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Deep Energy Autoencoder for Noncoherent

Multicarrier MU-SIMO Systems
Thien Van Luong, Youngwook Ko, Senior Member, IEEE, Ngo Anh Vien,

Michail Matthaiou, Senior Member, IEEE, and Hien Quoc Ngo, Member, IEEE

Abstract—We propose a novel deep energy autoencoder (EA)
for noncoherent multicarrier multiuser single-input multiple-
output (MU-SIMO) systems under fading channels. In particular,
a single-user noncoherent EA-based (NC-EA) system, based on
the multicarrier SIMO framework, is first proposed, where both
the transmitter and receiver are represented by deep neural
networks (DNNs), known as the encoder and decoder of an EA.
Unlike existing systems, the decoder of the NC-EA is fed only with
the energy combined from all receive antennas, while its encoder
outputs a real-valued vector whose elements stand for the sub-
carrier power levels. Using the NC-EA, we then develop two novel
DNN structures for both uplink and downlink NC-EA multiple
access (NC-EAMA) schemes, based on the multicarrier MU-
SIMO framework. Note that NC-EAMA allows multiple users
to share the same sub-carriers, thus enables to achieve higher
performance gains than noncoherent orthogonal counterparts.
By properly training, the proposed NC-EA and NC-EAMA can
efficiently recover the transmitted data without any channel
state information estimation. Simulation results clearly show the
superiority of our schemes in terms of reliability, flexibility and
complexity over baseline schemes.

Index Terms—Deep learning, deep neural network, energy
autoencoder, multicarrier systems, noncoherent energy detection.

I. INTRODUCTION

Multicarrier transmission has become a key technology for

numerous wireless systems due to its simple implementation

and robustness against inter-symbol interference and delay

spreading caused by multipath fading. Orthogonal frequency

division multiplexing (OFDM) [1], which is the most popular

multicarrier technique, has been included in various standards,

such as Wi-Fi 802.11 and 3GPP’s LTE. In general, OFDM is

not only spectrally efficient, but also enables the use of low-

complexity transceivers as it only needs one-tap equalizer per

sub-carrier to effectively combat multipath fading effects.

Over the past years, many efforts have been made to

improve the reliability and spectral efficiency (SE) of multi-

carrier systems; in this context, OFDM with index modulation
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(OFDM-IM) [2] has recently emerged as a promising tech-

nique to replace conventional OFDM. In particular, OFDM-

IM activates only a subset of sub-carriers to carry additional

data bits via the indices of active sub-carriers without any

extra needs of bandwidth or power. The error performance of

OFDM-IM under channel state information (CSI) uncertainty

was comprehensively analyzed in [3], [4] with the maximum

likelihood (ML) and energy-based greedy (GD) detectors [5].

The reliability of OFDM-IM can be further enhanced by using

coordinate interleaving [6], repetition [7], [8] and spreading

codes [9], while its SE can be increased by relaxing the num-

ber of active sub-carriers [10]. Note that the aforementioned

multicarrier schemes are based on coherent detection designs,

where the receiver needs to estimate the CSI of all sub-carriers

regardless of their activity. As a result, they may suffer from a

high pilot signaling overhead, particularly under fast-varying

fading channels. Thus, in [11], noncoherent OFDM-IM (NC-

OFDM-IM), also known as a generalized version of frequency

shift keying (FSK), was introduced, which uses only the active

indices to convey data bits. In fact, this scheme utilizes simple

unitary codewords, i.e., transmitted vectors, as it allows a

fixed number of active sub-carriers to carry the same power.

Yet, this design may not be optimal, especially when some

of combinations of active indices are redundant. We aim to

address this issue by devising an optimal codeword design

for a noncoherent multicarrier (NC-MC) energy-based scheme,

using deep learning (DL) tools [12].

Regarding noncoherent single-carrier transmissions, various

energy-based detection (ED) schemes with nonnegative pulse

amplitude modulation (PAM) have been investigated, espe-

cially in massive single-input multiple-output (SIMO) systems.

For example, the performance of an ED-based massive SIMO

system was analyzed in [13], which results in an optimal

power allocation design. In [14], the effects of correlated

Rayleigh fading on the performance of a similar system were

investigated. In [15], the PAM constellations that maximize

the minimum Euclidean distance (MED) between signal points

were designed, where the resulting scheme can be termed

as PAM-MED. This work also looked into the constellation

design for two users, which iteratively uses two separate

constellations in two time slots. In [16], a uniquely factorable

hexagonal constellation was proposed for noncoherent SIMO

systems, where the channels are assumed to remain unchanged

in each two time slots. Besides, the constellation designs under

different assumptions of the CSI statistics were presented in

[17], while the channel gains were used for optimizing the

PAM constellations in [18]. We note that most of existing
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works have addressed the noncoherent ED-based single-carrier

and single-user systems, while the NC-MC energy-based de-

signs for multiuser SIMO (MU-SIMO) transmissions have

been overlooked. Our work aims to fill this fundamental gap.

Recently, DL based on deep neural networks (DNNs) [12]

has emerged as a powerful tool to address diverse problems in

physical-layer wireless communications. For instance, in [19],

channel estimation and signal detection of OFDM systems

were performed by DNNs, while in [20] a DL-based detector,

called as DeepIM, was proposed for OFDM-IM. Particularly,

in [21], a novel end-to-end learning-based system was pro-

posed, where both the transmitter and receiver are represented

by DNNs, which are known as the encoder and decoder of an

AE. This data-driven system enables a joint optimization of

both the transmitter and receiver via training, leading to better

performance than conventional block-based systems. The AE-

based system was implemented under real-world environments

in [22]. The AE concept was also applied to OFDM and

noncoherent MU-SIMO systems in [23] and [24], respectively.

Some end-to-end AE-based schemes under unknown channel

models were proposed in [25], [26], which aim to eliminate the

need of a differentiable channel model. Note that under fading

channels, these learning-based schemes have to employ pilot

transmissions to estimate the CSI for signal detection. To the

best of our knowledge, none of the existing works has explored

the potential of DL in the noncoherent ED-based systems.

In this paper, DL is first applied to noncoherent energy-

based systems to improve the performance over current ED

systems. Our main contributions are summarized as follows:

• We propose a novel deep energy autoencoder (EA) for

single-user multicarrier SIMO systems, coined as NC-

EA, whose transmitter and receiver are modeled as the

encoder and decoder (DNNs) of an EA. Unlike existing

schemes [21] which utilize complex signals, the encoder

of NC-EA outputs a real-valued vector whose elements

represent the sub-carrier power levels, while its decoder

is fed only with the combined energy of signals from the

receive antennas without any knowledge of CSI.

• Using NC-EA, we construct two novel DNN structures

for both downlink and uplink NC-EA multiple access

(NC-EAMA) schemes, in the multicarrier MU-SIMO

framework. Note that NC-EAMA allows multiple users

to access the same set of sub-carriers, thus can be con-

sidered as a type of noncoherent non-orthogonal multiple

access (NC-NOMA), which is expected to achieve higher

performance gains than the noncoherent energy-based

orthogonal schemes, termed as NC-OMA.

• Various simulations clearly present that by properly train-

ing with simulated data, the proposed learning-based

schemes can efficiently decode data without any CSI

estimation, and outperform the hand-crafted baselines at

reduced complexity. In this context, our schemes are

very attractive for various machine-type communications

(MTCs) [27] which require reliable, low latency and low

complexity connectivity.

The rest of the paper is as follows: Section II presents the

single-user NC-EA, while Section III introduces the uplink and
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Fig. 1. Structure of the single-user NC-EA system.

downlink NC-EAMA systems. Simulation results are provided

in Section IV. Finally, Section V concludes the paper.

Notation: Upper-case bold and lower-case bold letters

present matrices and vectors, respectively; C(n, k) denotes

the binomial coefficient for n choose k; ⌊.⌋ denotes the floor

function; (.)T and ‖.‖ stand for the transpose operation and the

Frobenius norm, respectively. CN
(

0, σ2
)

denotes the complex

Gaussian distribution with zero mean and variance σ2.

II. SINGLE-USER NC-EA SYSTEM

A. NC-EA Structure

Consider a NC-MC SIMO system with N sub-carriers,

which does not require any CSI estimation at the transmitter

and the receiver. We assume that the transmitter has a single

antenna, while the receiver has L antennas. Unlike current NC-

MC schemes, such as NC-OFDM-IM [11], we implement both

the transmitter and receiver of NC-MC by DNNs, proposing

a deep energy autoencoder (EA) structure in Fig. 1, where

the resulting scheme can be termed as NC-EA. Note that the

proposed EA differs from the conventional AE [21] in that the

decoder of the EA is fed only with the combined energy from

the receive antennas, without any knowledge of CSI.

In particular, the NC-EA structure consists of the encoder

and decoder neural networks, which represent the transmitter

and receiver, respectively. At the transmitter, the incoming

message s ∈ S = {s1, ..., sM} is mapped to an M×1 one-hot

vector, which is used as an input vector of the encoder, wherein

S is the set of all M = 2m possible messages, each having

m data bits. Note that the one-hot vector s has a single unit

entry which is indexed by s in S , while the remaining entries

are zeros. The encoder has a full-connected (FC) layer with

the hyperbolic tangent (Tanh) activation function [12], whose

output is given by u = σTanh (Ws+ b), where W and b are

the N ×M weight matrix and N ×1 bias vector, respectively,

and σTanh denotes the element-wise Tanh function. Then, u is

normalized to constrain the average transmit power over each

sub-carrier to be a given constant, as follows:

x =

√
NSEsu

√

∑S

i=1 ‖ui‖2
, (1)

where Es is the average transmit power per sub-carrier and

ui = σTanh (Wsi + b) with si ∈ Ω = {s1, ..., sT } which is a

batch of S training samples (T is coined as the batch size).

The set of all possible M codewords x can be considered as

a codebook of NC-EA denoted by X = {x1, ...,xM}, while

the mapping from s to x can be represented by x = fθenc
(s),

where θenc = {W,b} denotes the parameters of the encoder.
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Note that the average power normalization over an entire

training batch in (1) is preferable for the energy detection of

an EA than a fixed power constraint with x =
√
NEsu/ ‖u‖,

in order to make the codewords’ energies as different as

possible. It is also worth noting that the codeword x is a

real-valued vector whose entries indicate the amplitudes of

sub-carrier symbols; hence, it is suitable for an energy-based

decoder of NC-EA. This real-valued design also reduces the

model complexity of NC-EA, which facilitates the training to

converge faster, compared to the complex-valued design [21].

The received signal vector from L receive antennas, in

frequency sub-carrier α, for α = 1, ..., N , is given by

yα = hαxα + nα, (2)

where yα = [y1 (α) , ...., yL (α)]
T

, xα is the α-th entry of

x, hα = [h1 (α) , ..., hL (α)]
T

denotes the Rayleigh fading

channel vector from the transmitter to L receive antennas

with hl (α) ∼ CN (0, 1), and nα is the additive noise vector

with nl (α) ∼ CN (0, N0), for l = 1, ..., L. We assume that

the entries of hα and nα are independent and identically

distributed (i.i.d.) random variables (RVs). Hence, the average

signal-to-noise ratio (SNR) per sub-carrier is γ̄ = Es/N0.

As for the NC-EA decoder, the combined energy received

from L receive antennas is first computed for each sub-carrier:

zα = ‖yα‖2 =

L
∑

l=1

|yl (α)|2 , (3)

which produces the N×1 combined energy vector for all sub-

carriers z = [z1, ..., zN ]
T

. This received energy vector is then

fed to the DNN of the decoder as shown in Fig. 1. In particular,

the proposed decoder structure has two non-linear FC layers, in

which the first FC layer has Q nodes with the Tanh activation,

while the second FC layer is the output layer of M nodes with

the softmax activation [12].1 Let θdec = {Wi,bi}i=1,2 be

the weights and biases of the two decoder layers. The output

vector of the softmax layer is mathematically expressed by

ŝ = fθdec
(z) = σSoftmax (W2σTanh (W1z+ b1) + b2) , (4)

where σSoftmax denotes the element-wise softmax function. The

estimated ŝ is determined based on the largest element of ŝ.

We note that since the DNN decoder obtained via training

may not be optimal for certain values of N and M , the optimal

noncoherent ML may be used to improve the performance of

NC-EA compared to using the DNN decoder, as follows:

x̂ = argmin
x∈X

N
∑

α=1

[

zα

|xα|2 +N0

+ L ln
(

|xα|2 +N0

)

]

, (5)

where we have followed the derivation of [28, Chapter 5].

It is worth noting that the NC-EA requires only the received

energy for signal decoding, thus does not involve any channel

estimation, which is particularly desirable for low latency and

complexity communications. More importantly, our scheme

1The number of hidden layers is miminized based on experiments in order
to make the DNN model of NC-EA perform best at a reduced complexity.
Moreover, we use Tanh at both the encoder and decoder of NC-EA since
this activation always offers better performance than others such as Linear,
Sigmoid and Relu activations [12], as observed through our experiments.

provides a number of advantages over existing hand-designed

schemes, such as NC-OFDM-IM [11], as follows:

• The NC-EA can send any number of data bits m for

given N , while that of NC-OFDM-IM is limited to

m0 = ⌊log2 C (N,K)⌋ bits, where K is the number of

active sub-carriers. Hence, our scheme is not only more

flexible but also is able to support higher data rates than

its counterpart. For example, when N = 4, NC-OFDM-

IM supports only m0 ≤ 2 bits for every K < N , while

NC-EA supports more bits with m = 3 or even 4 bits.

• The NC-EA can achieve higher reliability than NC-

OFDM-IM since our scheme benefits from a joint opti-

mization of both the transmitter and the receiver through

training the EA model to achieve an optimal design of

codewords X .

• The decoder of an NC-EA-based system is very simple

with only one hidden layer of Q nodes. Hence, when Q
is not too large, NC-EA can achieve even lower decoding

complexity than NC-OFDM-IM. This will be verified in

Subsection IV.B.

• The NC-EA concept can be extended to NC-NOMA,

where multiple users share the same N sub-carriers for

the NC-EA transmission, as will be shown in Section

III. Note that this important benefit is not available in

current NC-MC schemes, whose hand-designed energy-

based detector is only applicable to single-user schemes.

In summary, apart from no channel estimation, the proposed

NC-EA achieves higher flexibility and reliability at even lower

computational complexity than existing schemes. Hence, NC-

EA can be easily implemented in small and low-cost devices

such as sensors. These benefits make our scheme attractive to

various MTC applications [27] which demand reliable, ultra-

low latency and low-complexity connectivity.

B. Training procedure of NC-EA

The proposed NC-EA model is trained to minimize the

difference between the original vector s and its prediction

ŝ, using dataset collected from simulations. More precisely,

the training dataset includes s, hα and nα (α = 1, ..., N), in

which the input one-hot vector s is randomly generated and

fed to the encoder, then the channel and noise vectors hα,

nα are randomly generated and added to the output of the

encoder. Then, the output of the channel layer yα in (2) is

used for the computation of the combined energy z for each

sub-carrier, which is fed to the DNN decoder from which s

is recovered. We adopt the conventional mean squared error

(MSE) loss function for training the NC-EA as follows:

L (θ) =
1

T

T
∑

i=1

‖si − ŝi‖2 , (6)

where θ = {θenc, θdec} denotes the model parameters of NC-

EA and T is the training batch size.2 Using (6), the NC-EA

2Note that based on our experiments, the MSE loss always offers compa-
rable or better performance than the cross-entropy loss, and thus in this work
we use the MSE loss only for training the proposed EA-based schemes.
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model parameters are updated based on the stochastic gradient

descent (SGD) algorithm as follows:

θ := θ − η∇L (θ) , (7)

where η is the learning rate which regulates how much to ad-

just the parameters. In this work, we adopt an advanced SGD-

based update method, named as adaptive moment estimation

(Adam), along with the Xavier method for initializations of

weights and biases. Note that these methods are available on

various off-the-shelf DL libraries, such as Tensorflow [29].

Since the NC-EA only utilizes the received energy for signal

detection, its decoding performance is highly sensitive to the

SNR level γ̄ used for training. This means that the NC-EA

model trained with a training SNR (denoted by γ̄tr) performs

best only at the testing SNRs (denoted by γ̄te) that are close to

γ̄tr, while it does not perform well at other testing SNRs that

are far from γ̄tr. Hence, to overcome such overfitting problem,

we train the NC-EA with multiple SNRs and then test the

trained models with γ̄te = γ̄tr. As such, under varying channel

variances, we need to retrain the model once γ̄ changes,

or store multiple pre-trained models with different γ̄tr. It is

also necessary to accurately choose the encoder-decoder pair

corresponding to each SNR before transmission. In order to

reduce the training time when L is very large, i.e., massive

SIMO systems, we can train NC-EA with small L, using the

average received energy z̄α = ‖yα‖2 /L rather than zα in (3),

then the trained model still works well for larger L.

Note that there are still some issues regarding training NC-

EA in practice. For example, in actual systems, the channel

model and statistics as described in (2) may be completely

unknown, and this obviously hinders the channel gradient

computation to update the transmitter. To overcome this issue,

reinforcement learning [25] or generative adversarial networks

[26], which has recently been used to learn the channel model

of end-to-end learning-based communication systems, can be

applied to NC-EA. Yet, such extensions are far beyond the

scope of this work and will be part of our future work.

III. NC-EA MULTIPLE ACCESS SYSTEMS

Using the NC-EA, we propose two novel DNN structures

for both uplink and downlink NC-EA multiple access (NC-

EAMA) systems also based on multicarrier SIMO framework.

Note that the proposed NC-EAMA is able to allow multiple

users to share the same set of frequency sub-carriers. Then,

to improve the performance, a new loss function for training

NC-EAMA is designed, which ensures not only fast training

convergence but also fairness performance among users.

A. Uplink NC-EAMA

The proposed structure of uplink NC-EAMA is depicted in

Fig. 2, where J single-antenna users simultaneously send their

data to a central access point (AP) equipped with L antennas,

using the same N sub-carriers for NC-EA transmissions. Like

NC-EA, the AP in uplink NC-EAMA does not require any CSI

knowledge of users in the detection process. In particular, all

users employ the same encoder structure as that of single-user

NC-EA, which makes them have the same average transmit
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Fig. 2. Structure of the uplink NC-EAMA system.

power. We assume that s(j) is the input vector of user j’s

encoder, while x(j) is the corresponding output, i.e., x(j) =
f
θ
j
enc

(

s(j)
)

, where θjenc is the encoder parameters of user j. At

the AP, the received signal vector at sub-carrier α is

yα =

J
∑

j=1

h(j)
α x(j)

α + nα, (8)

where h
(j)
α and nα are the L× 1 channel vector from user j

to the AP and the L× 1 noise vector of frequency sub-carrier

α, respectively, while x
(j)
α is the α-th entry of x(j), i.e., the

transmitted symbol at sub-carrier α of user j, for j = 1, ..., J .

For the sake of simplicity of presentation, we assume that

the elements of h
(j)
α and nα have the same statistics as in

Section II. Our scheme can be straightforwardly extended to

the case where the channels to different users have different

variances. For example, the normalization layer of each user

can be scaled by a power allocation coefficient so that we can

allocate more power to users with smaller channel variances.

Regarding the data decoding at the AP, similar to NC-EA,

the combined energy from L receive antennas is first computed

for each sub-carrier, i.e., zα = ‖yα‖2 for α = 1, ..., N .

The resulting vector z = [z1, ..., zN ]
T

which collects energy

from J users is used as the input of the DNN decoder. As

shown in Fig. 2, the decoder structure of the AP consists

of C non-linear FC hidden layers with the Tanh activation,

while the output layer is divided into J independent FC

sub-layers of M nodes employing the softmax activation,

whose output is to determine the transmitted data of the

corresponding user. Let us denote Wc, bc and Qc as the

weight, bias and number of nodes, respectively, of the c-
th hidden layer of the AP decoder, whose output vector is

given by vc = σTanh (Wcvc−1 + bc) , where v0 = z and

c = 1, ..., C. As a result, the output of each final sub-layer

can be written by ŝ(j) = σSoftmax

(

W
(j)
C+1vC + b

(j)
C+1

)

, where

W
(j)
C+1 and b

(j)
C+1 are the weight and bias of the final sub-layer

of user j, respectively. Finally, the transmitted message of user

j is recovered according to the largest entry of ŝ(j).

Note that the structure parameters of uplink NC-EAMA,

such as C and Qc (c = 1, ..., C), need to be properly selected

based on specific system parameters, such as N , M and J.
This will be detailed for each experiment in Section IV.
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Fig. 3. Structure of the downlink NC-EAMA system.

B. Downlink NC-EAMA

The DNN structure of downlink NC-EAMA is illustrated

in Fig. 3. Particularly, the AP equipped with a single antenna

communicates simultaneously with J users, each of which

has L antennas, applying the NC-EA technique on the same

N sub-carriers. Note that the users of downlink NC-EAMA

do not need any CSI knowledge to decode their data. The

structure of the AP encoder consists of J sub-networks, whose

structure is the same as the encoder of a single-user NC-

EA. Herein, sub-network j is to encode the data of user j
(denoted by the one-hot vector s(j)) into the corresponding

N × 1 codeword x(j), for j = 1, ..., J. Then, the transmitted

vector of the AP that includes the codewords of J users is

determined by x =
∑J

j=1 x
(j). As such, the AP allocates the

same average transmit power for all users. The received signal

vector of user j at sub-carrier α is written by

y(j)
α = h(j)

α xα + n(j)
α , (9)

where h
(j)
α is the L× 1 channel vector from the AP to the L

antennas of user j, n
(j)
α is the L×1 noise vector, both have the

same statistical models as presented in the previous section,

while xα is the α-th element of x.

The decoder structure of each user in downlink NC-EAMA

is similar to that of single-user NC-EA, except for the

fact that it now has more hidden layers to improve the

decoding performance in the presence of the inter-user

interference. In particular, the combined energy vector

z(j) of user j is collected as in (3), which is then fed to

the corresponding DNN decoder. Denote by W
(j)
c , b

(j)
c

and Qc the weight, bias and number of nodes of the

c-th layer of the decoder of user j, for c = 1, ..., C + 1,

where C denotes the number of hidden layers. As a result,

the output of the decoder of user j can be expressed by ŝ(j) =

σSoftmax

(

W
(j)
C+1σTanh

(

...σTanh

(

W
(j)
1 z(j) + b

(j)
1

))

+ b
(j)
C+1

)

,

which is used to recover the transmitted message of user j.

We now highlight some key advantages of the proposed

uplink and downlink NC-EAMA as follows:

• The NC-EAMA is highly adaptive and flexible since it

can be easily designed via training for any numbers of

users J , frequency sub-carriers N and data streams M ,

as well as any type of the transmission (downlink or

uplink). This flexibility is not available in existing hand-

crafted schemes (e.g., NC-OFDM-IM [11], PAM-MED

[15]), whose encoder and decoder must be redesigned in

a complicated manner depending on the system require-

ments.

• As a learning scheme, the NC-EAMA allows to jointly

optimize both the transmitter and receiver, which is

expected to result in an optimal performance for each spe-

cific system configuration and channel condition, through

properly training the models as shown in the next section.

• Compared to NC-OMA schemes, the NC-EAMA can

achieve higher diversity gains since it allows multiple

users to utilize all N available sub-carriers rather than just

one or part of N sub-carriers as in NC-OMA. Thus, our

scheme is expected to achieve higher reliability than NC-

OMA, while still enjoying a low decoding complexity

when the decoder requires C and Qc to be small enough.

Note that the aforementioned benefits of the proposed NC-

EAMA will be validated by simulation results in Section IV.

C. Training procedure of NC-EAMA

The uplink and downlink NC-EAMA schemes are trained

offline, using dataset randomly collected by simulations, based

on the known statistics of the channel and noise vectors.

Unlike single-user NC-EA which simply adopts the MSE loss

function for training, we design a new loss function tailored

to NC-EAMA, aiming at fast training convergence to a global

optimum and user fairness regarding the decoding accuracy.

In particular, for brevity, the proposed loss function is

written for each single data sample, as follows:

L (θ) =

J
∑

j=1

Ej + λ

J
∑

j=1

(

Ej − E
)2

, (10)

where Ej =
∥

∥s(j) − ŝ(j)
∥

∥

2
is the least squared error (LSE) of

user j and E = 1
J

∑J

j=1 Ej , while λ denotes a loss scaling

factor. Note that λ is an important hyperparameter, which

needs to be carefully fine-tuned while training to ensure a

best performance. As seen from (10), the first term stands

for the reconstruction loss, i.e., the total LSE of all users,

while the second term that measures the standard deviation of

the individual LSEs Ej is added to force them as identical as

possible. Interestingly, apart from ensuring the user fairness as

expected, this design enables the DNN models of NC-EAMA

to quickly converge in the training process.

Similar to NC-EA, the SGD-based Adam and Xavier ini-

tialization methods are adopted for training NC-EAMA. Our

proposed NC-EAMA models are trained with multiple training

SNRs γ̄tr, and then the trained models are tested with the

testing SNRs γ̄te being the same as γ̄tr in order to yield

the best performance. The details of selecting other training

parameters, such as epochs, batch size, learning rate, training

and testing data sizes, and particularly the loss scaling factor

λ, will be provided for various experiments in the next section.

IV. SIMULATION RESULTS

We carry out extensive simulations to verify the error

performance of the proposed NC-EA and uplink/downlink

NC-EAMA schemes in comparison with baseline schemes.
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TABLE I
NC-EA TRAINING PARAMETERS

Parameters Values

Epoch 103

Batch size 128

Train size 2× 104

Test size 106

Learning rate 0.001

Q 16, 32, 64 for M = 4, 8, 16

Fig. 4. BLER comparison between the proposed NC-EA and NC-OFDM-IM
[11] when (a) (N,M) = (4, 4) and (b) (N,M) = (8, 8).

Particularly, the performance of our schemes is evaluated in

terms of the block error rate (BLER) versus the average SNR

per bit Eb/N0, where Eb = mEs/N denotes the average

transmit power per bit.3 A block error event occurs when a

message of m bits of each user transmitted over a block of N
sub-carriers is incorrectly decoded. We also present a decoding

complexity comparison at the end of this section.

A. BLER Performance of NC-EA

We consider NC-OFDM-IM [11] and PAM-MED [15] that

use the noncoherent ML detector (5), as baselines of the

proposed NC-EA. In particular, NC-OFDM-IM only operates

at low data rates of < 1 bps/Hz, while PAM-MED operates at

higher data rates of ≥ 1 bps/Hz. Note that since PAM-MED

is designed for single-carrier transmission only, we indepen-

dently employ it on each sub-carrier for comparison with our

multicarrier scheme. Similar to NC-EA, the noncoherent ML

detector of these baselines also needs to know the average

SNR for data decoding. The configurations of NC-EA, NC-

OFDM-IM and PAM-MED are denoted by (N,M), (N,K)
and (N,D), respectively, where we recall that N is the number

of sub-carriers, M = 2m with m being the size of the

transmitted message of NC-EA, K is the number of active

sub-carriers of NC-OFDM-IM, and D is the modulation order

of PAM-MED. The training parameters of NC-EA are given

in Table I.

Fig. 4 compares the BLER performance between the pro-

posed NC-EA and NC-OFDM-IM when (a) (N,M) = (4, 4)
and (b) (N,M) = (8, 8), and L = 1, 2, 4, at the data rates

of 0.5 and 0.375 bps/Hz, respectively. Herein, NC-OFDM-IM

3Since the bit error rate (BER) analysis delivers the same message as the
BLER analysis, for the sake of simplicity, we include the BLER results only.

Fig. 5. BLER comparison between the proposed NC-EA and NC-OFDM-IM
[11] when (a) (N,M) = (6, 8) and (b) (N,M) = (8, 16).

activates K = 1 sub-carrier in both cases to achieve the same

data rates as NC-EA. It is shown via Fig. 4 that our scheme

outperforms the baseline, especially at high SNRs and small

L. For example, in Fig. 4(b), at the BLER of 10−3, NC-EA

achieves 8 dB and 2 dB SNR gains over the baseline when

L = 1 and 2, respectively. This indicates that the unitary

codewords of NC-OFDM-IM are not an optimal design for

every SNR level, while the proposed NC-EA can learn to

return the optimal codewords for any SNR levels via training.

In Fig. 5, we illustrate the BLER comparison between the

proposed NC-EA and NC-OFDM-IM at higher data rates with

M > N and K > 1, particularly when (a) (N,M) = (6, 8)
and (b) (N,M) = (8, 16), and K = 2. Note that for given

N , NC-OFDM-IM needs K > 1 to support higher data rate

transmissions. Unlike the previous figure, it is observed from

Fig. 5 that NC-EA performs much better than the baseline

in whole SNR regions, even when L increases. For example,

in Fig. 5(a), at a BLER of 10−2, our scheme provides about

6, 3 and 2 dB SNR gains over the baseline when L = 1, 2
and 4, respectively. This improvement comes from the fact

that when (N,K) = (6, 2), the baseline has a total of

C (6, 2) = 15 possible unitary codewords, however, it only

utilizes 8 codewords to convey 3 bits, which is obviously an

inefficient and sub-optimal design. By contrast, the proposed

EA approach which can learn to optimize codewords appears

to ideally address the drawback of the hand-designed baseline.

Fig. 6 depicts the BLER performance versus log2(L) of the

proposed NC-EA and PAM-MED at the data rates of ≥ 1
bps/Hz, when Eb/N0 = 10 dB, N = 2, M = 4, 8, 16,

D = 2, 4 and L = 1, 2, ..., 29. Note that the baseline scheme

employs the PAM-MED technique with D = 2 and 4 on each

sub-carrier to support 1 and 2 bps/Hz data rates. We point

out NC-OFDM-IM is not considered since it is not able to

work at more than 1 bps/Hz. The performance of NC-EA

with the noncoherent ML decoder is included, besides that

of the DNN decoder. As seen in Fig. 6, at 1 bps/Hz, NC-

EA and PAM-MED have the same performance since when

D = 2, PAM-MED becomes an on-off keying (OOK) scheme,

which is known to be optimal in this case. At higher data

rate, i.e., 2 bps/Hz, NC-EA considerably outperforms PAM-

MED. For instance, at 2 bps/Hz, our scheme needs less than

32 antennas to achieve a BLER of 10−2, while PAM-MED
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Fig. 6. BLER comparison between the proposed NC-EA and PAM-MED [15]
when Eb/N0 = 10 dB, N = 2, M = {4, 8, 16} and D = 2, 4.

Fig. 7. BLER comparison between the single-carrier NC-EA and PAM-MED
[15] when (N,M) = (1, 4), (a) L = 1, 4, 8 and (b) Eb/N0 = 10, 20 dB.
The NC-EA employs ML and DNN decoders, while PAM-MED uses the ML
decoder.

requires more than 128 antennas. Moreover, while the baseline

is unable to support the data rate of 1.5 bps/Hz, our scheme

still performs well with the BLER curve lying between the

ones of 1 and 2 bps/Hz. This clearly confirms the advantage in

terms of higher flexibility of NC-EA compared to hand-crafted

baselines, such as NC-OFDM-IM and PAM-based schemes.

Finally, in NC-EA, the optimal ML outperforms the DNN

decoder as expected, especially when M and L get larger,

at the cost of substantial computational complexity.

Note that the proposed NC-EA works well not only for

multicarrier but also for single-carrier transmissions as shown

in Fig. 7. Particularly, Fig. 7 illustrates the BLER compar-

ison between single-carrier NC-EA and PAM-MED when

(N,M) = (1, 4), wherein Fig. 7(a) presents the BLER versus

Eb/N0 when L = 1, 4, 8, while Fig. 7(b) depicts the BLER

versus log2(L) when Eb/N0 = 10 and 20 dB. Here, NC-EA

employs both the DNN and noncoherent ML decoders. As

seen in Fig. 7(a), while the baseline suffers from a prohibitive

error floor, our scheme achieves much better BLER, which

decreases with increasing the SNR. Moreover, the ML decoder

significantly enhances the performance of NC-EA compared to

the DNN decoder which is known to be a sub-optimal decoder.

As observed in Fig. 7(b), our scheme again outperforms PAM-

MED. For example, at 20 dB, NC-EA with either DNN or ML

decoder only needs about 8 antennas to achieve the BLER of

10−2, while the baseline requires 128 antennas.

Fig. 8. BLER comparison between the (a) uplink and (b) downlink NC-
EAMA, and NC-OMA with IM, when (J,N,M) = (2, 4, 2) and L = 1, 2, 4.

B. BLER Performance of NC-EAMA

We note that NC-EAMA is the first multicarrier NC-NOMA

scheme that allows multiple users to share the same set of

frequency sub-carriers. Thus, it is reasonable to compare NC-

EAMA with NC-OMA schemes which are based on either

noncoherent IM or PAM techniques. In particular, each user

in NC-OMA is evenly allocated n = N/J sub-carriers to

independently employ NC-OFDM-IM and PAM-MED for low

and high data rate transmissions, respectively. The training

parameters of NC-EAMA are the same as that of NC-EA in

Table I, except for the number of hidden layers of the decoder

C is fixed to 2 in all experiments, and the corresponding

hidden nodes denoted by {Q1, Q2} will be provided for each

specific experiment. Especially, the loss scaling factor λ is

empirically selected from the set of F = {0, 1, 5, 10, 20} .
Note from our experiments that there does not exist an optimal

λ for any system parameters (J,N,M) as well as SNR levels.

Fig. 8 compares the BLER performance between the pro-

posed (a) uplink and (b) downlink NC-EAMA, and NC-OMA

with IM, when (J,N,M) = (2, 4, 2) and L = 1, 2, 4. Herein,

NC-EAMA employs {8, 16} and {4, 8} hidden nodes for the

uplink and downlink decoders, respectively. It is shown via

Fig. 8 that NC-EAMA has better BLER than NC-OMA for

both uplink and downlink, especially when L is small and the

SNR gets larger. For example, at the BLER of 10−3, the uplink

NC-EAMA achieves an SNR gain of 6.5 dB and 2.5 dB over

NC-OMA when L = 1 and 2, respectively. The SNR gain

achieved by the downlink NC-EAMA is even larger. In fact,

NC-EAMA allows multiple users to simultaneously spread

their transmit powers across all N sub-carriers in an optimized

manner via training, achieving higher diversity gains than NC-

OMA, whose users employ n ≪ N sub-carriers only.

Fig. 9 depicts the BLER comparison between uplink NC-

EAMA and NC-OMA with PAM at higher data rate, i.e.,

2 bps/Hz, when (J,N,M) = (2, 2, 4) and L = 4, 8. The

decoder of NC-EAMA has {16, 32} hidden nodes. Note that

NC-OMA with IM does not work at the considered high data

rate. We can see from Fig. 9 that the BLER of the proposed

scheme decreases with increasing the SNR, thus is much better

than that of the baseline which incurs a very high error floor.

The same observation can also be made for the downlink
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Fig. 9. BLER comparison between the uplink NC-EAMA and NC-OMA with
PAM, at a data rate of 2 bps/Hz, when (J,N,M) = (2, 2, 4) and L = 4, 8.

Fig. 10. BLER comparison between the downlink NC-EAMA and NC-OMA
with PAM when (J,N,M) = (2, 2, 2), (4, 4, 2), and L = 1, 2, 4.

transmission that we omit for the sake of brevity.

In Fig. 10, we compare the performance of downlink NC-

EAMA and NC-OMA with PAM when (J,N,M) = (2, 2, 2),
(4, 4, 2), and L = 1, 2, 4, i.e., the system is 100% fully-loaded

with J = N . In this case, each user of NC-OMA employs the

single-carrier PAM-MED, i.e., OOK transmission, while each

user of NC-EAMA has {4, 8} hidden nodes in the decoder.

It is interesting from Fig. 10 that NC-EAMA outperforms the

baseline for all SNR values, in particular the performance gap

between them is larger when L and N increase. This is due to

the fact that more sub-carriers used for each user leads to more

diversity gains achieved by NC-EAMA over NC-OAM whose

users use only one sub-carrier. For uplink, we found in our

experiments that NC-EAMA performs similarly to NC-OMA

with PAM in the same setting.

Fig. 11 presents the BLER of uplink and downlink NC-

EAMA under overloaded transmissions with J > N , when

J = 3, 4, N = 2, M = 2 and L = 8. Herein, our

schemes employ {16, 32} and {8, 16} hidden nodes for uplink

and downlink decoders, respectively. It should be noted that

hand-crafted NC-OMA schemes are unable to support over-

loaded transmissions, while our schemes perform relatively

well under 150% and 200% overloading, especially in the

downlink, as shown in Fig. 11. However, due to the severe

inter-user interference when the number of users increases,

while the number of sub-carriers is limited, the BLER of

NC-EAMA experiences an error floor at increasing SNRs.
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Fig. 11. BLER performance of the uplink and downlink NC-EAMA under
overloaded transmissions, when J = 3, 4, N = 2, M = 2 and L = 8.
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Fig. 12. BLER versus log2 (L) of the NC-EAMA under overloaded trans-
missions, when (J,N,M) = (3, 2, 2), Eb/N0 = 0 dB and 10 dB.

Thus, it is essential to enable NC-EAMA to support more

users under limited sub-carrier resources, while still ensuring

a good performance. One solution is to increase the number

of antennas L as shown in Fig. 12, where the reliability of

NC-EAMA is noticeably enhanced as L gets larger, even at a

small SNR of 0 dB. Also, an noncoherent ML decoder can be

derived for NC-EAMA to improve its performance compared

to the DNN decoder, which is considered as our future work.

C. Complexity Comparison

We investigate the detection complexity of the proposed

schemes in comparison with baseline schemes using the non-

coherent ML detector. In particular, we measure the runtime of

successfully decoding a transmitted message of m = log2(M)
bits at the receiver by considering that all schemes are imple-

mented on MATLAB of the same machine for fairness. Note

that the trained models of our proposed schemes on Tensorflow

are converted into MATLAB to compute the runtimes. Since

the effect of L on the decoding complexity of all schemes is

TABLE II
RUNTIMES OF NC-EA AND IM/PAM BASELINES IN MICROSECONDS

(N,M) NC-EA IM [11] PAM [15]

(8, 8) 8.15 4.72 N/A

(6, 8) 7.89 16.23 N/A

(8, 16) 9.62 26.85 N/A

(1, 4) 6.57/3.54 N/A 3.56
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TABLE III
RUNTIMES OF NC-EAMA AND NC-OMA BASELINES IN MICROSECONDS

(J,N,M) NC-EAMA NC-OMA/IM NC-OAM/PAM

(2, 4, 2), UL 6.03 4.17 N/A

(2, 4, 2), DL 7.91 4.17 N/A

(2, 2, 4), UL 6.41 N/A 3.45

(4, 4, 2), DL 7.74 N/A 3.28

the same at the step of computing the combined energy, we

simply adopt L = 4 to measure the runtimes for simplicity.

Table II compares the runtimes in microseconds (µs) be-

tween NC-EA and NC-OFDM-IM or PAM-MED baselines

(abbreviated as IM/PAM on the table). Here, the system

parameters (N,M) on Table II are associated with some of

figures in Subsection IV.A. It is shown via Table II that NC-EA

requires runtimes comparable to the baselines, which are only

a few microseconds. Particularly, compared to NC-OFDM-IM,

the runtime of NC-EA is larger when N = M = 8 and is

smaller when N < M . This is because when N < M , NC-

OFDM-IM needs to activate more sub-carriers, i.e., K > 1,

which significantly increases its detection complexity com-

pared to the case of N = M , i.e., K = 1. By contrast,

the complexity of NC-EA does not increase much when N
or M increases due to its simple decoder structure with a

few hidden nodes as shown in Table I. This clearly confirms

the benefits of our proposed scheme over NC-OFDM-IM in

terms of the receiver complexity as presented in Section II.

Moreover, compared to PAM-MED when (N,M) = (1, 4),
NC-EA with the DNN decoder requires a longer runtime,

i.e., 6.57 µs. However, using the ML decoder, our scheme

demands a runtime similar to the baseline with around 3.5
µs, while achieving much better BLER as in Fig. 7. Note

that as N, M get larger the DNN may have lower complexity

than ML decoder. For example, when (N,M) = (16, 64), the

runtime of the DNN decoder with 128 hidden nodes is 18 µs,

which is much lower than that of the ML with 294 µs.

The runtimes of NC-EAMA and NC-OMA baselines based

on either IM or PAM are depicted in Table III, where the

system parameters (J,N,M) are associated with the figures in

Subsection IV.B. Similar to NC-EA, both the proposed uplink

and downlink NC-EAMA schemes demand slow runtimes in

decoding data, which are only several microseconds. Com-

pared to the NC-OMA baselines, NC-EAMA requires larger

runtimes. This is understandable since the baselines only need

to employ the single-carrier detection independently, while our

scheme has to detect the signals across all sub-carriers.

Finally, to better understand the impact of system param-

eters, please refer to Table IV which illustrates the Big-

O complexity of the noncoherent ML and proposed DNN

decoders, where both downlink and uplink NC-EAMA require

two hidden layers, while the ML decoder (5) is used for all

baselines above. Here, the term O (4NL) which appears in all

detection schemes refers to the complexity of computing the

received energy from L receive antennas as in (3). It is shown

via Table IV that the decoding complexities of the proposed

schemes increase with the numbers of nodes in the hidden

layers of the DNN decoders. However, when these numbers

TABLE IV
COMPLEXITY OF NONCOHERENT ML AND PROPOSED DNN DECODERS

Detection schemes Complexity

Noncoherent ML O (10NM) +O (4NL)
NC-EA O (NQ+QM) +O (4NL)

Uplink NC-EAMA O (NQ1 +Q1Q2 + JQ2M) +O (4NL)
Downlink NC-EAMA O (NQ1 +Q1Q2 +Q2M) +O (4NL)

are not too large, our schemes yield comparable or even lower

complexity compared with the ML decoder of the baselines

as shown in the previous runtime comparison.

V. CONCLUSION

We have explored the potential of DL in noncoherent

energy-based systems under fading channels, which do not

involve any CSI estimation, for both single-user and multi-

user transmissions under the multicarrier SIMO framework. In

particular, it was shown that the proposed single-user NC-EA

can provide a range of advantages over existing hand-crafted

schemes, such as higher reliability, higher SE and higher

flexibility with comparable or lower detection complexity.

Interestingly, the NC-EA still performs well even with single-

carrier transmissions. For multiuser scenarios, the proposed

NC-EAMA based on the multicarrier MU-SIMO framework is

also highly flexible as it can be designed to accommodate any

number of users, sub-carriers, antennas and data streams, as

well as any transmission directions, while current hand-crafted

schemes are unable to enjoy such highly flexible designs. More

importantly, developing the opportunities of the NC-NOMA

scheme, NC-EAMA can achieve much higher reliability than

NC-OMA counterparts, while still enjoying a low decoding

complexity. We showed that the proposed NC-EAMA still

works well even with overloaded transmissions, especially

when the number of antennas is large enough. Hence, our

proposed schemes are appropriate for MTCs which demand

reliability, low latency and low complexity.
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