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With the potential to replace manned vessels for dirty
operations such as cleaning up oil spills, (Kim et al., 2012),
dangerous ones, like those found in mine sweeping, or dull
monotonous tasks like patrolling, (Oleynikova et al., 2010),
the need for autonomous surface vehicles is increasing.
This growth in use necessitates an increase in the ability
of the Autonomous Surface Vehicle (ASV) to handle more
extreme ocean environments, such as rough seas, in a
similar or superior manner as human pilots.

Traditional path following controllers may neglect ocean
disturbances, (Lekkas and Fossen, 2014; Oh and Sun, 2010;
Çimen and Banks, 2004), or consider only ocean drift
forces, (Paliotta et al., 2019; Peymani and Fossen, 2013).
Larger vessels, such as container ships can often assume
ocean disturbances to be planar for most conditions in sea
state 3 or below on the Douglas Scale. For larger vessels
in the presence of waves, constraining roll is important for
reducing sea-sickness and damage to cargo (Li et al., 2009,
2010).

However, smaller sea going vessels of the magnitude of
tens of meters or smaller are greatly impacted by waves.
Reinhart et al. (2010) use a priori optimized control path
templates to find that tacking in littoral waves reduces
bow diving. This behavior is used in a path planning
algorithm which, when the angle between desired direction
of travel and the main wave direction is smaller than a
predefined threshold a secondary point is added to the
path to increase the angle and to create this tacking
behaviour. A PID controller is used to maintain the
planned path without knowledge of the ocean environment
which reduces the bow diving but does not eliminate it.
With a set maximum pitch and roll constraint, Ono et al.

1. INTRODUCTION

2. SYSTEM MODEL

2.1 ASV Dynamics

The ASV model is based upon a simplified description of
the Halcyon ASV: more details of the 6 degrees of freedom
(DOF) model can be found in (Heins et al., 2017). For
the purpose of developing initial control strategies this
paper examines the 1 DOF scenario, with the changes
and simplifications from the full model noted below. The
simplification is based upon the following assumptions.

• The model degrees of freedom are restricted to for-
wards (surge) motion only. The state space model
developed in this paper can be augmented with addi-

(2014), calculates feasible safe velocity regions for use in
path planning in rough seas. The model used a direct
input, that is the input is the velocity of the system,
allowing it to move from one safe velocity region to the
next in one time step. On a boat this would not be possible,
and the boat would have to move through unsafe velocity
regions and potentially capsize or bow dive. Therefore, in
this work we propose an optimal control strategy that is
based upon a first-principles model of the ASV and wave
interaction dynamics, with a view towards minimising
wave induced forces whilst maintaining headway.

The rest of the paper is organized as follows; section 2
presents the derivation of a low-order state space model
that describes the coupled dynamics between the ASV
and a wave, section 3 introduces the control problem
formulation, section 4 presents the results and discussion
from the simulations, and section 5 concludes the paper,
and discusses future work.

Keywords: Nonlinear and optimal marine system control, autonomous surface vehicle,
nonlinear model predictive control, real time optimization.

Abstract: This paper addresses the problem of controlling an Autonomous Surface Vehicle
(ASV) in rough sea-states, with a view towards minimising wave-induced forces, whilst
maintaining headway. This is a challenging control application since, and as is derived in the
paper, the interaction between the vessel and the wave disturbance is nonlinear and coupled.
This subsequently motivates the novel application of the Real Time Iteration Scheme (RTI)
for Nonlinear Model Predictive Control (NMPC) of the ASV. Analysis of the resulting control
signal provides an important insight into the role of the wave encounter frequency. Specifically,
by actuating at twice the average wave encounter frequency, the nonlinear controller is able to
reduce the wave forces, compared to an open-loop controller that achieves the same average
velocity.
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tional states to describe the other degrees of freedom
and will be studied in future work.

• There are no water-current or wind-induced forces.
Again, these can be included in the model but the
focus of the present work is upon wave-induced forces.

• Actuation is restricted to the propeller input only.
Future work will include steering once roll and yaw
dynamics are included.

• The wave induced forces arise from a single wave
harmonic, corresponding to regular waves, and the
controller has full information of this. In practice, the
sea surface is more complex and wave forecasting is
an active research area (see: Merigaud and Ringwood
(2019))

• The vessel is heading directly into the oncoming
waves. This assumption will be relaxed in future work
when steering inputs are considered.

The equations of motion of the boat in the surge direction
are as follows:

χ̇(t) = ν(t), (1a)

ν̇(t) =
D(ν(t)) + τp(ν(t), ζ(t)) + τνw(ν(t), η(t))

M
, (1b)

ζ̇(t) =
−1

κ
ζ(t) +

1

κ
u(t). (1c)

The system has five states, x = [χ, ν, ζ, η, η̇]
T
, with χ(t)

being the position in the boat reference frame at time t,
ν(t) is the surge velocity of the boat, ζ(t) is the propeller
speed, u(t) is the propeller control input, and η(t) and
η̇ are wave states defined in the following section. In the
above equations D(ν(t)) is the drag term, τp(ν(t), ζ(t)) is
the propulsion from the propellers, κ is the propellor time
constant, and τνw(ν(t), η(t)) is the wave force in the surge
direction, derived in the next section. Table A.1 in the
appendix list the parameters employed in this paper. The
surge drag force equation is as follows:

D(ν(t)) = −
1

2
ρSC∗

f (ν(t))ν(t)
2, (2)

where S is the wetted hull surface area and ρ is the
density of water. The modified resistance curve, C∗

f (ν(t)),is
approximated by the following 6th order polynomial:

D(ν(t)) = −
1

2
ρS(p1ν(t)

6 + p2ν(t)
5 + p3ν(t)

4 + p4ν(t)
3

+ p5ν(t)
2 + p6ν(t) + p7)ν(t)

2, (3)

where px are constant coefficients defined in appendix A.2.
The thrust from the dual propellers is modelled by:

τp(ν(t), ζ(t)) = 2Kτρd
4ζ(t)2, (4)

where d is the propeller diameter and where the thrust
parameter Kτ is given by:

Kτ (J) = K{1}
τ J2 +K{2}

τ J +K{3}
τ , (5)

where, K
{i}
τ are thrust polynomial constants defined in

appendix A.3, and the advance ratio, J , is:

J =
ν(t)

ζ(t)d
. (6)

2.2 Wave Environment and Forces

The force exerted on the boat by the wave is calculated
using a Response Amplitude Operator (RAO) (Fossen,
2011). The full model uses look-up tables to find the values
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Fig. 1. Surge RAOs at various wave frequencies and surge
velocities. The plot is dimensionlized with ρ and g

dependent on the conditions. In the case of the surge
direction, the force RAO is appoximately an affine function
of the surge velocity and wave frequency, as shown in
Figure 1. The phase RAO is assumed to be constant for all
boat velocities at a specific wave frequency. For the force
RAO, the force is linearly dependent on the velocity, as
well as linearly dependent on the wave frequency. Selecting
a wave frequency, the dimensionalized force RAO can be
approximated by the following equation:

ρg|F ν(ν(t))| ≈ aν(t) + b, (7)

where a = 23.18, b = 10845, for the wave frequency, ω,
of 0.5 rad/s. Note, the force RAO magnitude, |F ν(ν(t))|,
typically uses a subscript to indicate first order wave forces
or second order drift forces. This paper only discusses first
order wave forces so the subscript is excluded.

Wave Environment The force imparted on the boat from
the wave is dependent upon the wave height and boat
position. For a single harmonic in the surge direction the
wave elevation is defined as:

ξ(χe, t) = ah cos(kχe − ωt+ ǫ), (8)

where ah is the wave amplitude, ǫ is an arbitrary added
phase, and χe ∈ R is the boat’s position in an inertial
reference frame. Assuming the boat’s χ-axis coincides with
the fixed reference frame χe-axis, χe can be described in
the boat’s body fixed frame by (Pérez and Blanke, 2002):

χe = χ0 +

∫

ν(t) dt. (9)

Inserting (9) into (8) and setting χ0 = 0 results in the
wave elevation described in the boat’s reference frame:

ξ(χ, t) = ah cos

(
∫

ν(t) dt− ωt− ǫ

)

. (10)

With the deep water dispersion relation k = ω2/g is
assumed, the wave force term in (1b) is a function of the
force RAO (7) and the wave elevation (10):

τνw(ν(t), η(t)) = −ρg|F ν(ν(t))|ah

cos

(

ωt+
ω2

g

∫

ν(t) dt+ φRAO + ǫ

)

, (11)

where g is the acceleration due to gravity, |F ν(ν(t))| is the
force RAO, and φRAO is the phase RAO which is assumed
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constant at 1.502 radians. Note, typical notation for the
wave frequency ω, wave amplitude ah, and ǫ include a k
subscript to indicate each wave component, however, to
avoid confusion with the discrete time indices later, and
since this paper only concerns a single wave component,
the subscript has been dropped.

Next, the wave harmonic is decoupled from the height
and force RAO to simplify use in state space form and
is redefined as:

η(t) := cos

(

ωt+
ω2

g

∫

ν(t) dt+ φRAO + ǫ

)

. (12)

The dynamics of η(t) are obtained by differentiating (12)
with respect to time. The resulting expressions are some-
what involved, but can be simplified significantly by per-
forming an order of magnitude analysis to retain only the
leading-order terms under the following set of assumptions:

• ω ∈ [0.30, 0.75] rad/s. This is justified by observing
that the vast majority of wave energy in a typical
wave energy spectrum is concentrated in this band.

• ν(t) ∈ [0, 10] m/s. This is the typical operating range
in surge velocity for the ASV studied.

•
ω2

g
ν̇(t) ≪ ω + ω2

g
ν(t) so it is neglected.

With these assumptions the first derivative is:

η̇(t)≈−

(

ω+
ω2

g
ν(t)

)

sin

(

ωt+
ω2

g

∫

ν(t)dt+φRAO+ǫ

)

.

(13)

The second derivative is:

η̈(t) ≈ −

(

ω +
ω2

g
ν(t)

)2

η(t). (14)

The term ω+ ω2

g
ν(t) is the encounter frequency of the boat

to a wave in a head sea.

2.3 Combined State Space Model

The combined surge and wave dynamics can be expressed
in linear time varying form as shown in (Tomás-Rodŕıguez
and Banks, 2010). Here, in (15), it is clear to see the
coupling between the boat velocity and the wave state. The
force of the wave imparted on the boat in the (2,4) term is
dependent on both the velocity of the boat and the wave
state, while in the (5,4) term, the square of the encounter
frequency can be seen. Linearization of this system about
a fixed velocity loses this coupling. This motivates the use
of a nonlinear control technique.

3. CONTROLLER DESIGN

The following section presents the design of a Nonlinear
Model Predictive Controller based on a condensed single-
shooting approach. The optimisation is implemented

within the Real Time Iteration Scheme (RTI) (Diehl et al.,
2005) which is a popular method to achieve real-time
performance.

3.1 NMPC Controller

Considering a discrete-time representation of the general
nonlinear system (15), the objective is to minimize a cost
function of the form,

J = (Yr − Ŷ )TQ(Yr − Ŷ ) + (Ur − Û)TR(Ur − Û) (16a)

s.t.

xk = x0 (16b)

xk+1 = f(xk, uk), (16c)

yk = g(xk, uk), (16d)

Umin ≤ Û ≤ Umax (16e)

Ymin ≤ Ŷ ≤ Ymax (16f)

where xk ∈ R
nx are the states of the system at time k,

uk ∈ R
nu are the inputs, and yk ∈ R

ny are the outputs.
Moreover, Q > 0 ∈ R

Npny×Npny and R > 0 ∈ R
Npnu×Npnu

are positive definite matrices for penalizing output and
input errors, respectively; Yr, Ŷ , Ur, Û are column-vectors
containing future output references, output predictions,
input references and input predictions, respectively; and
the optimisation subject to initial condition (16b), state
dynamics (16c), state-output function (16d), and input
and output constraints (16e) and (16f).

Cost function (16) is a Nonlinear Programming Prob-
lem (NLP), which is in general difficult to solve. Pop-
ular alternatives are Sequential Quadratic Programming
(SQP) methods which form a linearized Convex Quadratic
Program to find an optimal search direction which
eventually drives the solution towards a local opti-
mum. In predictive control, the linearization of the cost
function is only defined after the future inputs and
states trajectories are defined. To address this, single-
shooting methods use an initially guessed nominal in-
put trajectory Ū = [ūT

k , ū
T
k+1, · · · , ū

T
k+Np−1]

T which

can be used to obtain the nominal state and output
trajectories, X̄ = [x̄T

k+1, x̄
T
k+2, · · · , x̄

T
k+Np

]T and Ȳ =

[ȳYk+1, ȳ
T
k+2, · · · , ȳ

T
k+Np

]T , respectively, by propagating the

input through the state dynamics (16c) and obtaining the
respective outputs through output function (16d).

By taking a first order Taylor approximation, with a slight
abuse of notation, all future inputs and outputs can then
be obtained starting from an initial condition mismatch
δx0 related to the Real-Time Iteration Scheme as,

Û = Ū + δÛ (17a)

Ŷ = Ȳ + δŶ = Ȳ +Gδx0 + FδÛ (17b)

where matrices G and F are defined as















χ̇(t)

ν̇(t)

ζ̇(t)

η̇k(t)

η̈k(t)















=















0 1 0 0 0

0 −
D(ν(t))

M

τp(ν(t),ζ(t))
M

−
ρg|Fu(ν(t))|ah

M
0

0 0 −
1
κ

0 0
0 0 0 0 1

0 0 0 −

(

ω + ω2

g
ν(t)

)2

0





























χ(t)

ν(t)

ζ(t)

ηk(t)

η̇k(t)















+















0

0
1
κ

0

0















u(t) (15)
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G =







C1A0

C2A1A0

...
CNp

ANp−1 · · ·A1A0






, (18a)

F =








C1B0 O · · · · · ·

C2A1B0 C2B1 O · · ·

C3A2A1B0 C3A2B1 C3B2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.

CNp
ANp−1 · · ·A1B0 CNp

ANp−2 · · ·A2B1 · · · · · ·







.

(18b)
and,

Ak =
∂f(x̂k, ûk)

∂x̂k

∣
∣
∣
∣x̂k=x̄k

ûk=ūk

Bk =
∂f(x̂k, ûk)

∂ûk

∣
∣
∣
∣x̂k=x̄k

ûk=ūk

(19a)

Moreover, this paper focuses on regulating the average
boat velocity and minimizing the wave forces defined as:

τw = τ̄w +
∂τw(ν̄k, η̄k)

∂νk
δνk +

∂τw(ν̄k, η̄k)

∂ηk
δηk. (20)

thus, resulting in the output matrix defined as:

Ci =

[
0 1 0 0

0 ∂τw(ūk,η̄k)
∂νk

0 ∂τw(uk,ηk)
∂ηk

]

. (21)

The wave force in the surge direction does not vary by a
large amount with a change in velocity which can be seen
in Figure 1. Using an additional tuning parameter in the
force RAO equation, (7) can be rewritten as:

|F ν
k (νk)| = α(aνk) + b, (22)

where α is the additional tuning weight which can be used
to virtually increase the change in the wave force with
respect to the boat velocity.

To obtain a desired average velocity, the rows of the
linearized prediction model (17b) related to the velocity
are averaged over the prediction horizon.

Optimization Substituting input and output linearised
prediction models (17a) and (17b) in the original cost
function (16), and rearranging the cost in terms of the

decision variable δÛ (condensing approach) results in the
standard QP form:

J =
1

2
δÛTHδÛ + δÛT f + C (23a)

s.t.

MδÛ ≤ γ (23b)

H = FTQF +R (23c)

f = −
[
FTQ(Yr − Ȳ −Gδx0)−R(Ū − Ur)

]
(23d)

M =






I
−I
F
−F




 γ =






Umax − Ū
−(Umin − Ū)

Ymax − Ȳ −Gδx0

−(Ymin − Ȳ −Gδx0)




 (23e)

Having defined this, any QP solver of choice can be used
to solve (23a). Once the optimal input deviation, δÛ , is
obtained, equation (17a) is used to recover the actual
input. Only the first input is applied to the system, and the
process is then repeated, which is the well known receding
horizon strategy.

3.2 Real Time Iteration Scheme

The Real Time Iteration (RTI) scheme, is a strategy that
enables real-time performance for Nonlinear Optimal Con-
trol. The following is a brief explanation of the procedure.

Initial Value Embedding (IVE) It uses the solution found
in the previous step in a shifted version, typically dupli-
cating the last input variable uk+Np|k+1 = uk+Np−1|k, to
obtain the nominal trajectory over which the formulation
will linearise and optimise.

Single SQP To further reduce the computational burden
and achieve predictable timings, only a single step of
the SQP is performed. This is reasonable given that
the solution is “hot-started” from the previous solution,
which is expected to be close to the optimal solution,
provided no significant unknown/unexpected disturbances
have entered the system.

Computation Separation Separates the computations
into preparation and feedback phases to avoid the com-
putation delay related to the preparation of the QP. Dia-
grams showing the timings of these phases can be found
in Gros et al. (2016).

(1) Preparation Phase: In between sampling times, the
preparation phase uses a predicted nominal state for
the next sampling time x̄0 = x̂k|k−1 as a starting
point obtained from the last state xk−1|k−1 and last
input uk−1|k−1 which allows the preparation of the
QP main matrices H,M,F, etc., and partially, vectors
f and γ.

(2) Feedback Phase: Once the current state measurement
becomes available the feedback phase calculates the
state mismatch δx0 = x0− x̄0, finishes the calculation
of f and γ, and solves the QP. In some cases,
it may be beneficial to run the QP prior to the
state measurement assuming δx0 = 0 to obtain an
estimate of the Lagrange multipliers, λ, related to the
inequalities constraints. In this strategy, the optimal
solution obtained from the RTI can be shown to have
the form as presented in Wang (2011):

Û = Ū−

H−1






Unconstrained
︷ ︸︸ ︷

−(FTQ(Yr − Ȳ )−RŪ)

Constrained
︷ ︸︸ ︷

+MTλ
︸ ︷︷ ︸

Preparation Phase

+FTQGδx0
︸ ︷︷ ︸

Feedback Phase






(24)

4. SIMULATION RESULTS

The boat was simulated heading directly into oncoming
waves with the propellers being the only actuation. The
wave was a single harmonic with a wave height of 1
meter and a frequency of 0.5 rad/s. The NMPC had a
prediction horizon of 200 steps ahead, with the sample
period 0.08 seconds resulting in a prediction window of 16
seconds which captures just over one complete harmonic.
The simulation was run for 30 seconds. The weights of
the NMPC were Qu = 10 for penalizing deviations of the
average velocity from the desired average, Ru = 1.4× 10−7

penalizing deviations from Ur, and the tuning weight in
(22) is set as α = 100. The following shows a comparison
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Fig. 2. The top plot shows the velocity profiles of the two
controllers. The bottom plot shows the wave state η.
The velocity profile shows a global minimum for the
NMPC controlled boat when η is maximum and a
local minimum when η is minimum.

between a constant propeller input which produces an
average 5 m/s velocity and the NMPC controller with a
desired average velocity of 5 m/s.

Figure 2 shows the velocity profiles of the open loop
controller and the NMPC controller compared to the
wave state, η. A clear difference in the velocity profiles
can be seen. The open loop controller has an oscillating,
single harmonic velocity resulting from changes only in
the wave force, while the NMPC scenario has a more
complex velocity profile. A global minimum of velocity for
the NMPC controller occurs when the wave state is at its
maximum, while a local minimum velocity for the NMPC
controller occurs at the minimum of the wave state. Both
the local and global maximum velocity occurs when the
wave state is at zero. This behavior allows the boat to
maintain the desired average velocity while reducing peak
wave forces.

The resulting force on the boat can be seen in Figure 3.
This figure shows the weighted wave force as calculated
from (22). The base force, that which the boat would
experience at 0 m/s, is subtracted from this figure to better
show the difference in the two scenarios. Figure 4 shows the
input for both controllers as it compares to the wave state.
The NMPC input frequency appears to be twice that of the
wave. This double harmonic is confirmed when looking at
Figure 5. This figure shows the amplitude spectrum of the
input signal to the propeller for NMPC. In the simulation,
with an average velocity of 5 m/s the average encounter
frequency of the boat is 0.628 rad/s, which has a small
peak in the amplitude spectrum, while a much larger peak
in seen at 1.256 rad/s or double the average encounter
frequency. This can be explained by the fact that for each
wave period, the minimal wave force occurs twice. NMPC
exploits this by having the velocity profile shown in Figure
2, with peaks during the minimal wave force time.

5. CONCLUSION AND FUTURE WORK

This paper formulated and solved the problem of min-
imizing wave-induced forces upon an ASV heading into

0 5 10 15 20 25 30
-6000

-4000

-2000

0

2000

4000

6000

Fig. 3. Wave force comparison between the two controllers.
Note: The base wave force is subtracted to more
clearly show the difference in the two controllers.
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Fig. 4. The top plot shows the propeller input profiles of
the two controllers. The bottom plot shows the wave
state η.
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Fig. 5. An amplitude spectrum of the NMPC controller
input
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ocean waves. Because of the velocity-dependent encounter
frequency, linearization of the dynamics removes the im-
portant coupling between the vessel and the wave, hence
motivating the use of a NMPC which can benefit both,
from the future prediction of the wave, as well as the ability
to handle nonlinear dynamics and constraints. Moreover,
a key finding of this study was observed in the velocity
and input profiles required to minimize wave forces which
resulted in twice the average encounter frequency. Further
studies will seek to use this coupling concept to explore
other degrees of freedom such as pitch and roll as well as
the additional input of steering, and use NMPC’s ability
to reduce forces and satisfy constraints to handle more
complex sea states.
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Appendix A. MODEL PARAMETERS

Table A.1. Halcyon Parameters

Name Symbol Value

Mass M 11000 kg
Max Surge Velocity νmax 10 m/s
Propeller Diameter d 0.622 m
Propeller Time Constant κ 1.8 s
Wetted Surface Area S 36.36 m2

Water Density ρ 1025 kg/m3

Wave Amplitude ah 1 m
Wave Frequency ω 0.5 rad/s
Acceleration due to Gravity g 9.81 m/s2

Phase RAO φRAO 1.502 radians
Force RAO Slope a 23.18 N/(m/s)
Force RAO Intercept b 10845 N
RAO Tuning Weight α 100

Table A.2. p Constant Coefficients

p1 −9.22× 10−7 p5 −5.52× 10−3

p2 3.14× 10−5 p6 2.49× 10−3

p3 −4.00× 10−4 p7 1.70× 10−2

p4 2.31× 10−3

Table A.3. K
{i}
τ Thrust Polynomial Constants

K
{1}
τ 0.0041

K
{2}
τ -0.5002

K
{3}
τ 0.6008


