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The Collinear Mecanum Drive: Modelling,

Analysis, Partial Feedback Linearisation, and

Nonlinear Control
Matthew T. Watson1, Daniel T. Gladwin2, and Tony J. Prescott3

Abstract—The Collinear Mecanum Drive (CMD) is a novel
robot locomotion system, capable of generating omnidirectional
motion whilst simultaneously dynamically balancing, achieved
using a collinear arrangement of three or more Mecanum wheels.
The CMD has a significantly thinner ground footprint than
existing omnidirectional locomotion methods, which does not
need to be enlarged with increasing robot height as to avoid
toppling during acceleration or external disturbance. This com-
bination of omnidirectional manoeuvrability and a thin ground
footprint allows for the creation of tall robots that are able to
navigate through much narrower gaps between obstacles than
existing omnidirectional locomotion methods. This allows for
greater manoeuvrability in confined and cluttered environments,
such as that encountered in the personal service and automated
warehousing robotics sectors.

This article derives the kinematics and dynamics models of the
CMD, analyses controllability and accessibility, and determines
the degree to which a CMD can be linearised by feedback.
A partial feedback linearisation is then performed, and three
practically useful nonlinear controllers are derived using a
backstepping design approach, all with convergence and stability
guarantees for the fully-coupled nonlinear model. These are
demonstrated both in simulation and on a real-world CMD
experimental prototype.

Index Terms—Wheeled Robots, Dynamics, Kinematics, Dy-
namically Balanced Omnidirectional Motion.

I. INTRODUCTION

MOBILE robots are seeing increasing deployment in

warehousing, retail, and personal robotics applications.

Omnidirectional wheel configurations are often used, as these

allow for improved mobile manipulation, better navigation of

confined and cluttered spaces, and smoother, more graceful

motion. Currently, omnidirectional locomotion is typically

achieved using three or more omnidirectional wheels, located

at the vertices of a polygon beneath the robot. To avoid

toppling when accelerating, cornering, or during external dis-

turbance, this ground footprint polygon must be sufficiently

large relative to the robot’s height. This lower bounds the

size of gap between obstacles that can be navigated by robots

of a given height, reducing manoeuvrability in confined and
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Fig. 1. A Collinear Mecanum Drive prototype, upon which both simulated
and experimental results are based.

cluttered environments and necessitating bulky robot form

factors.

The Collinear Mecanum Drive (CMD) utilizes three or more

collinear Mecanum wheels to enable omnidirectional locomo-

tion whilst simultaneously dynamically balancing about the

wheel rotation axis. As the wheels of a CMD are located

collinearly, the footprint of a robot using a CMD can be

made to be arbitrarily thin, limited only by wheel diameter.

As the CMD is omnidirectional, it is able to take advantage of

this reduced footprint dimension by translating directly along

its wheel axis, allowing for the navigation of smaller gaps

between obstacles than existing omnidirectional locomotion

methods. This can be achieved whilst maintaining a tall form

factor, as stability in this thin dimension is now attained

actively rather through possession of a proportionately large

footprint. This new locomotion system therefore allows for

the creation of omnidirectional systems of the same height

as existing statically stable omnidirectional platforms, whilst

requiring a fraction of the ground footprint and overall system

size, and with a much smaller minimum navigable gap.

This enables the creation of tall and slender robots that are

better able to navigate cluttered environments such as those

encountered in the home, office, and retail robotics sectors.

Omnidirectional dynamically balanced motion has previ-

ously only been achieved using either legged or ball-balancing

[1] robots. Legged robots are significantly more complex and

expensive than the CMD, and do not take advantage of the
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Fig. 2. Collinear Mecanum Drive coordinates and parameters for the
experimental prototype shown in Fig. 1

predictable flat terrain typical of indoor environments. Ball-

balancing robots are also somewhat complex, are difficult to

practically realise, must expend energy to balance in two axes

simultaneously, and by possessing only a single ground contact

point cannot generate significant torque about the vertical.

Comparatively, the CMD requires only three moving parts12,

has to balance only in a single dimension, and can generate

significant torque about the vertical, allowing for improved

control performance and greater environment interaction. The

CMD can therefore achieve greater performance than existing

omnidirectional dynamically balancing systems, whilst being

of simpler construction and likely possessing both greater

reliability and reduced unit cost.

Prior to this work only a simple dynamics model of the

CMD has been derived [2], and no effort has been made

to analyse the controllability or dynamical properties of this

novel locomotion system. The CMD has also been shown to

be approximately differentially flat [3], allowing for computa-

tionally efficient trajectory planning.

II. KINEMATIC MODEL

In order to derive the CMD’s inverse kinematics and dy-

namics models, the nonholonomic constraints imposed by the

Mecanum wheels must first be derived.

Consider the proposed CMD platform depicted in Fig. 2 on

a flat plane, where {E, êx, êy, êz} denotes the fixed inertial

reference frame. The body attached frame {B, b̂x, b̂y, b̂z} is

obtained by a rotation of E about êz by φ, followed by a

translation of xêx+yêy , with B located on the wheel rotation

axis in the center of the platform. The pendulum attached

frame {P, p̂x, p̂y, p̂z} is obtained by a translation of B by hp

along b̂z , followed by a rotation of θp about b̂x, where hp

1Excluding the unactuated Mecanum wheel rollers, as compared to a typical
moving part within a robot these are very simple and low cost.

2Despite requiring only a minimum of three wheels, a four-wheeled
configuration is chosen for the prototype in Fig. 1 in order to simplify
suspension design.

represents the height of the pendulum center of mass along

b̂z relative to B, with associated mass mp and inertia tensor

Ip = diag(
[

Ipx Ipy Ipz
]

). The i wheel coordinate frames

{Wi, ŵi,x, ŵi,y, ŵi,z} are obtained by a rotation of B about b̂x
by θi and a translation of b̂xli, and have identical masses mw

and identical inertia tensors Iw = diag(
[

Iwx Iwyz Iwyz

]

)
attached at Wi. Only one roller is considered per wheel, and it

is assumed to always be positioned directly under the center of

the wheel along the ŵi,z axes, with the contact point between

this and the ground assumed to be fixed under the center of the

roller. This is a simplification, as during rotation of the wheel

this contact point actually transitions from one side of the

roller to the other, before discontinuously jumping to the start

of the next roller as this contacts the ground. Incorporating this

phenomena yields a discontinuous model, greatly complicating

simulation and model-based control design. The exact contact

location is also sensitive to small variations in ground flatness,

and is hard to exactly determine in a real-world system. For

these reasons this simplification is justified, and is expected to

manifest as a cyclic disturbance acting as a torque about b̂z
as each li varies over rotation of wheel i. The roller axis of

rotation r̂i is defined as a rotation of b̂x by αi about b̂z where

sin(αi) 6= 0 and cos(αi) 6= 0, with roller angular position

given as a rotation about r̂i by Ωi. Due to their small size the

rollers are assumed to be massless and inertialess for model

simplicity.

Considering a single Mecanum wheel, let µ̂p represent the

unit vector running parallel to r̂i through the ground contact

point, expressed in the local body attached frame, let W
represent the wheel’s centre, and let the roller contact the

ground directly under W at C as C = W − rw b̂z , where

rw denotes the wheel radius measured to the roller contact

point and perpendicular to the wheel rotation axis.

For no slip to occur, the component of the roller’s velocity

at the contact point along µ̂p must always be zero, so

~vEC,B · µ̂p = 0 (1)

in which ~vEC,B represents the velocity of C relative to E
expressed in the local body frame B, and where · denotes the

dot product.

~vEC,B can be expressed as the body frame velocity of the

wheel at W relative to E summed with the tangental velocity

due to wheel angular velocity θ̇i as

~vEC,B = ~vEW,B − rw b̂y θ̇i (2)

Similarly, ~vEW,B can be defined in terms of the body frame

velocity of B relative to E as

~vEW,B = ~vEB,B + φ̇lib̂y (3)

Finally, ~vEB,B can be expressed in the inertial frame as

~vEB,B = RT
EB~vEB,E (4)

Combining (1)-(4) and splitting ~vEB,E into its components

along êx and êy , denoted x and y, yields the nonholonomic

no-slip constraint

ẋ cos(αi − φ)− ẏ sin(αi − φ)− φ̇li sin(αi)

+ θ̇irw sin(αi) = 0 (5)
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Similarly, the angular velocity of the roller Ω̇i is proportional

to its velocity along the vector µ̂t, where µ̂t is perpendicular

to µ̂p and parallel to the ground, so

~vEC · µ̂t = rrΩ̇i (6)

which by substitution with (2)-(3) yields the nonholonomic

rolling constraint

ẋ sin(αi − φ) + ẏ cos(αi − φ) + φ̇li cos(αi)

− θ̇irw cos(αi) = Ω̇irr (7)

Equation (5) can be applied to wheels 1 through nw and

rewritten in matrix form to define the platform’s inverse

kinematic mapping f−1 : (ẋ, ẏ, φ̇) → θ̇i

θ̇i =

[

− cos(αi − φ)
rw sin(αi)

sin(αi − φ)
rw sin(αi)

li
rw

]





ẋ
ẏ

φ̇



 (8)

for i ∈ [1 . . nw].

Remark 1. Minimum wheel quantity

As the row vector on the left of (8) is clearly of rank 1

and dimension 3, a minimum of three wheels, with (αi, li)
chosen so that the rows of the matrix composed by stacking

the row vectors in (8) are independent, are required to create

a unique forward kinematic mapping f : θ̇ → (ẋ, ẏ, φ̇) where

θ =
[

θ1 . . θnw

]T
, nw ≥ 3.

III. DYNAMICS MODEL

Here the general CMD dynamics model is derived using the

Lagrangian method, chosen for its systematic incorporation

of nonholonomic constraints. This is derived in terms of

generalised positions and local body frame velocities.

There exist two methods of deriving a dynamics model sub-

ject to these nonholonomic constraints using the Lagrangian

method; Lagrange multipliers can be used to directly incorpo-

rate the nonholonomic constraints, or the constraints can be

approximately ’holonomised’ using the psuedo-inverse of the

inverse kinematic transformation matrix. Zimmerman showed

both methods to be equivalent in the context of Mecanum

wheeled vehicles [4]. Here the former approach is taken.

The system’s dynamics equations are derived by use of the

Euler-Lagrange equation in terms of generalised coordinates

q, the Lagrangian L(q, q̇), generalised forces Q, Lagrange

multipliers λ, and Pfaffian constraint matrix A(q), defined as

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= Q+ λA(q) (9)

where A(q) follows the Pfaffian constraint form A(q)q̇ = 0.

The generalised coordinates q are selected as

q =
[

x y φ θp θ1 . . . θnw
Ω1 . . . Ωnw

]T
(10)

and from (5) and (7) A(q) is defined as

A(q) =





















cos(α1 − φ) − sin(α1 − φ) −l1 sin(α1)
...

...
...

cos(αnw
− φ) − sin(αnw

− φ) −lnw
sin(αnw

)
sin(α1 − φ) cos(α1 − φ) l1 sin(α1)

...
...

...

sin(αnw
− φ) cos(αnw

− φ) lnw
sin(αnw

)

0 rw sin(α1) . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . rw sin(αnw
) 0 . . . 0

0 −rw cos(α1) . . . 0 rr . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . −rw cos(αnw
) 0 . . . rr





















(11)

The Lagrangian L(q, q̇) is found as the difference of kinetic

and potential energy in the system L(q, q̇) = K(q, q̇)− U(q),
where K(q, q̇) represents the sum of translational and rota-

tional kinetic energy, and U(q) the total potential energy.

The rotational kinetic energy of the system is defined as

the sum of rotational energy of the pendulum mass and

four wheel masses. As wheel torques act about the b̂x axis,

pendulum inertia Ip must be redefined about P−hpp̂z as Ip,b,

achieved using the parallel axis theorem with translation vector

rp =
[

0 0 −hp

]T
as

Ip,b = Ip +mp [(rp · rp) I3×3 − rp ⊗ rp] (12)

where ⊗ denotes the outer product. The wheel rotation axes

ŵx,i are already aligned with τi, so Iw remains unchanged.

This allows rotational kinetic energy Kr to be defined as

Kr(q̇) =
1

2
~ωT
p Ip,b~ωp +

1

2

nw
∑

i=1

~ωT
wi
Iw~ωwi

(13)

where

~ωb = φ̇b̂z (14)

~ωp = RT
bp~ωb + θ̇pp̂x (15)

~ωw,i = RT
bwi

~ωb + θ̇iŵx (16)

Similarly, translational kinetic energy is defined as the sum

of that of the pendulum and four wheel masses as

Kt(q̇) =
1

2
~vTp mp~vp +

1

2
mw

nw
∑

i=1

~vTw,i~vw,i (17)

where

~vp = RT
bpR

T
eb

[

ẋ ẏ 0
]T

+ ~ωp × hp̂z (18)

~vw,i = RT
bwi

RT
eb

[

ẋ ẏ 0
]T

+ ~ωwi
× liŵx (19)

Finally, potential energy is purely that due to the action of

gravity on the pendulum body, defined as

U(q) = mpghp cos(θp) (20)

The generalised forces Q capture all non-conservative forces

acting on the system, which here are motor torques Qτ and

both rolling and viscous friction forces Qf for Q = Qτ +Qf .
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The nw motor drive torques τ =
[

τ1 . . . τnw

]T
act indi-

vidually on each wheel, with each also producing an opposing

counter-torque on the pendulum body. No motor torques act

directly on the x, y, φ, or Ωi generalised coordinates; the

interactions between these and the motor torques are instead

captured by the nonholonomic constraints (5) and (7). This

defines Qτ as

Qτ =

[

01×3

nw
∑

i=1

(−τi) τT 01×nw

]T

(21)

Viscous friction is modelled at two interfaces for this

system: at the body-to-wheel revolute joints, with coefficient

kvw, and at the wheel-to-roller revolute joints, with coefficient

kvr. It is assumed that kvw is also able to approximate the

various motor phenomena that sum to yield a non-zero no-

load current. Linear rolling friction is modelled at the roller-

to-ground interface as a torque about ŵx proportional to

wheel angular velocity θ̇i, with coefficient krw. While there

will also exist a rolling friction force acting along b̂x, there

does not exist a simple experimental approach to allow the

independent measurement of this coefficient and kvr, so it is

assumed that this can be sufficiently captured by the existing

kvr coefficient. Tractive friction forces between the roller and

ground are already assumed to be infinite in the definition of

the nonholonomic constraints in (5) and (7). It is assumed that

kinetic friction in the wheel bearings can be fully compensated

by application of a discontinuous torque offset to the wheel

actuators, allowing its exclusion from the dynamics model,

and it is assumed that static friction is negligible for model

simplicity. Kinetic friction in the roller bearings cannot be

compensated in such a manner, and cannot easily be modelled

without introducing a discontinuity, so is therefore treated as

a external disturbance. Again, static friction in this interface

is also assumed to be negligible for model simplicity.

Viscous friction in the wheel-to-body revolute joint acts

proportionally to the difference between each wheel angular

velocity θ̇i and the pendulum’s angular velocity θ̇p, applying a

torque of kvw(θ̇p− θ̇i) to each θi generalised coordinate and a

torque of
nw
∑

i=1

(kvw(θ̇i− θ̇p)) to the pendulum body θp. Viscous

friction in the wheel-to-roller revolute joint acts proportionally

to −Ω̇i, applying a torque of −kvrΩ̇i to each Ωi generalised

coordinate. The counter-torque from this friction force acts

about two axes on the wheel. That about the ŵx axis acts to

rotate the wheel, applying a torque of kvr b̂x·Rbr

[

Ω̇i 0 0
]T

to each of θi. That orthogonal to ŵx and parallel to the ground

imparts an axial load on the wheel, which is transmitted

through the wheel mounting to directly apply a force on the

pendulum body along the b̂x axis. This is equivalent to a force

acting on the [x y]T generalised coordinates of

[

I2×2

01×2

]T

Reb





1
−rw+rr

0
0







b̂y ·

nw
∑

i=1

Rbr,i





kvrΩ̇i

0
0







 (22)

Rolling friction acting about bx is proportional to wheel

angular velocity θ̇i.

This defines Qf as

Qf =




























































[

I2×2

01×2

]T

Reb





1
−rw+rr

0
0



 b̂y ·
∑nw

i=1 Rbr,i





kvrΩ̇i

0
0





0
nw
∑

i=1

(kvw(θ̇i − θ̇p))

−θ̇1krw + kvw(θp − θ̇1) + kvr b̂x ·Rwr





Ω̇1

0
0





...

−θ̇nw
krw + kvw(θp − θ̇nw

) + kvr b̂x ·Rwr





Ω̇nw

0
0





−kvrΩ̇1

...

−kvrΩ̇nw





























































(23)

Introducing 2nw Lagrange multipliers λ =
[

λ1 . . . λ2nw

]T
allows the solution of (9), giving a

system of 4 + 2nw ODEs. These can be arranged into the

matrix form

M(q)q̈+C(q, q̇)q̇+G(q) = A(q)Tλ+F (q)q̇+B(q)τ (24)

with symmetric positive semidefinite3 inertia matrix M(q),
Coriolis and centripetal matrix C(q, q̇), derived using the

Christoffel symbols of M(q) such that Ṁ(q) − 2C(q, q̇) is

skew symmetric as

ci,j =
1

2

4+2nw
∑

k=1

(

∂Mij(q)

∂q̇k
+

∂Mik(q)

∂q̇j
+

∂Mjk(q)

∂q̇i

)

q̇k

(25)

and with gravity matrix G(q), viscous and rolling friction

matrix F (q), and input matrix B(q).
Provided the conditions set out in Remark 1 are met,

examining rank(A) = 2nw indicates that 2nw of the model’s

4+2nw degrees of freedom are fully constrained by A, mean-

ing 2nw generalised coordinates can be made redundant by

elimination of the Lagrange multipliers. Defining the nullspace

of A as Φ, such that AΦ = 0 and therefore ΦTAT = 0,

it is evident that λ can be eliminated from (24) by pre-

multiplication with ΦT to yield a reduced dynamic model

in terms of the new minimal generalised coordinates vector

p =
[

x y φ θp
]T

, eliminating wheel and roller angular

positions from the dynamic equations.

As the choice of Φ must satisfy AT q̇ = 0, there exists a

minimal vector of velocities v that map back to the generalised

velocities as q̇ = Φv. As there are infinite solutions for Φ
and therefore choices of v, it is possible to choose Φ such

that the rows of Φ that map v to (ẋ, ẏ, φ̇, θ̇p) in q̇ take the

form blkdiag(REB , I2×2), providing a mapping from the

3M(q) is usually positive definite in Lagrangian systems, however, in
choosing to model the wheel rollers as being massless and inertialess
eigenvalues of zero are introduced into M(q).
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generalised velocities vector q̇ to a more convenient pseudo-

velocity vector v =
[

vx vy φ̇ θ̇p
]T

as v = Φ−1q̇.

Premultiplication by ΦT and substitution with q̇ = Φv and

q̈ = Φv̇ + Φ̇v allows (24) to be rewritten in the reduced

generalised coordinates p and pseudo-velocities v as

M(p)v̇ + C(p, v)v +G(p) = Fv +Bτ (26)

in which M(p) is now both symmetric and positive definite,

Ṁ(p) − 2C(p, v) remains skew symmetric, and in which F
and B are now invariant in p.

As det(M(p)) 6= 0 ∀ p ∈ R
4 for sensical parameter choices

M(p) is invertible, allowing (26) to be solved for v̇ as

v̇ = M(p)−1(Fv +Bτ − C(p, v)v −G(p)) (27)

thus allowing numerical integration of the system dynamics

from an initial state (p0, v0) with some input trajectory τ(t).
As rank(B) < dim(τ) when nw > 3, the input τ may

not represent a linearly independent set of inputs. This would

mean there exists a linear map Λ : τ → u that maps τ onto a

minimal simplified set of independent inputs u as u = Λτ , in

which there exist infinite choices for u. Defining B̂ as a basis

for the column space of B, one suitable map can be found as

Λ = B̂+B, where

B̂ =









1 0 0
0 1 0
0 0 1
0 rw 0









Λ = −
1

rw





cotα1 . . . cotαnw

1 . . . 1
l1 . . . lnw





Replacing B in (26) with B̂ and using u = Λτ as the new

input yields the new system

M(p)v̇ + C(p, v)v +G(p) = Fv + B̂u (28)

in which dim(u) = rank(B̂).
Intuitively, the elements of this new input represent force

on the body parallel to êx, force on the body parallel to êy ,

and torque on the body about êz .

A known input u can be mapped back to a choice of τ in

which
∑nw

i=1 τ
2
i is minimised by τ = Λ+u. If wheel torques

are to be constrained this can be enforced by the solution of

the constrained least-squares minimisation

min
τ

‖τ‖
2
2 s.t. Λτ = u, |τi| ≤ τ ∀ i ∈ [1 . . nw] (29)

solvable as a quadratic program for feasible choices of u and

τ .

A. Controllability

The controllability of a system describes its ability to move

from any initial point in its state space x0 ∈ R
n to any other

point xT ∈ R
n within finite time T < ∞ by manipulation of

its inputs u ∈ R
m. The global controllability of linear systems

in the form ẋ = Ax+Bu, x ∈ R
n, u ∈ R

m is easily proven

by determining if the Kalman controllability matrix Co is of

full rank, i.e. rank(Co) = n, where

Co =
[

B AB . . . An−1B
]

(30)

Linear systems satisfying this condition can always be globally

stabilised to the origin by a feedback of the form u = −Kx.

TABLE I
TABLE OF PARAMETERS FOR THE PROTOTYPE IN FIG. 1.

Parameter Unit Value

α1, α3 rad π/4

α2, α4 rad −π/4

Ipbx kgm2 0.0315

Ipby kgm2 0.0534

Ipbz kgm2 0.0271

Iwx kgm2 5.12× 10−5

Iwyz kgm2 1.1× 10−4

mp kg 2.64

mw kg 0.145

hcm m 0.072

hp m 0.0874

−l1, l4 m 0.105

−l2, l3 m 0.063

rw m 0.030

rr m 0.0055

kvw Nmrad−1 s 2.3× 10−5

kvr Nmrad−1 s 1.01× 10−4

krw Ns 1.97× 10−4

Such a proof does not exist for nonlinear systems. A weaker

form of this proof is to instead show that a nonlinear system is

small-time locally controllable (STLC), and a further weaker

form is to show that a nonlinear system is small-time locally

accessible (STLA).

Letting W represent an infinitely small region in state space

centered around x0, RW is defined as the set of configurations

xT that can be achieved by manipulation of u in an infinitely

small time T without leaving W . A STLC system will be able

to use sequences of control input to affect change in x0 in all

directions in W , meaning x0 will be an interior point within

RW , p0 ∈ int(RW ), and therefore RW = W [5].

A STLA system, whilst still able to locally access a space

with the same dimension as W , is restricted to accessing a

subset RW ⊂ W , in which p0 is on the boundary of RW and

so p0 /∈ int(RW ).

Theorem 1. The CMD is STLC from its equilibrium states for

sensical model parameters.

The set of equilibrium states Xe is defined as the set of

states x with constant input u = 0m×1 at which ẋ = 0n×1,

given for the state space x =
[

p v
]T

as

Xe = {x | ẋ = f(x, u) = 0, u = 0}

=
{

[

x1 x2 . . . x8

]T
| (x1, x2, x3) ∈ R

3,

x4 = πk, k ∈ Z, xj = 0, j = [5 . . 8]
}

(31)

As 0n×1 ∈ Xe, (28) can be linearised about the stationary

upright equilibrium at the origin, yielding a system in the form

ẋ = Ax+Bu, where A and B take the form

A =













[

04×4 I4×4

]









04×3

0 a 0 0 0
b 0 c 0 d
0 0 0 e 0
f 0 g 0 h





















B =













04×3

i 0 0
0 j 0
0 0 k
0 l 0













(32)
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in which A possesses some positive eigenvalues, meaning the

upright equilibrium is unstable. Likewise, linearising about

any x ∈ {Xe : x4 = π} yields a negative semidefinite A,

meaning the lowest pendulum position is a stable equilibrium

as expected.

Examining the Kalman controllability rank condition for

this system yields rank(Co) = 8 = n, indicating controllability

of the linearised model at the equilibrium states.

A nonlinear system that is controllable when linearised at

its equilibrium states is STLC from the equilibrium states for

the full nonlinear system [6], meaning the CMD is STLC for

x ∈ Xe given sensical parameter choices, i.e. hp 6= 0 etc.

For comparison a two-wheeled inverted pendulum moving

on a 2D plane yields rank(Co) = 6, as the nonholonomic

constraints imposed by the use of regular wheels prevent

translation parallel to the wheel axis. A TWIP on a 2D plane

therefore does not satisfy the KCRC, and is therefore not

STLC, though a number of authors claim the TWIP to be

STLC by analysis of the TWIP’s model in joint space [7],

which ignores a dimension of the configuration space required

to uniquely locate the TWIP on a 2D plane.

Theorem 2. The CMD is STLA ∀ x ∈ R
8.

Arranging (28) in the nonlinear input-affine form

ẋ = f(x) +

3
∑

j=1

gTj (x)u (33)

where x =
[

pT vT
]T

, the drift vector field f(x) and input

vector fields gj(x) take the form

f(x) =

























x5 cos(x3)− x6 sin(x3)
x5 sin(x3) + x6 cos(x3)

x7

x8

f5(x4, x5, x6, x7, x8)
f6(x4, x5, x6, x7, x8)
f7(x4, x5, x6, x7, x8)
f8(x4, x5, x6, x7, x8)

























(34)





gT1 (x)
gT2 (x)
gT3 (x)





T

=













04×3

g51(x4) 0 g53(x4)
0 g62(x4) 0

g71(x4) 0 g73(x4)
0 g82(x4) 0













(35)

in which g53(x4) ≡ g71(x4).
The distribution spanned by the vector fields f and gj , j =

[1 . . 3] is defined as ∆ = span{f, g1, g2, g3}, or in bracket

notation ∆ = 〈f, g1, g2, g3〉, in which ∆ is nonsingular, as

assuming sensical parameters dim(∆) = 4 ∀ x ∈ R
8. The

accessibility algebra A is defined as the involutive closure of

∆, written as ∆ = ∆A. A distribution is involutive if [f, g] ∈
∆ ∀ (f, g) ∈ ∆, where [ , ] denotes the Lie bracket operator,

defined as

[f1, f2](x) =
∂f2
∂x

f1(x)−
∂f1
∂x

f2(x) (36)

The involutive closure of a distribution ∆ can be calculated as

the distribution spanned by all possible combinations of Lie

brackets calculable from its vector fields, which can be derived

iteratively as

∆1 = ∆, ∆i =
〈{

∆i−1,

{[X,Y ] | X ∈ ∆1, Y ∈ ∆i−1}
}〉

, i ≥ 2 (37)

This procedure terminates when ∆i+1 = ∆i = ∆A, with

the terminal value of i required to define this distribution

referred to as the nonholonomy degree of the system, with

an upper bound of i ≤ n−m [8].

For the system (33), clearly dim(∆1) = 4. ∆2 is calculable

as

∆2 = 〈{∆1, [∆1,∆1]}〉 (38)

which in knowing [f, f ] = 0, [G,G] = 0 ∀ gj ∈ G, where

G = {g1, g2, g3}, can be simplified to

∆2 = 〈{∆1, [f,G]}〉

= 〈{f, g1, g2, g3, [f, g1], [f, g2], [f, g3]}〉 (39)

yielding dim(∆2) = 7. ∆3 is calculable as

∆3 = 〈{∆2, [∆1,∆2]}〉 (40)

in which a single additional Lie bracket is required to yield

the distribution

D = 〈{f, g1, g2, g3, [f, g1], [f, g2], [f, g3], [f, [f, g1]]}〉 (41)

that is of full rank dim(D) = n, meaning D = D, and

therefore ∆3 ≡ D ≡ ∆A. This indicates a nonholonomy

degree of 3, the same as a TWIP [9], [10]. Unlike a TWIP, it is

found that dim(∆3) = n even for the frictionless hp = 0 case,

indicating STLA even when the pendulum mass generates no

force on the body due to gravity. This is intuitive, as the

full Cartesian state space can be accessed by combinations

of rotation about b̂z and translation along b̂x, whilst using

the rotational dynamics about b̂x to purely control the θp
subsystem. As dim(∆A) = n this proves that the CMD is

STLA ∀ x ∈ R
n.

Theorem 3. The CMD is kinematically holonomic

The kinematic model of a CMD can be expressed as a sum

of vector fields in the form

ṗ = Ψv =

4
∑

j=1

gTj (p)v (42)

As the accessibility distribution formed by these vector fields

∆A = 〈Ψ〉 is found to have full rank dim(∆A) = dim(p), the

individually nonholonomic constraints (5) and (7) are together

completely integrable, meaning as in conventional statically

stable Mecanum wheeled vehicles the kinematic model of the

CMD is holonomic [8].

B. The Largest Feedback Linearisable Subsystem

Using the adjoint representation of the Lie bracket [f, g] =
adfg, successive Lie brackets of the vector fields f and g up

to j iterations can be defined as

ad
j
fg = adf (ad

j−1
f g), e.g. ad2fg = [f, [f, g]] (43)
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Following the notation of [11]

G = {g1, g2, g3}

Gf = f +G = {f + g : g ∈ G}

ad
j
f∆ =

{

ad
j
fX : X ∈ ∆

}

[∆1,∆2] = {[X,Y ] : X ∈ ∆1, Y ∈ ∆2}

(44)

define the distributions

Q0 = 〈g1, g2, g3〉, Qi =
〈{

Qi−1, adi
fQ0

}〉

i ≥ 1 (45)

where Qi denotes the involutive closure of Qi.

Again, it is clear from the structure of (35) that

{[g1, g2], [g1, g3], [g2, g3]} = 0, so Q0 is involutive and there-

fore Q0 = Q0. Q1 is calculated as

Q1 =
〈{

Q0, adfQ0

}〉

= 〈{g1, g2, g3, [f, g1], [f, g2], [f, g3]}〉 (46)

with involutive closure

Q1 = 〈{g1, g2, g3, [f, g1], [f, g2], [f, g3],

[g1, [f, g1]], [[f, g1], [f, g3]]}〉 (47)

which is found to be of full rank dim(Q1) = n, meaning Q2

must be equivalent as Q2 ≡ Q1.

From these distributions the following sequence of nonin-

creasing integers are computed [11], [12]

r0 = dim(Q0) (48)

ri = dim(Qi)− dim(Qi−1), i ≥ 1 (49)

k∗i = card{rj ≥ i | j ≥ 0} (50)

in which it is found r0 = 3, r1 = 6− 3 = 3, r2 = 8− 8 = 0,

giving controllability indices k∗1 = 2, k∗2 = 2, k∗3 =
2, k∗4 = 0. This indicates that the largest feedback linearisable

subsystem has dimension nλ = k∗1 + k∗2 + k∗3 = 6 [11],

meaning this subsystem can be rewritten as three linear double

integrators. Intuitively, this subsystem will encompass the

(φ, φ̇), (θp, θ̇p), and (
∫

vx, vx) dynamics, with the (
∫

vy, vy)
dynamics therefore not linearisable by static feedback and

state transformation. The size of this maximum feedback

linearisable subsystem is greater than that of a TWIP, which

has a maximum relative degree of 4 [10].

IV. PARTIAL FEEDBACK LINEARISATION

Feedback linearisation is a procedure by which a nonlinear

system can be transformed into an equivalent fully or partially

linear system, achieved using a change of control input, along

with either a change of state space coordinates, or a transfor-

mation of the output [13]. The extent to which a system can be

linearised by these methods can be determined by examining

the system’s relative degree; only systems with a maximum

relative degree equal to the size of their state space can be fully

linearised by feedback. These methods result in a system that

is either partially or fully linear, allowing the application of

classical linear control and analysis techniques to a previously

nonlinear plant. In the partially linearised case, the remaining

nonlinear subsystems can then be controlled using nonlinear

control techniques, typically an easier task than applying

these techniques to the original higher dimensional nonlinear

system.

Feedback linearisation of systems with a relative degree of

less than n will yield systems that contain zero dynamics,

new states and dynamics that are unobservable from the

new outputs, which may be unstable. In practise it can be

dangerous for these unobservable states to be allowed to grow

unboundedly, so their behaviour must be considered during

control design.

These techniques have been applied to various forms of

inverted pendulum, such as the single and double cart-pole

inverted pendulums [14], [15], the reaction wheel inverted

pendulum [16], the acrobot [17], [18], and most relevantly,

the two-wheeled inverted pendulum [10], [19], [20]. These

methods have never been applied to a ball-balancing system.

As all of these systems are underactuated only partial feedback

linearisation is achieved, with nonlinear controllers designed

to control the remaining nonlinear dynamics.

In order to facilitate the derivation of a feedback linearising

control, the input vector fields of (33) are first simplified using

a change of input v = P (x)u to define a new decoupled input

v. It is found that

P (x) =





g51 g52 g53
g71 g72 g73
g81 g82 g83



 (51)

is nonsingular for |θp| . 2.4 rad for the parameters in Table

I, and is therefore invertible under this condition, allowing the

definition of the new input vector fields

[

g̃1 g̃2 g̃3
]

=













04×3

1 0 0
g̃61 g̃62 g̃63
0 1 0
0 0 1













(52)

where

[

g̃61 g̃62 g̃63
]

=
[

g61 g62 g63
]

P (x)−1 (53)

in which (g̃61, g̃62) = 0 for the parameters in Table I, and in

which g̃63 is a scalar valued function that is again smooth over

|θp| . 2.4 rad. The ẋ5, ẋ7, and ẋ8 subsystems can then be

linearised by the feedback

v1 = w1−f5(x), v2 = w2−f7(x), v3 = w3−f8(x) (54)

in which w =
[

w1 w2 w3

]T
is used as the new input,

yielding the new drift and unchanged input vector fields

f̃(x) =





























cos(x3)x5 − sin(x3)x6

sin(x3)x5 + cos(x3)x6

x7

x8

0
f6 − g̃61(x4)f5(x)−g̃62(x4)f7(x)

− g̃63(x4)f8(x)
0
0





























(55)
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g̃1(x4)
T

g̃2(x4)
T

g̃3(x4)
T





T

=













01×4 01×4 01×4

1 0 0
g̃61(x4) g̃62(x4) g̃63(x4)

0 1 0
0 0 1













(56)

In order for the coordinates x to fully span R
8 they must

be linearly independent, meaning their gradients ẋ must be

linearly independent of one another [6]. Clearly in (55)-(56)

this property has been lost, as ẋ6 is now a linear function

of ẋ5, ẋ7, and ẋ8. A state transformation T : x → z
is therefore required to transform x into some new set of

linearly independent coordinates z as z = T(x). As ẋi for

i = [1 . . 5, 7, 8] are already linearly independent, these can

be mapped as zi = xi. As w ≡
[

ẋ5 ẋ7 ẋ8

]T
, it is required

that

∂z6
∂x

[

g̃1(x4) g̃2(x4) g̃3(x4)
]

= 0 (57)

Writing ∇z6 =
[

α1 . . . α8

]

, by (57) it is implied that

α5 + α6g̃61 = 0, α7 + α6g̃62 = 0, α8 + α6g̃63 = 0 (58)

which is satisfied for

α5 = −λg̃61, α6 = λ, α7 = −λg̃62, α8 = −λg̃63 (59)

Choosing λ = 1, z6 can be defined as

z6 = x6 − x5g̃61 − x7g̃62 − x8g̃63 (60)

defining the transformation T(x) as

z = T(x) =



















x1

...

x5

x6 − x5ĝ61 − x7ĝ62 − x8ĝ63
x7

x8



















(61)

Again for the parameters in Table I

det

(

∂T(x)

∂x

)

6= 0 ∀ {x ∈ R
8 | x4 mod 2π 6≈ ±2.4} (62)

therefore the Jacobian of T is locally invertible, meaning T
is a local diffeomorphism under this condition [6], with an

inverse mapping x = T−1(z). Taking the differential of T(x)
w.r.t. time allows ż to be expressed in terms of x as

żi = ẋi, i = [1, . . . , 5, 7, 8] (63)

ż6 = −ẋ5g̃61 − x5
∂g̃62
∂x4

− ẋ7g̃62 − x7
∂g̃62
∂x4

− ẋ8g̃63 − x8
∂g̃63
∂x4

(64)

which when substituted with differentials of x from (55) yields

the new set of dynamic equations

ż1 = cos(z3)z5 − sin(z3)(z6 + z5g̃61(z)

+ z7g̃62(z) + z8g̃63(z)) (65)

ż2 = sin(z3)z5 + cos(z3)(z6 + z5g̃61(z)

+ z7g̃62(z) + z8g̃63(z)) (66)

ż3 = z7 (67)

ż4 = z8 (68)

ż5 = w1 (69)

ż6 = f6(z)− z5
∂g̃61(z)

∂z4
− z7

∂g̃62(z)

∂z4
− z8

∂g̃63(z)

∂z4
− g̃61(z4)f5(z)− g̃62(z4)f7(z)− g̃63(z4)f8(z) (70)

ż7 = w2 (71)

ż8 = w3 (72)

where all f(x) and g̃(x) have been rewritten in terms of

z using x = T−1(z). Under this state transformation and

feedback it is evident that w has been eliminated from the

expression for ż6, meaning ż6, ż1, and ż2 now represent

internal dynamics, and in which ż5, ż7, and ż8 are now

independent of the drift vector, and are linear and decoupled

in the new input w.

The internal dynamics (70) are found to contain zeroth

to second time derivatives of θp, and cannot be integrated

to eliminate either of these velocity or acceleration terms.

This expression therefore forms a second order nonholonomic

constraint, also referred to as a dynamic constraint.

Examining the zero dynamics found by setting w = z5 =
z7 = z8 = 0 in (ż1, ż2, ż6), and whilst assuming defined roller

angles, wheel spacing symmetry, and zero friction for sake of

model simplification, yields

ż1 = −z6 sin(z3) (73)

ż2 = z6 cos(z3) (74)

ż6 = −
ghpmprw sin(z4)

4Iwx +mpr2w + 4mwr2w + hpmprw cos(z4)
(75)

in which it is clear that the zero dynamics do not have a stable

equilibrium for z4 6= 0, and so the system is non-minimum

phase [21].

To summarise, through input transformation, coordinate

transformation, and nonlinear feedback, the nonlinear sys-

tem (28) has been transformed into an equivalent system

of five linear and three nonlinear ODEs, with new input

w ≡
[

v̇x φ̈ θ̈p
]T

. Actual motor torques are retrieved by

the mapping w → v → u → τ . The simulated response of

this system to a 0.25Hz square wave input of unit amplitude

to each of w is shown in Fig. 3, demonstrating the correct

linear response of the feedback linearised subsystems vx, φ̇,

and θ̇p, and unbounded growth of vy as expected.

V. NONLINEAR CONTROL OF THE PARTIALLY FEEDBACK

LINEARISED CMD

Three separate CMD controllers are now to be derived. The

first of these is to control the CMD’s local frame body veloc-

ities, useful in applications where the CMD is to be ‘driven’
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Fig. 3. Simulated state trajectories of the partially feedback linearised CMD,
initialised at the origin and with each of w driven by a 0.25Hz square wave
of unit amplitude. This demonstrates the expected triangular velocity profile

in the vx, φ̇, and θ̇p states, while vy grows unboundedly. The required wheel
torque trajectories τ remain well defined, as the singularity in (52) is avoided.

by a user, such as when operating as a personal mobility

or teleoperated platform. The second controller is to control

system velocities in the fixed inertial frame, and the third and

final is to control the position of the CMD in the fixed inertial

frame. These are more useful in situations where the CMD

is to operate autonomously, such as when navigating a map.

Both velocity controllers must incorporate lean angle and body

acceleration constraints to ensure the generation of smooth

trajectories between distant references, and to approximately

bound wheel torques. The inertial frame position controller

must additionally enforce velocity constraints to bound the

system’s kinetic energy when performing distant translations.

Pathak controls a partially feedback linearised two-wheeled

inverted pendulum using a backstepping approach [10]. In this

method a cascade nonlinear system is controlled by recursively

stabilising each subsystem whilst ‘stepping back’ through

the cascaded subsystems. This stabilisation is performed by

deriving controllers that yield closed-loop subsystems that can

be formulated as Lyapunov functions, yielding control of the

overall system with stability and convergence guarantees for

the full nonlinear dynamics. Constraints can be incorporated

using Lyapunov barrier functions [22], scalar functions in

which a unique minimum is attained at the desired steady state,

and which tend to infinity as the constraint is approached.

This allows an embedding of constraints directly into the

control law, whilst retaining a stability proof for the closed-

loop system. These methods can therefore be used to derive the

required nonlinear controllers for the CMD, whilst maintaining

stability for the full set of feasible references.

A. Backstepping Control of Local Body Frame Velocities

This controller is required to drive the system local body

frame velocities (vx, vy, φ̇) to setpoints (vxr, vyr, φ̇r). This

must be performed whilst bounding deviation of θp from zero

so as to avoid attempting to translate using slip-inducing lean

angles, and accelerations v̇x and φ̈ must be bounded to again

avoid inducing wheel slip. Such a controller would be useful

in applications where a user wishes to ‘drive’ the system, for

example if such a system were used as a personal vehicle or

teleoperated platform.

Control is to be split into two layers. The first layer is to

provide aggressive control of the θp subsystem to provide high

bandwidth resistance to disturbance, especially that generated

by varying friction forces when translating in the bx direction.

This is achieved using the linear controller

w3 = −Kθ̇p
θ̇p −Kθp(θp − θpr) (76)

with suitable gains Kθ̇p
and Kθp , providing global exponential

convergence θp → θpr, where θpr represents a new internal

reference signal. As this subsystem has relatively fast dynam-

ics, and as low-noise measurements of θ̇p and θp are available,

high gains can be used to allow for high bandwidth reference

tracking. While linear controllers could also be used to control

the feedback linearised vx and φ̇ subsystems, these are instead

to be controlled by the outer loop as to allow the embedding

of acceleration constraint enforcement. Constraints on w3 are

to be approximately enforced in the generation of the new θpr
reference signal.

The goal of the outer controller is to generate w1, w2, and

θpr trajectories that result in convergence of (vx, vy, φ̇) →
(vxr, vyr, φ̇r) within finite time. Unlike a TWIP, cross cou-

pling between the (θp, vy) subsystem and the vx and φ̇
subsystems, for example acceleration forces acting on θp when

vxφ̇ 6= 0, means that θpr 6→ 0 may be required for v̇y → 0 in

steady state.

From (55), acceleration v̇y can be expressed as

v̇y = fv̇y (x,w) = f6(x)− ĝ61(x)f5(x)− ĝ62(x)f7(x)

− ĝ63(x)f8(x) + ĝ61(x)w1 + ĝ62(x)w2 + ĝ63(x)w3 (77)

This is a complex expression for which it is difficult to analyse

the effect of parameter choice, so this is instead substituted

with the parameters in Table I, with the assumption that the

properties of this function are unlikely to significantly change

over realistic ranges of parameter variation. This yields an

expression of the form

fv̇y
(x,w) = aw3 − vxφ̇− b sin(θp)φ̇

2

+
cw3 − dvy + sin(θp)

(

eφ̇2 − fθ̇2p − g
)

+ hvxφ̇

cos(θp) + i
(78)

where 0 < e ≪ {a, b, f, h} ≪ {c, d, i} ≪ g, in which the

operator ≪ denotes a difference of approximately an order

of magnitude. For the prototype’s parameters given in Table I

these coefficients evaluate to a = 0.03, b = 0.072, c = 0.20,

d = 0.13, e = 0.0091, f = 0.030, g = 9.8, h = 0.038, and

i = 0.54. For comparison the same analysis of coefficients is

performed for a taller and heavier system with hp = 1, mp =
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20, Ipx = 20, yielding coefficients of approximate magnitude

0 < h ≪ {d, e} ≪ {a, f, i} ≪ {b, c} ≪ g. Importantly,

while some coefficients change in magnitude relative to one

another, the constant g remains significantly larger than all

other coefficients.

Equation (78) has no analytical solution for θp. However,

arranging it into the form 0 = f(x,w, v̇y) and examining

f(x,w, v̇y) for θp = ±π/2 yields

f(x,w, v̇y) =
a

i
w3 −

d

i
vy − v̇y −

(

1−
h

i

)

φ̇vx

∓
(

b−
e

i

)

φ̇2 ∓
f

i
θ̇2p ∓

g

i
, for θp = ±π/2 (79)

Equation (78) is a continuous smooth function over the

interval θp ∈ (− cos−1(−i), cos−1(−i)). By the intermediate

value theorem as long as for a given {x,w3, v̇y} ∈ R
7×R×R

(79) is of opposite sign for θp = π/2 and θp = −π/2, there must

exist some intermediate value of θp for which f(x,w, v̇y) = 0,

i.e. a solution to (78) must exist. This condition is necessary

for there to exist an inverse function θp = f−1
v̇y

(x,w3, v̇y) that

can be used to determine the lean angle required to achieve a

given v̇y for some state x and input w, though the existence

of this inverse also requires a unique mapping. The condition

under which at least one solution exists for |θp| ≤ π/2 can be

written as
∣

∣

∣aw3 − dvy − iv̇y − (i− h) φ̇vx

∣

∣

∣

≤ (bi− e) φ̇2 + fθ̇2p + g (80)

It is apparent that the large constant term g on the rhs means

this inequality is satisfied for a large set of accelerations v̇y
and w3, of which the origin is strictly within the interior,

provided the φ̇vx and vy terms are not driven excessively

large. Satisfaction of this condition can therefore be guaranteed

by suitably bounding the user reference inputs v̇xr and φ̇r,

whilst through controller design ensuring a suitable bounding

of w3 and v̇y . While a larger feasible set could be achieved

by allowing θp ∈ [− cos−1(i), cos−1(i)], as this requires

intersection with the pendulum CoM and the ground this

bound on θp is sensible, and simplifies analysis.

It is also found that
∂v̇y

∂θp
< 0 ∀ θp ∈ [−π

2 ,
π
2 ] for a similar

set of states and inputs, meaning (55) is monotonic in θp,

and therefore the solution to f−1
v̇y

(x,w, v̇y) is guaranteed to

be unique. The inverse function f−1
v̇y

(x,w, v̇y) is therefore

guaranteed to exist for θp ∈ [−π/2, π/2] under condition

(79). f−1
v̇y,ss

(x,w, v̇y) can be solved using the Newton-Raphson

method with an analytically derived Jacobian, yielding solu-

tions in the region of microseconds.

Steady state acceleration v̇y,ss for a given steady state

value of θp can be found by substituting (77) with w3 =
θ̇p = 0, yielding the function fv̇y,ss

(x,w), with inverse

f−1
v̇y,ss

(x,w, v̇y,ss) later written as f−1
v̇y,ss

(v̇y) for brevity.

Remark 2. Absence of oddness property of fv̇y,ss
(x,w) in θp

In Pathak’s [10] backstepping control of a TWIP it is

shown that the TWIP’s expression for steady state acceleration

fv̇y,ss
(x,w) is odd in θp, such that θpfv̇y,ss

(x,w) ≥ 0 ∀ θp ∈

[−π, π]. This property requires the assumption that φ̇ = 0.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−5

0

5

10

vx

φ̇

−1.5

−1

−0.5

0

0.5

1

θp

Fig. 4. A cross-section of Ass through vx and φ̇ for v̇y,ss = 0, vy = 0,
with colour encoding the θp,ss dimension of Ass. The accessible acceleration

space under a lean angle constraint |θp| ≤ θp can be examined by considering
a subset of this space.

In order for any stability proof that relies on this oddness

property to remain valid, such as that demonstrated by this

author, it is therefore necessary for the system to perform

control of the φ and vy subsystems separately such that

φ̇θ̇p = 0. The CMD is required to perform these movements

simultaneously, invalidating this assumption. Also, the function

fv̇y,ss
(x,w) for this system contains two significant even

terms vxφ̇. This oddness property therefore does not extend

to the CMD and so cannot be exploited for Lyapunov function

derivation, necessitating a different approach to that used by

Pathak [10].

Remark 3. Velocity equilibria in the local body frame.

For this controller it is desired for the system’s local

frame body velocities to converge to some user controlled

reference velocities vxr, vyr, and φ̇r, with no interest in

position states other than θp. Defining the reduced state

vector x̃ =
[

θp vx vy φ̇ θ̇p
]T

and examining ˙̃x = 0

in (55) shows these equilibria exist at any w = 0, θ̇p = 0,

{θp, vx, vy, φ̇} ∈ Ass, where Ass is defined as the set of

{vx, vy, φ̇} for which solutions to fv̇y,ss
(x) = 0 exist. A cross-

section of this set is shown in Fig. 4, taken through vx and φ̇
for vy = 0, with parameters from Table I. Note while fv̇y,ss

also contains a vy term, it vanishes when friction is negated

and has a very small coefficient, and so does not represent

significant dynamics. This figure is therefore largely invariant

in vy , and in reality a sufficiently large vyφ̇ term would

result in rotation of the system about b̂y and a subsequent

loss of traction long before the shape of this cross-section is

significantly altered.

To summarise, a steady state equilibrium can be obtained

for any {θp, vx, vy, φ̇} ∈ Ass, where Ass is a large set

centered about the origin. It is therefore feasible for this

controller to achieve the asymptotic tracking {vx, vy, φ̇} →
{vxr, vyr, φ̇r} as t → ∞.

With the θp subsystem globally asymptotically stabilised

by linear feedback, the outer loop is required to generate

suitable θpr, w1, and w2 trajectories that yield the asymptotic
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tracking (vx, vy, φ̇) → (vxr, vyr, φ̇r). These subsystems have

substantially slower dynamics than the θp subsystem, allowing

the assumption that the linear inner loop has converged, i.e.

θp = θpr and θ̇p = w3 = 0. While the vx and φ̇ subsystems

have been rendered linear by feedback linearisation, a non-

linear controller is still used in order to allow the embedded

enforcement of the constraints |w1| ≤ w1 and |w2| ≤ w2.

These constraints act to make the resulting control laws favour

smooth steady accelerations over aggressive acceleration im-

pulses during a step reference change, and can therefore be

used to alleviate the risk of wheel slip by acting as an analogue

for a wheel torque constraint.

Consider the Lyapunov function candidate

VΣ =

(

θpr − f−1
v̇y,ss

(0)
)2

2
(

θ
2

p − θ2pr

) +
Kv

(

(vxr − vx)
2 + (vyr − vy)

2
)

2

+
Kφ̇(φ̇r − φ̇)2

2
+

1

2
(

w2
1 − w2

1

) +
1

2
(

φ̈
2

− w2
2

)

(81)

The first term of (81) has a unique minimum at f−1
v̇y,ss

(0) =
θpr, i.e. it is minimised when θpr has converged to the steady-

state lean angle θp,ss required to maintain v̇y = 0, found

by solution of θp,ss = f−1
v̇y,ss

(0), whilst tending to infinity

as θpr → ±θpr, bounding θpr. The second and third terms

have unique minimums at vy = vyr, vx = vxr, and φ̇ = φ̇r,

with a quadratic cost on deviation from these minima. The

final two terms act as barrier functions to enforce |w1| ≤ w1

and |w2| ≤ w2, with minimums at w1 = 0 and w2 = 0. VΣ is

therefore globally positive semidefinite when constraints are

satisfied and
(

Kv,Kφ̇

)

> 0, i.e. VΣ ≥ 0, has a single unique

minimum, and by inspection is radially unbounded for states

within the constrained set, but is bounded for θpr → ∞ as

the first term of (81) converges to 1. As these conditions are

not met for states outside of the constraints, care must be

taken to initialise the system with constraints satisfied, i.e. the

controller is not able to recover from a constraint violation.

However, as the constrained signals exist purely internally this

will never occur.

Consider the control laws

θ̇pr =
−ḟ−1

v̇y,ss
(0)

(

θ
2

p − θ2pr

)

(

f−1
v̇y,ss

(0)θpr − θ
2

p

)

−Kr

(

θpr − f−1
v̇y,ss

(0)
)(

f−1
v̇y,ss

(0)θpr − θ
2

p

)

+

(

θ
2

p − θ2pr

)2

Kvfv̇y,ss
(θpr)(vyr − vy)

(

θpr − f−1
v̇y,ss

(0)
)(

f−1
v̇y,ss

(0)θpr − θ
2

p

) (82)

ẇ1 = −Kw1
w1 +Kv(vxr − vx)

(

w2
1 − w2

1

)2
(83)

ẇ2 = −Kw2
w2 +Kφ̇(φ̇r − φ̇)

(

w2
2 − w2

2

)2
(84)

By substituting (82)-(84) into V̇Σ it is found that V̇Σ ≤ 0 for

(Kr,Kw1
,Kw2

) > 0, thus proving closed-loop stability. This

stability proof does, however, require {vxr, vyr, φ̇r} ∈ Ass,

x0 ∈ Ass, and x ∈
{

Ass : |θp| ≤ θp
}

∀ t. While the

first two conditions can be trivially ensured, the latter cannot

be guaranteed, as any overshoot when approaching references

that require θp,ss to lie close to θp could violate this condition.

This can be addressed by bounding the solution to f−1
v̇y,ss

(0).
Using LaSalle’s invariance principle it is apparent that

lim
t→∞











θp,r = f−1
v̇y,ss

(0) =⇒ vy = vyr

w1 = 0 =⇒ vx = vxr

w2 = 0 =⇒ φ̇ = φ̇r

(85)

thus guaranteeing asymptotic convergence to the desired ref-

erences.

The dynamics of the controller can be tuned by modification

of the ‘damping’ terms Kr, Kw1
, and Kw2

, and ‘proportional’

terms Kv and Kφ̇. Convergence of the expression

lim
θpr→f

−1

v̇y,ss
(0)

fv̇y,ss
(θpr)

(

f−1
v̇y,ss

(0)− θpr

) (86)

in the latter term of (82) cannot be directly determined, as

performing the substitution θpr = f−1
v̇y,ss

(0) yields an inde-

terminate expression. However, as these functions are known

to be continuously differentiable within the operating region

of interest, convergence can instead be proven by L’Hôpital’s

rule, and thus the control law (82) remains defined.

Finally, all that remains to be proven is that (86) does not

converge to zero within the operating region of interest, as

if this were the case the third term of (82) would vanish at

θpr = f−1
v̇y,ss

(0), even if vy 6= vyr. As the first term of this

control law vanishes when w1 = w2 = 0, and the second

term also vanishes when θpr = f−1
v̇y,ss

(0), this would force

θ̇pr = 0 ∀ t → ∞, and thus prevent any further control action

even when vy 6= vyr. This can be proven numerically using

the Monte Carlo method, finding this expression to be negative

definite for |θp| / 1.2 rad. This is a tighter bound on θp than

found previously, but still far larger than is expected to be

attained in practice.

As this stability proof relies on the assumption of prior

convergence of the inner θp → θpr control loop, update of the

control law (82) should be avoided when |θp−θpr| ≫ 0. This

can be achieved by multiplication of (82) by the expression

e−K|θp−θpr| (87)

where K ≫ 1. This prevents substantial change of θpr when

the inner loop is still converging.

Fig. 5 shows the simulated response of the prototype system

with this controller to a reference (vxr, vyr, φ̇r) = (1, 1, 4),
initialised at the origin. This shows asymptotic convergence

to the reference whilst satisfying θp, w1, and w2 constraints,

with θp correctly converging to the required steady state θp =
θp,ss = f−1

v̇yss
(0). The error θp − θpr remains small, indicating

that (87) functions as intended and thus the assumption of

convergence of this inner loop holds, with full convergence

achieved in steady state.

Fig. 6 shows the experimental response of the prototype to

a reference (vxr, vyr, φ̇r) = (0, 1, 2), again initialised at the

origin. A more conservative reference is chosen than that used
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Fig. 5. Simulated system state trajectories over time for a reference

(vxr, vyr, φ̇r) = (1, 1, 4), initialised at the origin with θp = 0.6, w1 = 2,
and w2 = 4. This shows asymptotic convergence to the reference whilst
satisfying θp, w1, and w2 constraints, with θp correctly converging to the

required steady state θp = θp,ss = f−1

v̇yss
(0). The error θp − θpr remains

small, indicating that (87) functions as intended and thus the assumption of
convergence of this inner loop holds, with full convergence achieved in steady
state.
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Fig. 6. Experimental system state trajectories for a reference

(vxr, vyr, φ̇r) = (1, 0, 2), initialised at the origin with θp = 0.4,
w1 = 3, and w2 = 15. This shows good tracking of θp → θpr , however,

now θpr 6→ f−1

v̇y,ss
(0). This is found to be due to imperfect tracking within

the inner loop yielding a steady state bias in w3, which is in turn due to
imperfect feedback linearisation. A combination of this and further model
error yields a steady state tracking error of the vxr and vyr references,
though in reality this is visually imperceptible.

in simulation, as wheel slip is found to occur before the more

aggressive reference can be reached. This results in the system

following a circular trajectory whilst maintaining a constant

nonzero lean angle.

A small steady state tracking error, though hard to discern

in this figure, is present in the linear θp → θpr controller.

This is to be expected, as no model can perfectly describe

the behaviour of a real-world system due to parameter un-

certainty and unmodelled dynamics, meaning a model-derived

feedback linearisation will always be imperfect and therefore

not converge. This manifests as a steady state tracking error

θp → θpr + e, and due to the proportional feedback term

in this controller results in a non-zero steady state w3, i.e.

w3 → Kθpe 6= 0. This invalidates the assumption in the

definition of f−1
v̇y,ss

(v̇y), yielding the steady state bias in the

solution to f−1
v̇y,ss

, visible in this figure. A significant steady-

state tracking error is visible in the vx → vxr controller,

and w1 6→ 0. This again indicates an error in the feedback

linearisation, as while w1 6= 0 the velocity vx reaches a steady

state. This could be addressed by improved friction modelling

in the underlying model, as to predict this force resisting w1

in steady state, or by some form of integral action.

B. Backstepping Inertial Frame Velocity Control

Control of inertial frame velocities ẋ and ẏ is more useful

in applications that involve the autonomous navigation of an

environment. The desired steady state body accelerations are

now defined as v̇x = φ̇vy and v̇y = −φ̇vx, representing

unforced body acceleration due to the mapping of inertial

frame velocities into the rotating local frame.

Remark 4. Inertial frame velocity equilibria

For an inertial frame velocity controller it is desired that

the inertial frame body velocities {ẋ, ẏ, φ̇} asymptotically

converge to the references {ẋr, ẏr, φ̇r} within finite time. In

steady state the local frame body accelerations must therefore

be purely that due to rotation of inertial frame velocities into

the local body frame, i.e. v̇x = φ̇vy , v̇y = −φ̇vx, and local

frame body velocities must be simply a rotation of the time

invariant inertial frame velocity reference into the local frame,

so
[

vx
vy

]

= RT
EB

[

ẋ
ẏ

]

=

[

cos(φ)ẋ+ sin(φ)ẏ
− sin(φ)ẋ+ cos(φ)ẏ

]

(88)

In steady state it is therefore required that ẋ = ẋr and ẏ = ẏr,

which for time invariant references implies (ẍ, ÿ) → 0. It is

also required that φ̇ = φ̇r, so φ = φ̇rt in steady state, and it

is assumed that φ0 = 0.

Expressing inertial frame body accelerations in terms of

inertial frame velocities, the local body frame acceleration

term v̇y , and performing the above substitutions, yields

[

ẍ
ÿ

]

=

[

− sin(φ̇rt)(v̇y + φ̇rẋr cos(φ̇rt) + φ̇rẏr sin(φ̇rt))

cos(φ̇rt)(v̇y + φ̇rẋr cos(φ̇rt) + φ̇rẏr sin(φ̇rt))

]

(89)

Substituting v̇y in (89) with (78), solving again for
[

ẍ ÿ
]T

,

and equating to zero as required in steady state yields

[

ẍ
ÿ

]

=





− sin(φ̇rt)Γ(t)
i+cos(θp)

cos(φ̇rt)Γ(t)
i+cos(θp)



 =

[

0
0

]

(90)

where

Γ(t) = w3 (c+ ai+ a cos(θp)) + φ̇rẏrh sin(φ̇rt)

− sin(θp)
(

g − fθ̇2p + φ̇2
r (e− bi− b cos(θp))

)

+ ẋrd sin(φ̇rt)− ẏrd cos(φ̇rt) + φ̇rẋrh cos(φ̇rt) (91)
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For φ̇r 6= 0 these equalities clearly require Γ(t) = 0, which

allows a unique solution for the required w3 dynamics as

w3 =
sin(θp)

(

g + fθ̇2p + φ̇2
r (bi− e+ b cos(θp))

)

c+ a cos(θp) + ai
+

cos(φ̇rt)
(

−φ̇rẋrh+ ẏrd
)

+ sin(φ̇rt)
(

−φ̇rẏrh− ẋrd
)

c+ a cos(θp) + ai
(92)

For the parameters in Table I (bi− e) ≫ 0, so

sin(θp)
(

g + φ̇2
rb cos(θp) + fθ̇2p + φ̇2

r(bi− e)
)

c+ a cos(θp) + ai
(93)

is an odd function within a neighbourhood of the origin

for up to much larger values of φ̇r than are expected to

be encountered. Any deviation of θp from 0 will result in

a similarly signed w3, making θp = 0 an unstable equilib-

rium for this part of (92). The cos(φ̇rt)
(

−φ̇rẋrh+ ẏrd
)

+

sin(φ̇rt)
(

−ẋrd− φ̇rẏrh
)

expression is time varying when

φ̇r 6= 0, which acts to perturb (93). The dynamics can therefore

only be stabilised if this is achieved by this term, which given

that this expression is invariant in θp cannot be the case. An

unstable equilibrium can be achieved for the φ̇r = 0 case, as

this makes the latter expression time invariant, allowing a time

invariant solution for w3. The overall dynamics are therefore

unstable for θp ∈ [−π
2 ,

π
2 ], meaning that for ẍ = ÿ = 0 to

be maintained when φ̇r 6= 0 the system is is forced to violate

the constraint |θp| <
π
2 , making the asymptotic tracking of

constant ẋr and ẏr trajectories with a time varying heading

impossible.

As from Remark 4 no states satisfying ‖v‖φ̇ 6= 0 represent

equilibria, asymptotic tracking of constant inertial frame ve-

locity references is not possible, and thus a degree of tracking

error is to be expected. Like in Section V-A it is desired

that θp → f−1
v̇y,ss

(−vxφ̇), so a similar energy function to

that in (81) can be used, though now this will never be

perfectly tracked in steady state. Quadratic energy functions

are defined with unique minimums at ẋ = ẋr and ẏ = ẏr.

However, as these minimums no longer represent equilibria

of the system it is expected that the controlled system will

follow a periodic trajectory about these references in steady

state, with the characteristics of this limit cycle tunable by

manipulation of control gains. Identical energy functions to

that in (81) are used to describe a quadratic cost on |φ̇− φ̇r|
and a barrier function on w2. A similar barrier function is used

to constrain w1. As the purpose of this barrier is to constrain

wheel torque demands, it makes more sense in this application

to only apply the barrier to forced body acceleration, rather

than also constraining acceleration due to rotation of inertial

frame velocities into the local body frame. The barrier function

is therefore chosen to instead enforce

|w1 − vyφ̇| < vxf (94)
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Fig. 7. Simulated system state trajectories for a reference (ẋr, ẏr, φ̇r) =
(1, 1, 6), with the system initialised at the origin and with θp = 0.4, v̇xf = 2,

and w2 = 4. w1−vxφ̇ is shown rather than w1, as this represents acceleration
in the vx subsystem not due to rotation, and is the value that is constrained.

θp is seen to converge towards f−1

v̇yss
(0), though a small tracking error is now

observed. This is due to the infeasibility of asymptotically tracking inertial
velocity references, as well as the now invalid assumption of θp converging

to a constant value, i.e. now θ̇p 6= 0, w3 6= 0 in steady state. ẋ and ẏ are
seen to converge to a small limit cycle about the target reference.

These new constraints and quadratic reference tracking costs

can be captured by the Lyapunov function candidate

VΣ =

(

θpr − f−1
v̇y,ss

(−vxφ̇)
)2

2
(

θ
2

p − θ2pr

) +
(w1 − φ̇vy)

2

2
(

v̇
2
xf − (w1 − φ̇vy)2

)

+
Kv

(

(ẋr − ẋ)2 + (ẏr − ẏ)2
)

2
+

Kφ̇(φ̇r − φ̇)2

2

+
1

2
(

w2
2 − w2

2

) (95)

Substituting the control laws

θ̇pr =
−ḟ−1

v̇y,ss
(−vxφ̇)

(

θ
2

p − θ2pr

)

(

f−1
v̇y,ss

(−vxφ̇)θpr − θ
2

p

)

−Kr

(

θpr − f−1
v̇y,ss

(−vxφ̇)
)(

f−1
v̇y,ss

(−vxφ̇)θpr − θ
2

p

)

+

(

θ
2

p − θ2pr

)2

Kv(fv̇yss
(θpr) + vxφ̇)(vyr − vy)

(

θpr − f−1
v̇y,ss

(−vxφ̇)
)(

f−1
v̇y,ss

(−vxφ̇)θpr − θ
2

p

) (96)

ẇ1 = φ̇fv̇yss
(θpr) + vyw2 −Kw1

(w1 − φ̇vy) +Kv·

(vxr − vx)
(

v̇xf − φ̇vy + w1

)2 (

v̇xf + φ̇vy − w1

)2

v̇
2
xf

(97)

ẇ2 = −Kw2
w2 +Kφ̇(φ̇r − φ̇)

(

w2
2 − w2

2

)2

(98)

into V̇Σ it is found that V̇Σ ≤ 0 ∀ {Kr,Kw1
,Kw2

} > 0, thus

proving stability under the assumption that non-zero inertial
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Fig. 8. Experimental system state trajectories for a reference (ẋr, ẏr, φ̇r) =
(0, 1, 3), with the system initialised at the origin and with θp = 0.4, v̇xf =

2, and w2 = 15. w1 − vxφ̇ is shown rather than w1, as this represents
acceleration in the vx subsystem not due to rotation, and is the value that is
constrained. RMS ẋ and ẏ tracking errors of 4.2% and 7.1% are visible, due
to a combination of the infeasibility of perfect tracking, imperfect feedback
linearisation, and modelling error in the outer control laws.

frame velocities are attainable in steady state while φ̇ 6= 0.

As from Remark 4 this is not possible, this stability proof

is invalidated, though as the necessary resulting limit cycle

is expected to be small it is assumed that this stability proof

is still relevant to some degree. Control gains are tuned as to

achieve a desirable trade-off between control performance and

minimisation of this periodic error trajectory.

As in the body velocity controller this controller also relies

on the assumption θp = θpr, so update of the control is again

slowed by multiplying the second and third terms of (96) by

(87) such that the control law is slowed when the inner loop

has not converged, but without affecting the first term of (96)

that is required to feedforward a necessary variation in θp
due to rotation of inertial frame velocities into the local body

frame.

Fig. 7 shows the simulated response of the controlled system

to a reference (ẋr, ẏr, φ̇r) = (1, 1, 6) with constraints θp =
0.4, v̇xf = 2, and w2 = 4, with the system initialised at

the origin. This demonstrates convergence to an acceptable

velocity trajectory limit cycle with an RMS error of 4.1%,

and satisfaction of the constraints |θpr| < θpr, |w1 − vxφ̇| <
v̇xf , and |w2| < w2. In steady state θp is seen to closely

track f−1
v̇y,ss

(−vxφ̇). Controller parameters are selected to best

demonstrate the controller; more aggressive gains can obtain

faster tracking without significantly altering the limit cycle.

Fig. 8 shows the experimental response of the prototype to

a reference (ẋr, ẏr, φ̇r) = (0, 1, 3). This highlights a weakness

in this controller; just as selection of controller gains affects

the system’s resulting limit cycle, this is also influenced by

imperfect feedback linearisation and modelling error in the

control laws, yielding larger periodic velocity tracking errors,

with RMS errors of 10.8% and 7.8% respectively. From

observation it is believed that the main influencing unmodelled

dynamic is related to friction in the Mecanum wheel rollers,

Fig. 9. A long exposure image of the trajectory in Fig. 8, in which two blue
LEDs are used to capture the tracked path.

which in practise will not be perfectly modelled by the linear

friction models used in this article. Fig. 9 uses a long exposure

image to demonstrate this experiment.

C. Backstepping Global Position Control

With system inertial frame velocities successfully controlled

it is relatively straightforward to design a controller capable

of generating (ẋr, ẏr, φ̇r) trajectories that drive the system to

some arbitrary position in the inertial frame (pxr
, pyr

, pφr
).

This must be performed whilst enforcing a velocity constraint

in order to bound the system’s kinetic energy as to generate

safe velocity trajectories. Such a controller is significant, as

this allows the system to perform point-to-point translations in

its environment, and is therefore a prerequisite for autonomous

navigation between waypoints.

Consider the candidate Lyapunov function

VΣ =
Kp

(

(pxr
− x)2 + (pyr

− y)2
)

2
+

Kφ (pφr
− φ)

2

2

+
1

2(v2 − ẋ2
r − ẏ2r)

+
1

2(φ̇
2

− φ̇2
r)

(99)

in which convergence of the lower velocity controller is

assumed such that ẋ = ẋr, ẏ = ẏr, φ̇ = φ̇r. The first two

terms of (99) define a cost quadratic in position error, the

third term forms a barrier function enforcing the constraint

ẋ2
r + ẏ2r < v2, with a unique minimum at ẋr = ẏr = 0, and

the last term enforces |φ̇| < φ̇r with a unique minimum at

φ̇r = 0.

Substituting the control laws

ẍr = −Kvr
ẋr +

(

v2 − ẋ2
r − ẏ2r

)2
Kp(pxr

− x) (100)

ÿr = −Kvr
ẏr +

(

v2 − ẋ2
r − ẏ2r

)2
Kp(pyr

− y) (101)

φ̈r = −Kφ̇φ̇r + (φ̇2
r − φ̇

2

r)
2Kφ(pφr

− φ) (102)

into V̇Σ it is clear that V̇Σ ≤ 0 ∀ {Kvr
,Kφ̇r

} > 0, and that

V̇Σ = 0 has a unique solution at the desired steady state, thus

proving stability. Similar to the velocity controller, update of
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Fig. 10. A long exposure image capturing a trajectory from the origin to
position references (xr, yr, φr) = (1, 2, 4π), in which two blue LEDs are
used to capture the tracked path.

each control law is slowed by multiplication with terms of the

form

e−K|ẋr−ẋ|, K ≫ 1 (103)

so that the assumption of lower loop convergence holds.

Fig. 11 shows the simulated response of the above controller

to the reference (pxr
, pyr

, pφr
) = (2, 2, 2π), with the system

initialised at the origin and with θp = 0.6, v = 1, v̇xf = 2, and

w2 = 4. w1 − vxφ̇ is shown rather than w1, as this represents

acceleration in the vx subsystem exclusive of that due to

rotation; it is this value that is constrained by the lower velocity

controller. This demonstrates asymptotic position reference

tracking with minimal overshoot, and sensible smooth velocity

trajectories that satisfy constraints.

Fig. 12 shows the experimental response of the prototype to

exactly the same reference trajectories with identical control

gains. This results in the system tracking a nearly identical

position trajectory, though now there is more disturbance in the

ẋ and ẏ states due to ‖v‖φ̇ 6= 0. Similarly, a more aggressive

θp trajectory is required than in simulation to counter this

deviation from the velocity reference. Again, all constraints are

satisfied, and all state and input trajectories evolve as expected.

A long exposure image demonstrating this controller is shown

in Fig. 10, in which two LEDs are used to capture the resulting

tracked path.

VI. CONCLUSION

This article has derived the kinematics and dynamics models

of the Collinear Mecanum Drive with linear friction models,

has proven controllability, and has demonstrated a novel partial

feedback linearisation, capable of transforming the CMD’s

dynamics from a system of six nonlinear and two linear ODEs

to three nonlinear and five linear ODEs. Controllers suitable

for both human-driven and autonomous applications have been

derived and experimentally demonstrated, all with stability

and convergence guarantees for the fully coupled nonlinear

dynamics model.

The Collinear Mecanum Drive promises to yield significant

improvements in manoeuvrability, grace of motion, and a step
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Fig. 11. Simulated system state trajectories for a reference (xr, yr, φr) =
(2, 2, 2π), initialised at the origin with θp = 0.6, v = 1, v̇xf = 3, and

w2 = 15. w1 − vxφ̇ is shown rather than w1, as this represents acceleration
in the vx subsystem exclusive of that due to rotation of the body frame, and
is the value that is constrained.

toward allowing the creation of robots with taller, slimmer

form factors across a broad range of applications, ranging from

personal robotics in the home and office, customer service

and inventory tracking robotics in retail, and to autonomous

warehousing applications.
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