xc:

uc = κc(xc) , κ̄c(x̄c) + κ̃c(xc − x̄c). (3)

We emphasize that this is a conventional tube-based robust

MPC control law; for example, the simple robust controller

presented in [13] uses the same construction of a nominal

MPC control augmented with an invariance-inducing control

law based on RCI sets. A key feature, however, of the

proposed scheme over conventional schemes is the removal

of the need to have an explicit representation of the RCI set.



Remark 1. The nominal state x̄c that parametrizes the

optimal control problem and appears in the control law is

an internal state of a dynamic feedback controller. For ini-

tialization, we assume that x̄c(0) = xc(0). Subsequently, the

nominal and true states are allowed to evolve independently

under their respective dynamics.

C. Design conditions and closed-loop properties

Recursive feasibility and stability of controlled system are

established under some conditions that guide the design of

the secondary control law and the selection of suitable scaling

factors in the MPC problem.

Assumption 5. The control law κ̃c(·) is invariance inducing

over a set Rc; the set Rc is RCI for the system x+
c =

Accxc + Bcuc + wc and constraint set (ξxcXc, ξ
u
cUc,Wc),

for some ξxc ∈ [0, 1) and ξuc ∈ [0, 1), and where Wc ,
⊕

d∈Mc
AcdXd.

Assumption 6. The constants (αx
c , ξ

x
c ) and (αu

c , ξ
u
c ) satisfy

αx
c + ξxc ≤ 1 and αu

c + ξuc ≤ 1.

Recursive feasibility for time-invariant coalitions is then

established in the following proposition.

Proposition 1 (Recursive feasibility). Suppose that Assump-

tions 1–6 hold. Then, for each coalition c ∈ C:

(i) If x̄c ∈ XN
c then x̄+

c ∈ XN
c , where x̄+

c = Accx̄c +
Bcκ̄c(x̄c).

(ii) Given x̄c(0) = xc(0) ∈ XN
c , the coalition x+

c =
Accxc+Bcuc+wc under the control law uc = κ̄c(x̄c)+
κ̃c(xc − x̄c) satisfies xc(k) ∈ Xc and uc(k) ∈ Uc for

k ∈ I≥0.

Proof. Claim (i) is a straightforward, and well-established,

consequence of imposing the terminal equality constraint. For

claim (ii), if x̄c ∈ XN
c and xc−x̄c ∈ Rc, then x+

c −x̄+
c ∈ Rc,

since Rc is RCI for the uncertain dynamics. Since XN
c ⊕Rc ⊆

αx
cXc ⊕ ξxcXc and κ̄c(Xc) ⊕ κ̃c(Rc) ⊆ αu

cUc ⊕ ξucUc, all

constraints remain satisfied. Finally, since x̄c(0) = xc(0) ∈
XN

c and, because of Assumption 2, Rc contains the origin,

the hypothesis that initially xc − x̄c ∈ Rc holds.

Having established recursive feasibility and constraint

satisfaction, stability follows under a further assumption.

Assumption 7 (Decentralized stabilizability). The RCI con-

trol laws uc = κ̃c(xc) asymptotically stabilize the system

x+ = Ax+Bu.

Theorem 1 (Stability). Suppose that Assumptions 1–7 hold.

Then, for each c ∈ C, the origin is exponentially stable for

the nominal coalition system x̄+
c = Accxc + Bcκ̄c(x̄c) and

asymptotically stable for the true coalition system x+
c =

Accxc+Bcκc(xc)+wc. The region of attraction for (x̄c, xc)
is XN

c ×XN
c .

Proof. By Proposition 1, x̄c ∈ XN
c implies x̄+

c = Accx̄c +
Bcκ̄N (x̄c) ∈ XN

c and V 0
c (x̄

+
c ) ≤ V 0

c (x̄c) − ℓc(x̄c, κ̄c(x̄c)),
where ℓc(xc, uc) , x⊤

c Qcxc + u⊤
c Rcuc. By Assumption 3,

there exists a constant ac > 0 such that V 0
c (x̄c) ≥

ℓc(xc, κ̄c(x̄c) ≥ ac|x̄c|2 for all x̄c ∈ XN
c and, moreover,

Assumption 1 ensures the existence of a constant bc > ac > 0
such that V 0

c (x̄c) ≤ bc|x̄c|2 over the same domain. Then

V 0
c (x̄

+
c ) ≤ γcV

0
c (x̄c) where γc , (1 − ac/bc) ∈ (0, 1).

If x̄c(0) ∈ XN
c then V 0

c

(

x̄c(k)
)

≤ γk
c V

0
c

(

x̄c(0)
)

and,

moreover,
∣

∣x̄c(k)
∣

∣ ≤ dcδ
k
c

∣

∣x̄c(0)
∣

∣ where δc ,
√
γc and

dc ,
√

bc/ac. This establishes exponential stability for the

nominal system.

Now consider the true trajectory {xc(k)}k. We have

xc(0) = x̄c(0) ∈ XN
c , so |xc(0)| = |x̄c(0)|. Consider some

xc = x̄c + ec and the dynamics of ec

e+c = Accec +Bcκ̃c(ec) +
∑

d∈Mc

Acdxd.

Thus, e+ = Ae + Bκ̃(e), where κ̃(·) denotes the diagonal

collection of κ̃c(·), for which e(k) → 0 as k → ∞, in view

of Assumption 7. Finally, since xc = x̄c+ ec, and both terms

decay asympotically to zero, then xc(k) → 0 as k → ∞.

Corollary 1. For each c ∈ C, the sets XN
c and XN−1

c are

positively invariant for the nominal dynamics x̄+
c = Accx̄c +

Bcκ̄c(x̄c).

Corollary 2. For each c ∈ C, starting from ec(0) = 0 the

true dynamics x+
c = Accxc + Bcκc(xc) + wc evolve in a

robust positively invariant set XN
c ⊕Rc ⊆ (αx

c + ξxc )Xc.

D. Controller design

The design of the controller for each coalition, via the

selection of the constraints scaling factors and construction of

the invariance-inducing secondary control law, uses the theory

and algorithm of optimized robust control invariance [12].

1) Optimized Robust Control Invariance: The optimized

robust control invariance approach of [12] proposed a novel

characterization of an RCI set for a system x+ = Ax+Bu+w
and constraint set (X,U,W) as

Rh(Mh) =
h−1
⊕

l=0

Dl(Mh)W with µ(Rh(Mh)) =
h−1
⊕

l=0

MlW.

The set µ(Rh(Mh)) is the set of invariance-inducing control

actions, defined as µ(Rh) , {µ(x) : x ∈ Rh} = {u ∈ U :
x+ ∈ Rh, ∀w ∈ W}. The matrices Dl(Mh), l = 0 . . . h are

D0(Mh) = I, Dl(Mh) , Al +
l−1
∑

j=0

Al−1−jBMj , l ≥ 1

with Mj ∈ R
m×n and Mh , (M0,M1, . . . ,Mh−1), such

that Dh(Mh) = 0; the latter is ensured by setting h greater

than or equal to the controllability index of (A,B). The set

of matrices that satisfy these conditions is given by Mh ,

{Mh : Dh(Mh) = 0}. Constraint satisfaction is guaranteed

if Rh(Mh) ⊆ ξxX and µ(Rh(Mh)) ⊆ ξuU, with (ξx, ξu) ∈
[0, 1]× [0, 1].

As shown in [12], the linear programming (LP) problem

to compute these sets is

min{δ : γ ∈ Γ}, (4)



where γ = (Mh, ξ
x, ξu, δ), and the set Γ = {γ : Mh ∈

Mh,Rh(Mh) ⊆ ξxX, µ(Rh(Mh)) ⊆ ξuU, (ξx, ξu) ∈
[0, 1] × [0, 1], qxξ

x + quξ
u ≤ δ}; qx and qu are weights

to express a preference for the relative contraction of state

and input constraint sets. Feasibility of this problem is linked

to the existence of an RCI set: if (4) is feasible, then Rh(Mh)
exists and satisfies the RCI properties [12].

2) Design algorithm: In our context, the RCI LP problem

is useful because solving for each coalition c ∈ C provides,

given the disturbance set Wc, an invariance-inducing robust

control law for the coalition dynamics—a suitable candidate

for the second term in the overall control law—plus scaling

constants that outer-bound (with respect to the state and input

constraint sets) the size of the RCI set and its corresponding

set of control actions. These are used subsequently to deduce

the scaling factors to be employed in the MPC problem.

1) The problem (4) associated with the dynamics x+
c =

Accxc +Bcuc + wc and constraint set (Xc,Uc,Wc) is

solved to yield γc,h = (Mc,h, ξ
x
c , ξ

u
c , δc), where µc(·) is

the RCI control law, and ξxc and ξuc are scalings of Xc

and Uc such that Rc,h ⊂ ξxcXc and µc(Rc,h) ⊂ ξucUc

respectively.

2) Given that, under an invariance-inducing control action

uc = µc(xc), xc ∈ Rc,h ⊂ ξxcXc and uc ∈ µ(Rc,h) ⊂
ξucUc, we select

αx
c = 1− ξxc

αu
c = 1− ξuc ,

for the scaling factors in the MPC problem. Then xc =
x̄c+ec ∈ αx

cXc⊕ ξxcXc ⊆ Xc, with a similar expression

for uc, satisfying Assumption 6.

3) The control law κ̃c(ec) = µc(ec) is computed from

the matrices Mc,h, using the minimal selection map

procedure described in [18].

It is worth noting that, although the theory of RCI sets is used

in the design procedure, no RCI sets are explicitly computed

or constructed. In contrast, other iteration-free distributed

MPC methods not only compute these sets offline, during

design, but also employ them online in the constraints.

IV. FEASIBILITY OF TIME-VARYING COALITIONS

The final part of the paper considers that the system

partition, or set of coalitions, changes in time; that is, the

system partition is C(k) ∈ ΠM at time k, but may change at

the next time step to C(k+1) ∈ ΠM
2. We do not consider in

this paper how the system partitions or coalitions are designed;

as such, the results developed in this section are fundamental

to all partition selection schemes. At the same time, these

results may guide the development of a suitable selection

scheme, and we aim to address this in future work.

A time-varying system partition introduces significant

challenges for an MPC-based coalitional control scheme:

2Upon the instigation of a new system partition, the controller for each
partition is designed according to the algorithm given in the previous section;
that this requires only the solution of a single LP for each coalition opens
up the possibility that this re-design can be done on-line, but the fine details
of this are beyond the scope of this paper.

recursive feasibility of the optimal control problem for each

time-invariant coalition is established by Proposition 1, but

this does not continue to hold for a time-varying system

partition. However, recursive feasibility is the most basic

requirement for any MPC controller, since guaranteeing the

continued operation, and then stability, of the controlled

system relies on the continued feasibility of the underlying

optimal control problem. Our aim is, therefore, to determine

conditions under which a new system partition is feasible to

adopt and subsequently use.

A. Definitions

The set XN
C is defined as the product of the individual

feasibility sets of the coalitions:

XN
C ,

∏

c∈C

XN
c ,

with a similar definition for the RCI sets RC (even if these

have not been explicitly computed). Note that the condition

x ∈ XN
C is equivalent to the condition xc ∈ XN

c for all c ∈ C,

but utilizes, for convenience, a more compact notation.

We also introduce a key definition of different notions

of feasibility, with respect to a partition. In the context

of adopting a new system partition, the notion of strong

feasibility that we introduce has the advantage of permitting

the simple initialization of coalitional controller states that

is proposed in the previous section, avoiding what would

otherwise be an iterative and coupled design process.

Definition 3 (Feasible and strongly feasible partition). A

partition is said to be feasible at a state x if x ∈ XN
C ⊕RC ,

and strongly feasible at a state x if x ∈ XN
C .

Finally, we define the notions of refinement and coarsening

with respect to the system partition.

Definition 4 (Refinement and coarsening). Given (D, C) ∈
ΠM ×ΠM, the partition D � C (D refines C, or C coarsens

D) if every member of D is contained in some member of C.

As an example, the grand coalition corresponding to the

centralized partition C = {1, 2, 3} for three subsystems

coarsens the decentralized partition D = {{1}, {2}, {3}}.

B. How partition coarsening and refinement affect feasibility

A key observation is that change in system partition

follows some sequence of coarsenings and/or refinements.

The following set of results, up to Proposition 2, are proved

in a companion paper [19], and are included here because

of the fundamental implications they have for changing the

system partition online.

The first result is a direct consequence of the fact that,

with coarsening (refinement), the disturbance set that each

coalition sees diminishes (grows), leading to a smaller (larger)

RCI set and hence the scaling factors ξxc and ξuc .

Lemma 1 (Nesting of RCI sets). If C � D, then RC ⊆ RD.



Lemma 1 then directly implies less (more) restriction of

the constraints, via the scaling factors αx
c , αx

c , with partition

coasening (refinement).

Lemma 2 (Nesting of nominal feasibility regions). If C � D,

then X i
C ⊇ X i

D for i = 0 . . . N .

This might seem to suggest that feasibility is trivially

maintained with partition coarsening. The reality is, however,

not so simple, owing to the following result—a consequence

of the fact that the overall domain for the true state x is

XN
C ⊕RC and not merely XN

C .

Proposition 2 (Feasibility is not necessarily maintained with

coarsening). Suppose D ∈ ΠM is feasible at x. Then C � D
is not necessarily feasible at x.

That is, even though XN
C ⊇ XN

D when C � D, there is no

clear relation between the sets XD ⊕RD and XC ⊕RC—we

demonstrate this via counterexamples, and hence prove the

claim, in our companion paper [19]. On the other hand, strong

feasibility is guaranteed under the same assumptions, as a

consequence of Lemma 2.

Proposition 3 (Strong feasibility is maintained with coars-

ening). Suppose D ∈ ΠM is strongly feasible at a state x.

Then C � D is strongly feasible at x.

The situation is more challenging, however, in the case of

partition refinement, since a counterpart to Proposition 3 for

a movement from C to D � C does not hold.

Proposition 4 (Strong feasibility does not imply feasibility

after refinement). Suppose C ∈ ΠM is strongly feasible at a

state x. Then D � C is not necessarily feasible at x.

This raises at least two questions: firstly, when is the

hypothesis of Proposition 3, for partition coarsening, met?

Indeed, although x̄(0) ∈ XN
C implies the nominal state

x̄(k) ∈ XN
C for all k ∈ I≥0, the initialization x(0) ∈ XN

C

does not imply that the true state x(k) ∈ XN
C for all k ∈ I≥0.

Secondly, when is strong feasibility achieved under partition

refinement? In the next subsection, we present and discuss

some answers to these questions.

C. Schemes for feasible partition switching

We outline three schemes for enabling feasible switching

between partitions over time. Our intention is not to develop

any scheme into a comprehensive proposal, but to explore

the range of options and illustrate the comparative ease, or

difficulty, of implementing each.

1) A quest for feasibility by design: With the system in

a partition C that is feasible at a state x, the nominal state

x̄ ∈ XN
C . The successor nominal state x̄+

i ∈ XN−1

C and the

true state x+ ∈ XN−1

C ⊕ RC ⊂ XN
C ⊕ RC . This motivates

and leads to the following proposition concerning switching

between partitions.

Proposition 5. Suppose partition C ∈ ΠM is feasible at

a state x. Partition D ∈ ΠM is strongly feasible at the

successor state x+ if

XN−1

C ⊕RC ⊆ XN
D .

With respect to the usefulness of this result, the inclusion

is not straightforward to verify or enforce, in view of

the preference to avoid characterizing and computing RC .

Nevertheless, following the design procedure in Section III-D,

RC is outer-bounded as

RC ⊂
∏

c∈C

ξxcXc,

leading to the following more practical result.

Proposition 6. Suppose partition C ∈ ΠM is feasible at

a state x. Partition D ∈ ΠM is strongly feasible at the

successor state x+ if

XN−1

C ⊕
∏

c∈C

ξxcXc ⊆ XN
D .

The condition is still problematic, and perhaps impossible,

to meet as a design constraint because of the fundamental

relations governing the relations between sets under refine-

ment and coarsening. For example, for the condition to

be met under the refinement D � C, it is necessary that

XN−1

C ⊂ interior(XN
D ) even though XN

C ⊇ XN
D ; satisfaction

would be highly problem specific and, even if possible, would

require careful design. Even under coarsening, for which

XN
C ⊆ XN

D already, the condition is not trivially met, and

relies on weak coupling for satisfaction—the size of the

coalitional disturbance set Wc =
⊕

d∈Mc
AcdXd must be

sufficiently small. More constructive alternatives are therefore

discussed next.

2) Use of a feasibility dwell time: An attractive option,

well established in the switching systems literature, and

more recently in the context of robust MPC for switching

systems [20]–[22], is the use of a dwell time in order to

ensure the state lies within the feasibility region associated

with the new partition at the moment of switching. The

following result, which follows directly from the stability of

each coalition in the time-invariant system partition setting

(Theorem 1), enables this.

Proposition 7 (Feasibility becomes and remains strong

feasibility). Suppose the system is in a partition C ∈ ΠM that

is feasible at x. The same partition C becomes, and remains,

strongly feasible a finite number of time steps thereafter.

Moreover, if RC ⊂ XN
C , then this happens exponentially fast.

The hypothesis RC ⊂ XN
C is satisfied if the constraint

scaling factors follow ξxc < αx
c for all c ∈ C; note that this

condition is, again, a weak coupling requirement in order for

the condition to hold. Where an exponential stability result

holds, as it does here, a dwell time is possible to characterize

and compute by exploiting the exponential decay constants

of the system [22].

Once strong feasibility is established for all subsequent

times, a similar result establishes that a switch from partition C
to partition D is, if the coupling is sufficiently weak, possible

after a finite number of steps.



Proposition 8 (Strong feasibility dwell time). Suppose the

system is in a partition C ∈ ΠM that is feasible at x. A

partition D 6= C becomes strongly feasible a finite number

of time steps thereafter. Moreover, if RC ⊂ XN
D , then this

happens exponentially fast.

3) Use of a simple feasibility check: A key observation is

that, depending on the partition selection scheme, the choice

of system partition at each time may be a controllable degree

of freedom3. It follows, then, that if the system partition

is C and, subsequently, a new partition D is selected, it is

not necessary (for maintaining feasibility and stability) to

adopt the new partition. Indeed, if the new partition D is not

(strongly) feasible, then Proposition 1 already ensures that

the current partition C is.

This motivates the use of a simpler approach than the

dwell-time-based one, of checking the strong feasibility of a

partition immediately after it is selected. To this end, there are

two options: explicit checking via a set-membership test, and

implicit checking via convex optimization. For the former,

note that it is possible to obtain an explicit characterization of

the set XN
c , for each c ∈ C, by the performing N iterations

of the backwards reachability operation; the test of strong

feasibility of a partition C amounts then to the verification

that xc ∈ XN
c for each c ∈ C.

Alternatively, feasibility may be checked by attempting

to solve the QP Pc(x̄c) or, more simply, by solving the

associated linear programming (LP) problem obtained by

replacing the quadratic cost of Pc(x̄c) with a linear one; in

the latter case, an infeasibility certificate is easy to obtain.

V. CONCLUSIONS AND FUTURE WORK

We have presented a robust decentralized MPC scheme for

linear dynamically coupled subsystems subject to constraints.

The scheme uses the well established tube approach to

guarantee robust feasibility and stability for each subsystem

and/or coalition, but here the design and formulation avoids

the need to explicitly characterize a robust invariant set

that represents the uncertainty tube cross section. The MPC

formulation and design, aided by a simple (albeit conservative)

choice of the origin as a terminal constraint, does not rely

on the computation of any invariant sets, which enhances its

applicability to higher-order dynamics, such as those found

in coalitional schemes, and removes the most significant

computational barriers for the on-line controller re-design

problem that also emerges in coalitional control. Finally, we

analysed the recursive feasibility of a coalitional control

scheme built upon the proposed control algorithm, and

established conditions under which changing the system

partition—i.e., the set of coalitions—can safely take place.

Future work will consider how coalitions may be chosen in

time via a suitable selection algorithm, and also improvements

to the proposed DMPC scheme to further lower conservatism

and enhance its applicability, e.g. to more strongly coupled

systems. To this end, we aim to employ the full “nested”

3c.f. the definition of switched systems versus switching systems: in the
former, the switching signal can be arbitrarily chosen [23].

DMPC algorithm proposed in [17]; more strongly coupled

systems may be handled by using the coupling structure to

guide the formation of coalitions.
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