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Ocean wave energy is one of the most concentrated renew-
able energy sources, and its resources are vast in many
countries around the globe (Sheng, 2019). The estimated
worldwide potential of ocean wave power is 32 000TWh

(Mørk et al., 2010), which is more than the worldwide elec-
tricity consumption of about 25 721TWh (International
Energy Agency, 2019).

The development and implementation of wave energy con-
verters (WEC) may have several benefits. Examples of the
benefits range from individual benefits for the country such
as increasing of their renewable energy matrix and guar-
anteeing energy supply diversity (Sheng, 2019), to global
benefits by confronting the problems of climate change
and the difficult challenge of reducing the dependency on
conventional energy resources such as fossils or nuclear
energy.

To date, wave energy technologies are technically imma-
ture for reliable and economical energy generation (Sheng,
2019). One of the biggest challenges is how to improve
the efficiency of wave energy converters. To address this
issue, several control strategies have been proposed to
alter the dynamic behaviour of the device in order to
maximise the extracted energy. Model Predictive Con-
trol (MPC) is a well-developed control strategy within
academic and industry communities which takes into ac-
count constraints whilst optimising a given cost function
(Faedo et al., 2017). Although MPC can have explicit
offline solutions (H.J.Ferreau, H.G. Bock, 2008), this is not
tractable for the WEC problem given the large amount

1. INTRODUCTION of variation present in the wave excitation forces which
are external disturbances to the optimisation. Thus, for
this application, MPC requires an online solution where
at each sampling time, solves an Optimal Control Problem
(OCP) to produce an optimal control sequence, the first of
which is applied to the plant as the control action (Li and
Belmont, 2014). However, one of the drawbacks of MPC
is the computational burden required to solve the OCP.

To reduce the computational burden of the optimisation,
a popular approach is to use input-parameterisation tech-
niques which allow to reduce the number of degrees of free-
dom of the optimisation. Several input-parameterisation
have been proposed such as Laguerre Polynomials (Wang,
2004), as well as orthonormal parameterisations based
on collocation points, typically referred as pseudospectral
methods (Garcia-Violini and Ringwood, 2019).

In this paper, a Moving Window Blocking (MWB) MPC
approach is proposed with the idea of reducing the compu-
tational time required to solve the OCP at each sampling
time. The results of the simulations show a performance
comparable with the performance when implementing the
Full-Degree of Freedom (F-DoF) MPC strategy, and of-
fer a better performance than the Generalised Predictive
Control (GPC) strategy.

The remaining part of this paper is organised as follows:
Section 2 presents the mathematical model for a generic
WEC. F-DoF Model Predictive Control and a detailed
description of the proposed Moving Window Blocking
MPC approach is given in Section 3. The results of
the simulations are presented in Section 4. Finally, the
conclusions and future work are set out in Section 5.

Keywords: Wave energy converters, Model predictive controller, Moving window blocking.

Abstract: Ocean wave energy is one of the most concentrated sources of renewable energy.
However, until now it has not reached the economic feasibility required to be commercialised.
To improve the efficiency of wave energy converters, several advanced control strategies have
been proposed, including Model Predictive Control (MPC). Nevertheless, the computational
burden of the underlying optimisation problem is a drawback of conventional (Full-Degree of
Freedom, F-DoF) MPC, which typically limits its application for real-time control of systems.
In this paper, a Moving Window Blocking (MWB) approach is proposed to speed-up the time
required for each optimisation problem by reducing the number of decision variables using input
parameterised solutions. Numerical simulation of a generic single device point absorber wave
energy converter controlled by this scheme confirms the potential of this approach.
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2. WEC MODELLING

For the development of the mathematical model of a
wave energy converter (WEC), a heaving semi-submerged
sphere is considered as in Figure 1. The hydrodynamic
model is developed from first principles. Applying New-
ton’s second law to the partially submerged sphere, the
dynamics of the sphere are described by:

m z̈(t) = Fg −

∫∫

S(t)

P (t)n dS + FPTO(t) (1)

Where m is the floater mass, z is the vertical displacement
of the body relative to its hydrostatic equilibrium position,
Fg is the force due to gravity, FPTO(t) is the force exerted
by the Power Take-Off systems (PTO) (controller input
u(t)), P (t) is the pressure on an element dS on the buoy
wetted surface, n is a vector normal to the surface element,
dS and S is the submerged wetted surface.

Obody

Oxz

xbody

z

PTO

x

z

Fig. 1. A general wave energy converter with 1-DoF: heave

From (1), several models can be derived, depending on
the complexity, computational time and accuracy desired.
In this study, a linear hydrodynamic model is considered.
For linear models, assuming the fluid is in-compressible,
in-viscid and irrotational 1 , (1) is typically solved using
potential flow theory, in which the potential problem is lin-
earised and computed around the position of equilibrium.
Considering small displacements, and seabed as reference
system, (1) is rewritten as follows:

m z̈(t) = Fres(t) + Frad(t) + Fexc(t) + FPTO(t), (2)

where Fres(t) is hydrostatic restoring force, Frad(t) is the
radiation force, and Fexc(t) the excitation force due to
the incoming wave. The hydrostatic restoring force Fres(t)
represent the spring-like effect of the surrounding ocean
water into the buoy, and is determined by kh hydrostatic
stiffness and z(t) absorber position:

Fres(t) = −kh z(t) (3)

The excitation force Fexc(t) describes the interactions
between the incident waves and the body at its place
of equilibrium, and is represented by the convolution of
the excitation impulse response kexc with the otherwise
undisturbed free-surface elevation η at the centre of the
body:

Fexc(t) =

∫ t

−∞

kexc(t− τ) η(τ) dτ (4)

1 This is a standard assumption in the wave energy literature (Faedo
et al., 2017).

Similarly, the radiation force Frad(t) is a damping/inertial
force associated with waves radiated by the absorber
oscillating in calm water scenario, and is expressed by the
added mass µ∞ and the convolution product between the
radiation impulse response krad and the absorber velocity
ż(t):

Frad(t) = −µ∞ z̈(t)−

∫ t

−∞

krad(t− τ) ż(τ) dτ (5)

The convolution kernels kexc, krad and the frequency-
independent added mass µ∞ are computed numerically
using boundary element methods (BEMs). In this study
the open source NEMOH (Penalba et al., 2017) was em-
ployed. Combining (3)-(5) with (2) gives the widely used
equation (in WEC studies) Cummins’ equation (Cummins,
1962):

m z̈(t) =− khz(t)− µ∞z̈(t)−

∫ t

−∞

krad(t− τ)ż(τ)dτ

+

∫ t

−∞

kexc(t− τ)η(τ)dτ + FPTO(t)

(6)

At this point, a few statements can be made from (6).
First, since the excitation force Fexc(t) depends on the
undisturbed free-surface elevation η(t), it can be con-
sidered as an independent input to the system. Second,
(6) is represented in state-space form for control strat-
egy implementation and third, the direct computation of
the convolution integral in (5) in time-domain simulation
is computationally expensive and cumbersome (Roessling
and Ringwood, 2015). To avoid the direct computation
of the convolution integral at every time step, several
methods to approximate the integral have been proposed
(Yu and Falnes, 1995; Roessling and Ringwood, 2015;
Pérez and Fossen, 2008). Approximating the convolution
integral in (5) by a state-space system with the state vector
xr(t) ∈ R

n is a common approach, where the input to
the system is the velocity of the absorber (v = ż) and
the approximation of the convolution integral term of the
radiation force is the output:

ẋr(t) = Ar xr(t) + Br ż(t)
∫ t

−∞
krad(t− τ)ż(τ) dτ ≈ Cr xr(t)

(7)

This system is later included as a part of the overall
model that describes the motion of the absorber. It is
important to clarify that the system states in (7) have
no physical meaning, but still contain information on the
condition of the surrounding fluid (Cretel et al., 2011). In
this study, the state space matrices Ar, Br, and Cr were
computed by the open source toolbox FOAMM (Finite
Order Approximation by Moment-Matching, based on the
theoretical foundations presented in Faedo et al. (2018))
Defining the state and output vectors, xc ∈ R

n+2 and

yc ∈ R
2, for the linear time-invariant state-space system:

xc =

[

z
ż
xr

]

yc =

[

z
ż

]

(8)

the whole dynamics of the WEC is given by:

ẋc(t) = Ac xc(t) +Bc Fpto(t) +Bc Fexc(t)

yc(t) = Cc xc(t)
(9)

in which Ac ∈ R
(n+2)x(n+2), Bc ∈ R

(n+2)x1, Cc ∈ R
2x(n+2),

are defined as:
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Ac=





0 1 0
−kh

m+µ∞

0 −Cr

m+µ∞

0 Br Ar



; Bc=





0
1

m+µ∞

0



; Cc=

[

1 0 0

0 1 0

]

where 0 denotes a zero matrix of required dimensions.

By discretising system (9), and replacing Fpto and Fexc

for u and uexc, respectively, to use standard nomenclature,
results in a general discrete state-space of the form.

xk+1 = Adxk +Bduk +Bduexck
(10a)

y
k
= Cdxk (10b)

For this study, a discretisation of a zero-order hold was
considered using a sampling time of Ts = 0.1s. The
resulting state space matrices are given in section 4.

3. MODEL PREDICTIVE CONTROL

3.1 General Objective

In this paper, Model Predictive Control was used as gen-
eral optimal control methodology with the general purpose
of maximising the mechanical energy Eabs absorbed by the
PTO system over a time horizon T , defined as:

Eabs = −

∫ t+T

t

u(τ)ż(τ)dτ (11)

Furthermore, real WEC systems will typically present po-
sition, input and input increments (slew rates) constraints
related to physical limits which can be handled naturally
by the MPC formulation. To benefit from the moving
window blocking approach presented in subsection 3.4, this
paper focuses particularly on the case where the WEC is
within a “safe” operating region (i.e., operating within the
position constraints, without making contact with the end-
stops). Indeed, the device should be locked in a survival
mode when exposed to extreme sea conditions (Sheng,
2019); this is reasonable given it is generally not possible to
guarantee output feasibility (such as the buoy positions)
for dynamics systems under significant disturbances. In
simple terms, if a big enough wave is applied to the system,
it would not even be possible to prevent it from reaching
the limits, regardless of the input selection. An alternative
might be to use soft-constraints for some output violations,
however, this is out of the scope of this paper.

The discrete-time optimisation problem is thus chosen as:

minimise Jk =

Np
∑

i=1

uk+i−1żk+i (12a)

s.t. umin ≤ uk+i−1 ≤ umax (12b)

∆umin ≤ ∆uk+i−1 ≤ ∆umax (12c)

where Np is the prediction horizon. Note that this cost
considers the force u and velocity ż at different time steps
(k+ i− 1 and k+ i). This is chosen to ensure causality of
the solution as discussed in Li and Belmont (2014).

3.2 Predictions

Following the methodology described in Cretel et al.
(2010), the state space model (10) is augmented with the

previous input uk−1 to use the input increment ∆uk as the
decision variable resulting in:

xk+1 = Axk +B∆uk +Bwuexck (13a)

yk = Cxk (13b)

where the state is now xk = [xT
k uk−1]

T ∈ R
n+3, the output

is yk = [yT
k
uk−1]

T ∈ R
3, and

A =

[

Ad Bd

0 1

]

B =

[

Bd

1

]

Bw =

[

Bd

0

]

C =

[

Cd 0

0 1

]

This change will allow simple expressions for input and
input rate constraints, as well as the computation of the
product (uk+i−1żk) through an appropriate matrix Q as
discussed in Cretel et al. (2010, 2011). By propagating
the model (13a) Np times forward, all future outputs

Ŷ = [yTk+1, y
T
k+2, · · · , y

T
k+Np

]T ∈ R
3Np are given by:

Ŷ = Gxk +H∆Û +HwÛw (14)

where ∆Û = [∆ûk,∆ûk+1, · · · ,∆ûk+Np
]T ∈ R

Np are the

future input increments; Ûw = [ûwk
, ûwk+1

, · · · , ûwk+Np
]T

∈ R
Np are the future wave excitation forces; and matrices

G ∈ R
3Np×(n+3) and H ∈ R

3Np×Np are defined as:

G =









CA
CA2

...
CANp









T

H =













CB 0 · · · 0

CAB CB
. . .

...
...

. . .
. . . 0

CANp−1B · · · CAB CB













where 0 are zeros matrices with the same dimensions of
CB, and Hw is defined as H using Bw instead.

3.3 Standard Optimisation

Having defined the prediction models, a standard quadratic
cost function can be formulated as,

J =
1

2
Ŷ TQŶ (15)

To compute the product (uk−1żk), the penalisation matrix
Q ∈ R

3Np×3Np is selected as a block diagonal matrix with
the inner matrices qk+i defined as (Cretel et al., 2010),

Q =











qk+1 0 · · · 0

0 qk+2
. . .

...
...

. . .
. . . 0

0 · · · 0 qk+Np











qk+i =

[

0 0 0
0 0 1
0 1 0

]

∀ i = [1, Np]

(16)

By substituting the output predictions (14) in (15), re-

arranging in terms of the decision variables (∆Û), and
including input and input rate constraints, the standard
quadratic program (17) is obtained.

J =
1

2
∆ÛTE∆Û +∆ÛT f s.t. M∆Û ≤ b (17a)

E = HTQH f = HTQ(Gxk +HwÛw) (17b)

M =







I
−I
D
−D






b =







∆umax1

−∆umin1

(umax − uk−1)1
(−umin + uk−1)1






(17c)

where E ∈ R
Np×Np is a matrix known as the Hessian,

here assumed to be positive definite; f ∈ R
Np is a column-

vector; M ∈ R
4Np×Np is the constraint matrix; b ∈ R

4Np

is the constraint vector; I ∈ R
Np×Np is an identity matrix;
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D ∈ R
Np×Np is a lower triangular matrix; and 1 ∈ R

Np

column-vector is a column vector of ones.

Having defined E, f,M, b, the optimisation can then be
solved using any QP solver such as quadprog function of
Matlab, QP OASES (H.J.Ferreau, H.G. Bock, 2008), etc.
At each sampling time, only the first input is applied to the
system and the process is repeated at the next sampling
time, which is the well known receding horizon control
strategy.

3.4 Moving Window Blocking

In this paper, we used a blocking approach where the
input is parameterised in blocks of size Nb having equal
values, e.g. uk = uk+1 = · · · = uk+Nb−1 for the first block,
uk+Nb

= uk+Nb+1 = · · · = uk+2Nb−1 for the second block,
etc., thus allowing the decision variables to be spread
over the prediction horizon, as opposed to the standard
Generalized Predictive Control (GPC) approach where the
decision variable are "congested" at the beginning, and
left constant after a “control horizon" (Rossiter, 2018).
An example comparison of this is visualised in Fig. 2
for the WEC system defined in section 2, and is further
discussed in the results section 4. This distinctive feature
of the blocking approach is important for this application
for two main reasons: firstly, the solution obtained from
the original problem using full degrees of freedom applied
to the WEC system is constantly saturated as seen in
Fig. 2, thus can be accurately represented by blocks; and
secondly, depending on the wave future values, it might
be more important to have decisions available at the
future, example when the wave reaches its crest and trough
(maximum/minimum values).

The aforementioned blocking parameterisation can be
achieved by defining a blocking matrix (N) for the decision

variables (∆Û) of the form:

∆Û = N∆Û (18a)

N =











n 0Nb
· · · 0Nb

0Nb
n

. . .
...

...
. . .

. . . 0Nb

0Nb
· · · 0Nb

n











n =

[

1
0Nb−1

]

(18b)

where Û ∈ R
Nu are the blocked decision variables which

have reduced dimensions of Nu = ⌈
Np

Nb
⌉ n ∈ R

Nb , and
0v ∈ R

v is a column-vector of v zeros. For simplicity, Np

should be selected as a multiple integer of the block size
Nb, otherwise the last n in the diagonal might be different.

Moreover, as discussed in Cagienard et al. (2007), the ap-
plication of standard blocking approaches has an inconsis-
tent nature, and suffers from recursive feasibility problems
given the decision in the previous time step cannot be
replicated which is detrimental to the performance. To ad-
dress this, the Moving Window Blocking (MWB) approach
developed in Cagienard et al. (2007) proposed to shift the
set of Nb admissible blocking matrices Ni along with the
moving horizon resulting in an input parameterisation of
the form.
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Fig. 2. Predicted Trajectories for Buoy Position z (upper
plot) and Input u (lower plot).

∆Û = Ni∆Û ∀ i = [1, Nb] (19a)

Ni =











n1 0Nb−i · · · 0Nb−i

0Nb
n

. . .
...

...
. . .

. . . 0Nb

0Nb−2+i · · · 0Nb−2+i nf











n1 =

[

1
0Nb−i

]

nf =

[

1
0Nb−2+i

]

(19b)

where n and 0v are defined as in (18). Notice the first and
final block (n1,nf ) are shrinking and expanding, respec-
tively. This parameterisation is then applied sequentially
i = 1 → Nb until the first block reaches its limit, and
resets to its original size (i = 1).

By substituting the MWB input parameterisation in the
standard quadratic program (17), the application of the
MWB approach then leads to formulating and solving Nb

different quadratic programs sequentially and repeating
infinitely i = 1 → Nb, 1 → Nb, 1 → · · · as the horizon
moves forward defined as:
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J =
1

2
∆Û

TE
[i]
N
∆Û+∆Û

T f
[i]
N

s.t. M
[i]
N
∆Û ≤ b (20a)

E
[i]
N

= N
T
i H

TQHNi = N
T
i ENi (20b)

f
[i]
N

= N
T
i H

TQ(Gxk +HwÛw) = N
T
i f (20c)

M
[i]
N

=







Ni

−Ni

DNi

−DNi






b =







∆umax1

−∆umin1

(umax − uk−1)1
(−umin + uk−1)1






(20d)

where E
[i]
N

∈ R
Nu×Nu is the “compressed” Hessian, which

can be pre-stored for faster computations. On the other

hand, the “compressed” linear term f
[i]
N

∈ R
Nu can also be

pre-stored by separating the values in f
[i]
N

= f
[i]
1N
xk+f

[i]
2N
Ûw

with f
[i]
1N

= N
T
i H

TQG and f
[i]
2N

= N
T
i H

TQHw. Moreoever,
it is trivial to derive that when using the blocking matrix
Ni as defined in (19), the constraint matrix have redundant
zero rows ∀ i, and can be reduced to,

M
[i]
N

= MN =







IN
−IN
DN

−DN






bN =







∆umax1N

−∆umin1N

(umax − uk−1)1N

(−umin + uk−1)1N







(21)

where MN ∈ R
4Nu×Nu is the "reduced" constraint matrix,

bN ∈ R
4Nu is the "reduced" constraint vector, IN ∈

R
Nu×Nu is an identity matrix, DN ∈ R

Nu×Nu is a lower
triangular matrix, and 1N ∈ R

Nu is column-vector of ones,

all of which have reduced dimensions Nu = ⌈
Np

Nb
⌉ when

compared to the original constraint terms (17c), thus can
lead to significant computational benefits as discussed in
the results section 4. Once the optimisation is solved, the
original decision vector can be recovered using (19).

4. RESULTS

In this section, we present the simulation results of the
control of a point-absorber WEC using F-DoF MPC, GPC
and the proposed Moving Window Blocking (MWB) MPC
approach. The WEC model considered is a heaving semi-
submerged sphere reacting against a fixed reference (see
Fig. 1), with a radius of 5m and draft of 5m, mass
m = 2.6831× 105 kg placed in deep water. A sampling
time of Ts = 0.1s was used. The hydrodynamic coefficients
were computed using the open source NEMOH (Penalba
et al., 2017). The convolution integral in the radiation force
(5) is approximated by a state-space model of order 6 (See
(7)). Here, the state-space matrices Ar, Br, and Cr are
computed using the toolbox FOAMM, which is based in
the moment-matching method (Faedo et al., 2018). The
resulting state space matrices for the discretised model
of (10) are given by (22). The Matlab code and results
presented in this paper are available through a Code
Ocean compute capsule https://doi.org/10.24433/CO.
0481002.v1 (Guerrero-Fernandez and Gonzalez Villarreal,
2019).

To focus on the comparison of the control strategies, which
is the main driver of this study, perfect knowledge of the
future wave forces Ûw and state xk is considered during
the simulation time. The wave elevation of the irregular
sea wave was built using the JONSWAP (Joint North Sea
Wave Project) spectrum discretised in frequency between

0.02Hz to 0.80Hz, corresponding to 1.25 s to 50 s periods
respectively, with a frequency step of ∆f = 5.2× 10−3 Hz.
Considering a significant wave height H0 = 2.0m and
wave peak period Tp = 10.0 s. Fig. 3 shows the resulting
excitation force on the buoy, with a force range from
8.7119× 105 N to −8.5133× 105 N.

Here, for comparison purpose, Full-Degrees Of Freedom
(F-DoF) MPC strategy is considered as the control strat-
egy which delivers the maximum possible extracted energy
(100% efficiency). For the optimisation setup, a predic-
tion horizon of 10 s (Np = 100) was used with a block
size of Nb = 5 for the MWB approach which resulted
in Nu = 20 decision variables. To perform a fair com-
parison, the GPC approach used the same amount of
decision variables compressed at the beginning of the
prediction horizon. Moreover, matrix Bd of (22) was re-
scaled/normalized to avoid numeric conditioning problems
of the optimisation. Finally, constraints on the input and
input increment were considered as ||uk+i|| ≤ 200kN and
||∆uk+i|| ≤ 200kN ∀ i = [0, Np − 1] , respectively.

Fig. 4 shows the energy extracted for the different con-
trollers studied in this paper, and the final value of the
energy extracted at the end of the 600 s simulation is
shown in Table 1. The results show that the proposed
MWB approach offers almost the same amount of en-
ergy compared to the maximum feasible (F-DoF MPC),
with an efficiency of 98.79%. On the other side GPC is
ranked third in the amount of energy extracted, with an
efficiency of 92.84%. Moreover, Zoom A in Fig. 4, shows
the bidirectional reactive power flowing between the PTO
and the absorber, condition required for the active control
strategies to maximise the extracted energy (Pecher and
Kofoed, 2017).

On an interesting note, it can be seen that F-DoF un-
constrained MPC with input saturation failed to extract
energy altogether as seen in Table 1. Similar results were
obtained in Li and Belmont (2014). An alternative is to
add an extra quadratic penalization term on the input
of the form (Jλ = J + λ

∑

u2
k+i−1 ∀ i = [1, Np]) to

the cost function (12a) as discussed in Li and Belmont
(2014), however, this causes disagreements between the
optimisation terms, inevitable leading to suboptimalities.
To perform a fair comparison, a brute-force search was per-
formed to select the value of λ = 1.12 which achieved the
highest energy absorption for the unconstrained penalised
(λ) F-DoF MPC solution with an efficiency of 88.71, thus
still resulting in worse performance than both, GPC and
MWB.

Table 1. Energy Extracted for 600 s simulation
using F-DoF MPC, MWB MPC, GPC and F-
DoF Unconstrained MPC (with and without

additional λ penalization terms)

Method Energy extracted [MJ] Efficiency [%]

F-DoF MPC 306.974 100
F-DoF Unc. MPC −328.738 LOSS
F-DoF Unc. MPC (λ) 272.318 88.71
MWB MPC 303.274 98.79
GPC 285.000 92.84
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Fig. 3. Excitation force uexc for a irregular sea condi-
tion built using the JONSWAP spectrum, with wave
height H0 = 2.0m and wave peak period Tp = 10.0 s
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Fig. 4. Energy Extracted tendency for 600 s simulation
using F-DoF MPC, MWB MPC, GPC and F-DoF
Unconstrained MPC (with/without λ terms)

Fig. 2 shows the predicted trajectories of the buoy position
and the control input u for the three MPC solutions,
namely: the F-DoF MPC, the MWB and the GPC. From
the lower plot of Fig. 2, it can clearly be seen how the
MWB approach embeds the blocked parameterisation,
distributing the decision variables along the prediction
horizon with the sequential shrinking approach (first block
size of 4 → i = 2) visible in the zooms A and B,
respectively. In contrast, in the GPC approach, all the
decision variables are calculated for the beginning of the
prediction horizon and kept constant after a certain time
which leads to a significant difference in the predicted
trajectory of the control action.

On the other hand, the predicted trajectories of the buoy
position can be seen in the upper plot of Fig. 2 where
the solutions for both, F-DoF MPC and MWB MPC, are
practically indistinguishable, with negligible differences
visible in zooms a, b and c. This visual agreement is
supported by the efficiency given in Table 1. In contrast,
this can not be said about the GPC solution, where one can
see the significant differences in the predicted trajectories,
most likely related to the differences in the available
control action trajectories. In simple terms, the GPC
strategy is unable to replicate the position trajectory when
using the same number of decision variables compressed in
the beginning of the prediction horizon.

With regard to the computation times used to solve the
optimal problem at each time step, Table 2 summarises
relevant optimisation statistics of each method employed
in this study when using the interior point method of
Matlab R2018b “quadprog" function in a normal PC
with an Intel i5-7500 @ 3.4 GHz CPU, and 8 GB @
2.4 GHz DDR4 RAM. On average, the proposed MWB
approach makes it possible to solve the optimal problem
12.6 times faster compared to the F-DoF MPC. The reason
for this gain in the computation time is due to the fact
that, in this case, the number of decision variables and
constraints are reduced by 5 times (Nb = 5), i.e., from
Np = 100 to Nu = 20 decision variables, and from
4Np = 400 to 4Nu = 80 constraints, which ultimately
leads to faster and lower amount of iterations required
by the QP to solve the problem. Similar comments of
the timing statistics can be made for the GPC strategy,
with the main drawback being a performance degradation
(efficiency of 92.84%). Also, it can be seen that the MWB
provides the smallest standard deviation for both average
timing statistics, thus leading to an optimisation with
more consistent/repeatable behaviour.

Table 2. Statistics of the Optimisation

Method
Avg. opt.
time [ms]

Avg. num. of
QP iterations

Avg. opt. time
per iter. [ms]

Gain

F-DoF MPC 19.78± 2.75 8.19± 0.79 2.42± 0.27 -
MWB MPC 1.58± 0.23 6.75± 0.98 2.37± 0.04 12.6

GPC 1.39± 0.51 7.37± 1.17 1.93± 0.10 14.2

Finally, it should be pointed out that the main contribu-
tion of the MWB approach is not merely the reduction in
the computation time required to solve the OCP at each
sampling time, but the ability to retain almost the same
performance than that of F-DoF via the shifting input
parameterisation, a property that GPC does not deliver.
Results provided in Tables 1 and 2 support this.
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5. CONCLUSION

The control strategies presented in this study are intended
to maximise the energy production of a generic point-
absorber wave energy converter subject to input and input
rate constraints related to physical limits. The system
benefits from the ability of Model Predictive Control to
include future information of both wave forces and physical
constraints. Moreover, to reduce the computational bur-
den, it uses Moving Window Blocking approach where the
decision variables are parameterised through a set of input-
blocking matrices which result in a sequence of Quadratic
Programs of reduced size to be solved sequentially and
repeating infinitely. This allows solutions up to 12.52 times
faster with efficiency as low as 98.8% when compared
to the Full Degrees of Freedom MPC optimal solution.
Although both, the F-DoF MPC and the proposed MWB
MPC approach are computationally feasible for this par-
ticular single WEC device model, the proposed control
strategy could be a key methodology for implementing
Centralised Model Predictive Control for wave farms. The
solution of the proposed approach was further compared
with GPC, as well as with two versions of Unconstrained F-
DoF MPC, one of which was shown to result in a complete
loss of energy extraction.

Future work will include the assessment of the solution
using real-time embedded hardware such as FPGAs, as
well as faster QP solvers such as QP OASES. Moreover,
the application will be extended to wave farms using a
centralised optimisation framework, and compared with
decentralised/distributed approaches as well as with other
parameterisation such as collocation points based on pseu-
dospectral methods. Finally, the mathematical models and
MPC formulation will be extended to the nonlinear case,
and will include further modeling such as actuator dynam-
ics and future wave force predictions.

Ultimately, enhancing peer collaboration and transparency,
the findings provided in this paper and the Matlab
code used in the simulation are accessible through a
Code Ocean capsule (https://doi.org/10.24433/CO.
0481002.v1) (Guerrero-Fernandez and Gonzalez Villar-
real, 2019).
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