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ABSTRACT  

Background: In rare disease (RD) studies, generic preference-based patient-reported outcome measures 

(PROMs) that yield health state utility values (HSUVs) are seldom collected, as they are considered not 

sensitive enough for these small and heterogeneous patient populations. In such cases, a HSUV can also be 

obtained by ‘mapping’ a more sensitive ‘source’ (e.g., disease-specific PROM) to a ‘target' preference-based 

measure (e.g., EuroQol-5 Dimension (EQ-5D)) through a statistical relationship.  

Objective: This study aimed to systematically review all published studies using ‘mapping’ to derive 

HSUVs from non-preference-based measures in RDs (i.e. affecting fewer than 1 in 2,000 people), and 

identify any critical issue related to the main features of RDs.  

Methods: The following databases were searched during the first half of 2019 without time, study design or 

language restrictions: MEDLINE (via PubMed), the School of Health and Related Research Health Utility 

Database (ScHARRHUD) and the Health Economics Research Centre (HERC) database of mapping studies 

(version 7.0). The keywords combined terms related to ‘mapping’ with ORPHANET’s list of RD indications 
(e.g., ‘acromegaly’), in additional to ‘rare’ and ‘orphan’. ‘Very rare’ diseases (i.e. with less than 1000 cases 

or families documented in the medical literature) were excluded from the searches. A predefined, pilot-tested 

extraction template (in Excel®) was used to collect structured information from the studies.  

Results: Two groups of studies were identified in the review. The first group (n=19) developed novel 

mapping algorithms in thirteen different RDs. As a target measure, the majority used EQ-5D, and the others 

the Short-Form Six-Dimension (SF-6D) and 15D; most studies adopted Ordinary Least Squares (OLS) 

regression. The second group of studies (n=9) applied previously existing algorithms in non-RDs to 

comparable RDs, mainly in the field of cancer. The critical issues relating to ‘mapping’ in RDs included the 

availability of very few studies, the relatively high number of cancer studies, and the absence of research in 

paediatric RDs. Moreover, the reviewed studies recruited small samples, hindering the cross-validation of 

algorithms and application of more complex regression models, showed a limited overlap between RD-

specific and generic PROMs, and highlighted the presence of cultural and linguistic factors influencing 

results in multi-country studies. Additionally, few studies explicitly referred to published recommendations 

for mapping. Lastly, the application of existing algorithms in non-RDs was likely to produce inaccuracies at 

the bottom of the EQ-5D scale, due to the greater severity of RDs.  

Conclusions: More research is encouraged to develop algorithms for a broader spectrum of RDs (including 

those affecting young children), improve mapping study quality, test the generalizability of algorithms 

developed in non-RDs (e.g., HIV) to rare variants or evolutions of the same condition (e.g., AIDS wasting 

syndrome), and verify the robustness of results when mapped HSUVs are used in cost-utility models. 
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 In rare diseases (RDs), few studies (n=19) mapped non-preference-based measures onto generic 

preference-based ones (e.g. EQ-5D), while others (n=9) tested previous mapping algorithms 

developed in non-RDs on original patient-level data in RDs. More research is needed to provide a 

broader spectrum of RDs with mapping algorithms. 

 Issues around mapping related to the small and heterogeneous nature of populations impacting on 

the ability to predict lower/higher HSUVs, to apply complex techniques or perform cross-validation, 

or on the risk to exclude certain items included in RD-specific PROMs due to lack of statistical 

power. Limitations in capturing varying levels of disease severity were also identified when applying 

existing mapping algorithms in non-RDs (e.g. lung cancer) to their more severe rare variants (e.g. 

pleural mesothelioma).  

 Mapping-related limitations in RDs should be addressed, for example, by preliminarily assessing the 

degree of ‘overlap’ between RD-specific and generic patient-reported outcome measures, and 

performing extensive sensitivity analyses on mapped utility values included in economic models.  
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1. Background 

In recent years, there has been an increased focus on placing patients at the centre of clinical research [1]. 

While traditional outcomes such as survival or biomarkers can demonstrate the physiological effects of 

treatment, the patient’s voice may provide a more holistic assessment of its benefits [1]. A patient-reported 

outcome (PRO) is any report of a patient’s experience with disease and treatment (e.g. symptoms, health 

status, health-related quality of life, access to care) that comes directly from the patient, without 

interpretation of the response by a clinician or anyone else [1-3]. Patient-reported outcome measures 

(PROMs) are the tools developed to measure PROs [4], usually in the form of self-completed questionnaires 

[1].  

Despite their growing use in clinical research, the role of PROs is still unclear in health technology 

assessments (HTAs) used to inform reimbursement decisions and price negotiations. [5].  When cost per 

quality-adjusted life year (QALY) approaches are used, they would require a measure of quality of life in the 

form of health state utility values (HSUVs) derived from public preferences [6]. These can be obtained or 

derived from the two types of PROMs: generic or disease-specific [1]. The former applies a generic 

questionnaire applicable to all conditions, some of which have preference weights elicited from the general 

population and associated with the HSUVs described by different combinations of the tool’s responses. The 

most frequently used tool is the EuroQol 5-Dimension (EQ-5D); other well-known preference-based PROMs 

are the Short-Form 6-Dimension (SF-6D), the 15D, the Health Utility Index (HUI), the Quality of Wellbeing 

(QWB) scale, and the Assessment of Quality of Life (AQoL) [7]. In contrast, disease-specific PROMs are 

designed to identify specific symptoms or change in functioning and quality of life from living with a 

specific disease. They have greater validity and sensitivity compared to generic PROMs, but are not 

comparable across conditions and do not have associated HSUVs [1]. In such cases, it is possible to develop 

or use an existing algorithm, through “mapping”, to predict HSUVs from other measures of health outcomes, 

such as disease-specific PROMs [25].   

In Europe, a disease is defined ‘rare’ when affecting less than 1 in 2,000 people; in the US, the definition 

applies to conditions affecting less than 200,000 people in total [8; 9]. The overall number of rare diseases 

(RDs) ranges between 6000 and 8000 [10]; of these, 75% affect children, who die before their fifth birthday 

in 30% of cases [9]. Patients with RDs usually experience a significant reduction in quality of life, including 

physical dysfunction and cognitive impairment [9]. Moreover, the rarity of each disease leads to a number of 

specific issues, such as a paucity of information, unavailability of treatments, delays in diagnosis, and social 

isolation [11]. In recent years, the European Organization for Rare Disorders (EURORDIS) listed patient’s 

quality of life as a main priority in clinical research on RDs [8]. Thus, PROMs are increasingly adopted in 

clinical studies to monitor the natural history and progression of a rare condition, and the impact of diseases 

and treatments on patient’s daily life. We are currently seeing a number of PROMs developed for specific 

RDs such as the phenylketonuria-specific Quality-of-Life questionnaire (PKU-QoL) [12], the Quality of Life 
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Assessment of Growth Hormone Deficiency in Adults (QoL-AGHDA) [13], and the Cushing's Quality-of-

Life (CushingQOL) questionnaire [14]. 

There are known challenges in using PROMs in RDs [8-10; 15-17]. First, the very nature of RDs affecting 

small patient populations with heterogeneous clinical manifestation, progression and treatment response 

makes it difficult to recruit homogeneous samples, thus resulting in a wide range of responses. Second, in 

multi-centre international studies, which are required to cope with RD patients’ geographical dispersion, 

researchers would need to translate PROMs in different languages and ensure their cross-cultural validity 

before pooling the data. Third, very few PROMs have been validated in RDs, especially in children and 

adolescents. Fourth, RDs are often associated with progressive disability and cognitive impairment, or affect 

vulnerable populations such as young children, which makes it difficult to collect PROMs unless it is done 

via proxy reporting by parents or caregivers.  

The main issue with using generic PROMs in RDs concerns their lack of sensitivity in capturing specific 

health issues of heterogeneous patients for age, symptomatology, treatment response, and life contexts [6, 8, 

10]. For example, in lysosomal storage disorders, even a measure that is specific to such disorders (in 

general) might not reflect the characteristics of each specific disease [6]. Moreover, generic PROMS might 

contain irrelevant items for some RDs (for example, in skin conditions including the rare cutaneous lupus 

erythematosus [18]), thus leading systematically to missing responses. The administration of multiple 

questionnaires within the same study can also be burdensome to patients, particularly to the more vulnerable 

populations [18-19].   

Some preference-based, disease-specific PROMs have been developed in RDs, such as the Amyotrophic 

Lateral Sclerosis Utility Index (ALSUI) derived from five items of the Amyotrophic Lateral Sclerosis 

Functioning Rating Scale-Revised (ALSFRS-R) and based on the US population’s preference scores [20-21]. 

The QLU-C10D is a preference-based PROM recently developed by the European Organisation for Research 

and Treatment of Cancer (EORTC) that might apply to rare cancers []. However, such measures do not allow 

comparability of the HSUVs across conditions, and therefore are not acceptable for most HTA agencies [22-

23]. 

As mentioned above, HSUVs are required by several HTA agencies to populate cost-utility models assessing 

novel treatments. The use of HSUVs is relevant to understand the impact of drugs on quality of life and to 

compare this across conditions [24]. Since PROM studies in RDs are relatively scarce, and even more so 

those using preference-based PROMs, the potential for retrieving published HSUVs from the literature is 

extremely limited. Thus, where an HTA agency has recommended the use of a specific preference-based 

PROM, it is possible to obtain HSUVs for that PROM using the scores derived from any non-preference-

based measure for which a mapping algorithm has been made available. For example, the National Institute 

for Health and Care Excellence (NICE) allows the use of mapping in the absence of EQ-5D data, which is 
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the recommended preference-based tool [25]. In other words, mapping ‘bridges the gap’ between the existing 

clinical evidence and that required by HTA [27].  

In HTA when cost-utility models are used, patient experiences with disease and treatment can be captured 

through HSUVs.  In rare diseases, these aspects are even more crucial to account for when measuring the 

impact of a treatment given the burdensome nature of these conditions.  It is known that generic PROMs may 

not be sensitive enough for most rare conditions, whereby disease-specific PROMs may be more suitable. As 

such, there is a need to better understand how mapping from disease-specific PROMs is used in rare 

diseases. The objectives of this study are: (1) to systematically review all published studies using a mapping 

approach to derive HSUVs from non-preference-based measures in RDs; (2) to identify any critical issues 

around the use of mapping in RDs, and give suggestions for addressing them in future studies. 

2. Methods 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines [28]. Three databases were searched without time, study design or language restrictions including 

MEDLINE (via PubMed), the School of Health and Related Research Health Utility Database 

(ScHARRHUD), and the Health Economics Research Centre (HERC) database of mapping studies [29]. The 

last date for conducting database searches was June 30th, 2019.  

In the MEDLINE searches, the keywords combined terms related to ‘mapping’ with ORPHANET’s list of 

RD indications* (e.g. ‘acromegaly’), in addition to the terms ‘rare’ and ‘orphan’ (e.g. 

(((mapp*[Title/Abstract]) OR cross-walk*[Title/Abstract]) OR crosswalk*[Title/Abstract]) AND 

acromegaly [Title/Abstract]). Since ORPHANET reports 4183 different RDs, we excluded the ‘very rare’ 

diseases, e.g. those with less than 1000 cases or families documented in the medical literature worldwide 

[30]; thus leaving 1059 RD unique denominations for the online searches.  All RD indications with an 

orphan designation from the European Medicines Agency (EMA) were also retrieved (169 in total) and used 

to search MEDLINE. Additionally, each medicine from the EMA list was searched on the NICE website, 

and corresponding HTA reports were downloaded (50 in total). The ‘utility values’ section of each report 

was reviewed to identify any mapping studies, which were used to cross-check whether these had been 

captured in the online searches. These additional searches aimed to minimise the risk of missing any 

mapping studies in RDs, as we assumed mapping would be done in relation to an existing drug and its HTA 

process. The two lists of disease terms (from ORPHANET and EMA) used for database searching are 

reported in the appendix (Supplementary Files 1-2).  In ScHARRHUD, an ad hoc database on HSUVs, we 

used only mapping-related terms (i.e., mapp*, map*, cross-walk*, crosswalk*, deriv*, predict*, estimat*) in 

the abstract, and screened records to find studies on RDs. The HERC database (version 7.0, last update: 24-

04-19) was screened by filtering the ‘disease or patient group’ column to identify any RD study not captured 

by the online searches. Additionally, we inspected the full-texts of studies whose ‘disease category’ was 

classified as ‘various’ to identify any RDs that could have been included in a mix of conditions. Lastly, we 
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manually searched the reference list of all eligible studies to avoid missing any relevant publication that may 

not have included the selected mapping-related terms used in our search. 

Two reviewers (MM and AW) screened title and abstracts of the identified citations independently; any 

disagreement was resolved through further discussion or consultation with a senior author (MD). The same 

process was repeated with the full-text articles retrieved. The inclusion criteria were as follows: (1) full-text 

articles, (2) using a mapping approach to derive HSUVs, (3) from any non-preference based measure (e.g. 

PROM or other), (4) in any RDs reported by ORPHANET or within the EMA list [30]. Studies that recruited 

both patients with RD and non-RD were included. Editorials, commentaries, or conference abstracts were 

excluded. 

We extracted the data from the included studies using Microsoft Excel®. After a pilot phase with a few 

studies, we defined the structure of information to extract as follows: study year, disease, country, study 

design, sample’s characteristics, sample size, source and target PROMs, value set for EQ-5D (if applicable), 

regression techniques, goodness-of-fit measures, and explicit adherence to formal 

guidelines/recommendations.  We also reported the prevalence (per 100,000) for each of the RDs included, 

as per ORPHANET’s estimation. 

3. Results 

3.1 Literature search 

The PRISMA flow diagram displays the process that lead to the selection of 30 mapping studies (Figure 1). 

The original database searches identified 46329 records; of these, 14960 were removed as duplicates. Four 

studies were manually identified from the reference lists of the eligible studies, and two from the HERC 

database, which came to a total of 31375 citations that were screened by title/abstract.  74 were selected for 

full-text inspection, of which 46 were eliminated because they were: (1) studies about HSUVs in RDs, but 

did not perform ‘mapping’; (2) mapping studies in non-RDs; (3) conference abstracts. No additional studies 

were identified from the NICE reports.  A total of 30 studies were eligible for inclusion. 

3.2 Synthesis of included studies 

The 28 studies included [15, 18, 20, 24, 31-45, 47-52] were split into two groups: 19 developing novel 

mapping algorithms in RDs (Table 1), and 9 applying existing algorithms to RD patient-level data (Table 2). 

3.2.1 Novel mapping studies in RDs 

The first group of studies (n=19) developed original mapping algorithms in 13 different RDs, one of which 

targeted two different blood cancers (i.e., multiple myeloma and non-Hodgkin’s lymphoma) [43]. Four 

studies [18, 43, XX, XX] also recruited non-RD patient subgroups: one analysed a sample of patients with 

dermatological conditions including the rare variant lupus erythematosus [18], two others [XX, XX] used a 
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clinical sample including spinal cord injury and other non-RDs (i.e. heart disease, cancer, rheumatoid 

arthritis, osteoarthritis, psychiatric disorders, chronic obstructive pulmonary disease, and others), and the last 

one [43] addressed arthritis, multiple sclerosis and multiple myeloma/non-Hodgkin’s lymphoma, but using 

different PROMs and thus developing separate algorithms for each condition. The range of study countries 

was quite broad and several studies had multiple locations. 

As the source measure, 9 studies adopted RD-specific PROMs such as the Cystic Fibrosis Questionnaire-

Revised (CFQ-R), which is a tool for monitoring psychosocial health in cystic fibrosis [15]. Three studies 

[18, 35, 43] used non-RD-specific PROMs, such as the Dermatology Life Quality Index (DLQI), which is 

applicable to different skin diseases [XX]. Four studies [20, 36, 40, 42] adopted a mix of RD-specific and 

non-RD-specific PROMs, including two [36, 40] on multiple myeloma that used both the general and the 

cancer-specific modules of the EORTC questionnaires assessing quality of life in cancer patients. Two 

studies [XX, XX] used a generic set of measures (Patient-Reported Outcomes Measurement Information 

System - PROMIS) evaluating health in the general population and in chronic conditions. Lastly, one study 

[44] only used a clinical measure (i.e. the Glasgow Outcome Scale, GOS). As target measure, EQ-5D was 

the most prevalent (n=15, of which only one used the 5-level version), while three studies [35, 39, 41] used 

the SF-6D, and one mapped to both EQ-5D and 15D. Among those using EQ-5D, 10 studies chose the 

English tariff, alone or in combination with the Dutch.  

In terms of study design, eleven performed ad hoc cross-sectional surveys to collect PRO data for mapping 

[15, 33, 37, 38], or were secondary analyses of cross-sectional data collected for other purposes [18, 24, 31, 

39, 41, XX, XX]. Five [20, 35, 40, 42, 44] used cross-sectional (usually baseline) data from cohort studies, 

two [36, 43] used longitudinal data collected within randomized controlled trials (RCTs), and one [32] 

identified three studies (two observational and one cross-sectional) from the literature, and accessed their 

data. The sample sizes ranged between 111 and 3542 (median value: 401); however, the study reporting the 

largest sample [18] recruited a mix of patients affected by various dermatological conditions, including rare 

lupus erythematosus, without specifying the numbers for each. In addition to condition-specific features, 13 

studies reported adult age (e.g. above 12, 16 or 18 according to the study) among the inclusion criteria. 

The majority of studies adopted the Ordinary Least Squares (OLS) regression, which is the most common 

approach in the mapping literature [25]. However, the most recent studies also explored more complex 

techniques by, such as the Bayesian model [36], and the Limited Dependent Variable Mixture Model 

(LDVMM) [44], which are more flexible in modelling EQ-5D data. Most studies provided summary 

measures of fit such as (adjusted) R-squared, and measures of predictive performance such as mean error 

(ME), mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE). Only 

three studies [15, 20, 44] reported Akaike/Bayesian Information Criteria (AIC/BIC). In general, high levels 

of error were found at the extremes of the EQ-5D utility scale, because of the tendency of mapping to over-

/under-predict HSUVs in patients with very poor/good health [15, 20, 31, 32, 39, 41, 43, 44].  
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Only five studies explicitly embraced published recommendations in the field, including the MAPS 

Statement [46, XX] (n=2), ISPOR good practices [27] (n=1) and the study by Longworth [25] (n=2). 

However, five [33, 37, 38, 43, XX] were published before any guidelines for mapping were available.  

3.2.2 Studies applying previous mapping to RDs data 

The second group of studies (n=9) applied previous algorithms, usually retrieved from multiple studies, to 

original RD data. The studies addressed nine different RDs, all oncological except for Castleman’s disease. 

One study [48] focused on two non-rare cancers (i.e. breast cancer and non-small cell lung cancer) as well as 

multiple myeloma/non-Hodgkin lymphoma, but used separate datasets for each condition. All of the included 

studies were RCTs, except for one prospective cohort study [47] and one review [XX]. Four studies [50-52, 

XX] were intercontinental, and all recruited small samples (<1000), except for one [XX] that used a dataset 

of mixed rare and non-rare cancers.  

The studies applied previously published algorithms with four different purposes: (1) testing their external 

validity in a different database from the one used for mapping [47-48], (2) identifying the best available 

algorithms for a specific condition (e.g. ovarian cancer) [49-50], (3) deriving HSUVs for economic 

evaluation alongside RCTs [51-52] or for economic models [XX, XX], and (4) testing the comparability of 

mapped HSUVs with those derived from disease-specific preference-based PROMs (e.g. EORTC-8D) and 

generic PROMs (e.g. EQ-5D) [XX]. 

The six studies referred to twelve different original mapping studies (Table 2), all developed in oncology 

with the exception of one that recruited all patients that were referred to a large university hospital [19]. 

Since all twelve were conducted in non-RDs, no RD-specific PROMs were used as the source measure. 

Eight of the original mapping studies [53-60] were mapped from the EORTC QLQ-C30, which is a 

questionnaire widely used in oncology, two [61-62] used another popular cancer-specific tool (FACT-G), 

and one [63] used both; one study [19] used the SF-36, which is a generic non-preference-based tool. As a 

target measure, ten studies mapped onto the EQ-5D-3L, one to EQ-5D-3L, 6F-6D and 15D [57], and one 

[61] to time trade-off (TTO) utilities. 

Difficulties in applying published algorithms to RD data were reported. First, most algorithms, and 

especially those using OLS, tend to under-predict HSUVs in poor health states (e.g. EQ-5D utility less than 

0.5), or to predict values greater than 1 (e.g. outside the possible EQ-5D range) [47, 48, 51, XX]. The study 

testing the highest number of algorithms [47] showed that the response mapping approach performed best 

[63]. The application of more sophisticated techniques (e.g. mixture models) is encouraged to improve 

accuracy in mapping [48]. Second, the algorithms published were usually developed in populations that are 

very different from RD patients [52, XX]. Thus, some items that are relevant in RDs might not be significant 

in the algorithms applied. For example, dyspnoea is an important symptom in pleural mesothelioma; 

however, six (out of nine) of the algorithms tested by Arnold et al [47] did not include a dyspnoea score, 
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which would have led to an overestimation of HSUVs in patients with mesothelioma. Third, different 

‘source’ PROM versions and/or EQ-5D value sets in the original mapping studies might affect mapped 

HSUVs [48, XX], although differences between questionnaire versions are generally small and EQ-5D tariffs 

have shown to be quite similar across European countries [48]. 

3.3 Critical issues around ‘mapping’ in RDs 

The 25 reviewed studies highlighted a number of challenges around the existing mapping literature in RDs 

(Figure 2).  

The first relates to the amount and context of existing literature on mapping applied to RDs. The searches 

identified only few studies (25 in 18 different RDs) compared to over 1000 RDs screened. Many of these 

were cancer studies (8/25), most of which came from the second group of studies applying published 

algorithms to original RD data.  No mapping studies were performed in childhood diseases, and 68% of the 

studies retrieved comprised age (e.g. minimum 12 years old) as inclusion criteria, thus excluding paediatric 

patients.  

The second issue relates to sample size, which were commonly small (<1000 patients in 13/19 novel 

mapping studies). This was because of the challenges to identify RDs patients [20, 31, 32, 41]. The limited 

size of recruited samples may affect the robustness of mapping coefficients. Moreover, the widely adopted 

OLS regression [] may not work for EQ-5D data in general [], and particularly in RDs, which are likely to 

present multimodality and peaks due to the high patients’ heterogeneity in clinical manifestations, disease 

severity and quality of life impact even within the same condition [10, 15]. However, a small study’s size 

hampers the applicability of techniques such as LDVMM dealing with multimodality, gaps, asymmetries and 

peaks, as recommended by the most recent guidelines for modelling EQ-5D data [27]. Lastly, small sample 

size makes it difficult to perform cross-validation tests in patient subgroups with peculiar characteristics such 

as disease subtypes or undertaking specific treatments [41]. The availability of external datasets to validate 

the developed algorithms may be lacking as well, due to the general paucity of experimental and 

observational studies in RDs. 

Third, the accuracy of the mapping algorithms was reduced by the limited number of recruited patients in 

very poor health, which resulted in large errors at the lower bounds of the HSUVs distribution. For example, 

in the study by Acaster [15], only 3% of the recruited patients reported EQ-5D utilities below zero; the study 

by Kalaitzakis [35] on primary sclerosing cholangitis had a very small sub-sample of patients with end-stage 

liver disease, and encouraged future external algorithm validation in hospital-based samples. Similarly, 

another study [44] included six cases only with vegetative state in a sample of patients with traumatic brain 

injury. This results in challenges to accurately predict at the lowest scale’s extremes, whereby existing 

algorithms tend to be more relevant for the ‘average’ RD patients, who are likely to be the target of clinical 

trials assessing new drugs, but less of use to predict individual patient-level HSUVs [33].  
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Fourth, generic preference-based PROMs such as EQ-5D might not capture relevant health issues in RDs. 

For example, one study [15] revealed that the CFQ-R respiratory domain, which is essential in monitoring 

cystic fibrosis’s patients, was not a significant predictor of HSUVs. Similar findings were found in Cushing’s 

syndrome, where some items of the CushingQol were excluded from the mapping models since they did not 

influence HSUVs [31]. This similarity was also seen in systemic lupus erythematosus (LupusQol dimensions 

omitted: planning, intimate relationships, burden to others, body image) [39], and motor neuron disease 

(ALSFRS-R domains omitted: communication, salivation, swallowing, hand use, respiratory function) [20]. 

Overall, it is rather frequent in the mapping literature that certain symptoms may not affect HSUV prediction 

[15]. This might be even more frequent in RDs where the symptomatology may be extremely specific.  

Fifth, while the majority of the algorithms were mapped to EQ-5D, which is the mostly recommended 

preference-based PROM by HTA agencies worldwide, three studies [35, 39, 41] used the SF-6D. One study 

[42] used both EQ-5D and 15D and gave results slightly in favour of the latter, which appears to be more 

sensitive in capturing the perceived health of patients with chronic pain. However, agencies such as NICE in 

UK might not accept HSUVs derived from instruments other than EQ-5D. 

Sixth, in RDs, trials are often multi-country and even multi-continental because of small patient numbers and 

patients’ geographical dispersion. This may result in substantial inter-country heterogeneity in terms of 

socio-cultural attitudes, linguistic factors and wellbeing’s perceptions that influence responses to PROMs 

[32, 33]. In particular, psychological domains are more likely to be affected by cultural differences and 

mentality compared to physical functioning [37]. For example, people living in some countries may be less 

willing to report anxiety/depression on the EQ-5D, thus the inclusion/exclusion of a country-specific sample 

would alter the coefficient of items related to the same concept in the source PROM [31]. This may represent 

a particular issue in RDs where the incidence of mental disorders is significantly higher than in other 

conditions due to misdiagnosis, social isolation, and financial distress [64]. Moreover, the presence of 

multiple countries within the same survey makes it difficult to select the best tariff for valuing EQ-5D, 

considering also that there may be no country-specific tariff available for several countries [31], especially in 

studies using the 5-level version.  

Lastly, the generalizability of mapping algorithms developed in non-RDs to RDs is not straightforward. As 

anticipated before, some included studies [47, 48, XX] highlighted the tendency of the available algorithms, 

and especially those using OLS, to over-predict HSUVs in patients with poor health. Since rare variants of a 

condition are usually more severe than the condition itself (e.g. pleural mesothelioma vs. lung cancer), this 

type of error is particularly critical in RDs. Similar considerations apply to mapping studies developed in a 

range of conditions including RDs. This might help in increasing sample sizes for mapping, but raises 

concerns about multi-disease algorithms’ ability to provide accurate estimates of HSUVs [18].  

4. Discussion 



12 

 

This study reviewed all published studies mapping non-preference-based measures onto generic preference-

based ones in RDs. Two systematic reviews by Dakin et al. [29, 65] provided a synthesis of all mapping 

studies from any clinical measure or PROMs in any condition, based on which the HERC database was 

established and is routinely updated. However, EQ-5D was the only ‘target’ measure considered, while we 

aimed to identify studies mapping to any preference-based measure in RDs. Our searches captured those 

studies identified in the HERC database, and three additional studies [35, 39, 41] using SF-6D. A previous 

review published in 2010 [66] identified 28 studies mapping non-preference-based PROMs onto any 

preference-based ones in any disease area; however, 23/25 of the studies included in our review were not 

captured as published after their search end date. Three more records [33, 37, 38] that did not use ‘mapping’ 

or ‘cross-walking’ (e.g. keywords adopted by Dakin et al. [29] and Brazier et al. [66]) were identified by 

reviewing the reference lists from included studies. Lastly, by focusing on single disease areas (e.g. 

individual RDs as search terms), we could expand the eligibility criteria to include also studies not 

developing original mapping but applying existing algorithms to original datasets, which gave insights onto 

the generalizability of mapping developed in similar non-RDs. 

We also identified some published systematic reviews on quality of life and health utilities in individual 

RDs. The study by Forsythe [17] identified ten relevant studies reporting on quality of life and HSUVs in 

acute myeloid leukaemia, of which only one [XX] used a mapping approach (and was included in this 

review), and two [XX; XX] collected EORTC QLQ-C30 data that were converted into HSUVs by the 

review’s authors using a published algorithm. Overall, this review recommended estimating HSUVs with 

larger sample sizes, in addition to routine monitoring (including PROMs administration) of patients with 

RDs and establishment of a set of recommendations to standardize HSUV elicitation across different RDs. 

Another systematic review on cystic fibrosis [67] identified only one study mapping from the CFQ-R onto 

EQ-5D-3L [15], which was consistent with our findings, and encouraged the development of future mapping 

studies to inform health economic modelling in this rare condition. Lastly, two systematic reviews [10, 68] 

were identified in Cushing’s syndrome and included the same two mapping studies [31, 41] captured by our 

review. One review [68] stated that mapping HSUVs from the CushingQol questionnaire is possible, at least 

at group level, although further testing in independent patient samples is required; the other [10] highlighted 

the utility of mapping in deriving both EQ-5D and SF-6D utilities from the CushingQol. 

This systematic review identified 30 studies using mapping in RDs (e.g. as per EMA’s definition of RDs [8, 

9]). Of these, 21 developed original algorithms with RD data, and 9 applied previous algorithms developed 

in different conditions to RD data, with the purpose of testing their external validity or obtaining HSUVs for 

cost-utility analyses of new treatments. In the second group, 8 out of 9 studies were performed in oncology 

likely due to the substantial amount of published algorithms in common neoplasms that may be suitable for 

rare cancers as well. Although it is not surprising to find very few studies in RDs, the proportion of RDs with 

a mapping algorithm is very low compared to the list of conditions screened in the database searches (e.g. 

around 1.4%). Also, there are no mapping studies in paediatric RDs (e.g. neuroblastoma), likely due to the 
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existence of more legal and ethical requirements to enrol children in clinical studies, and the lack of RD-

specific PROMs intended for child self- (or parental proxy-) reporting.  

Moreover, only five studies [15, 20, 39, 44, XX] explicitly embraced published recommendations in the 

mapping field, and only one [44] referred to the most recent guidelines (i.e., ISPOR good practices [27]). 

These, for example, recommend reporting AIC/BIC for model selection instead of summary measures of fit 

as the R-squared that is considered to provide limited information on the validity of mapping. In addition, 

they encourage considering alternatives to OLS for modelling HSUVs. Indeed, while most mappings studies 

still use OLS regression, the mapping literature has recently proposed alternative techniques such as beta-

binomial regression [Khan 2014] and mixture models (e.g., ALDVMM [Alava 2012]). OLS, indeed, can 

accurately predict mean HSUVs, because its underestimation of high values is compensated by its 

overestimation of low values [69], but is not appropriate to estimate HSUVs at individual patient-level, 

which is particularly relevant in RDs due to the heterogeneity of patient populations. Moreover, ISPOR 

guidelines state that splitting a database for algorithms’ internal validation may not be the right choice in 

case sample splitting further reduces sample size for estimation, and small sample is an issue that often 

affects mapping studies in RDs. However, previous recommendations [25] have suggested that the lower 

precision in coefficients of mapping algorithms from the reduction in sample size might be overcome by re-

estimating the models using the full data set, once the preferred model has been selected by using the split-

sample approach. 

We also identified a number of critical issues around mapping in RDs that arose from the studies reviewed. 

Despite most of these challenges also apply to non-RDs, they might be particularly critical in RDs. For 

example, RCTs in RDs are more likely to involve multiple countries to deal with patients’ dispersion and to 

increase study sample size, leading to inter-country variability in terms of language and culture that may 

affect HSUV estimates. Thus, it is recommended to use PROMs with validated translations and possibly 

showing consistent results across countries, and/or to include study’s site as predictor in mapping models 

[32]. Moreover, although EQ-5D tariffs look quite similar across European countries [48], significant 

differences may arise in inter-continental studies. Thus, one could select  the EQ-5D value set of the country 

with the biggest sample size [35], or use a weighted value set with weights derived from the relative country 

sample sizes, but the impact of using alternative sets on model coefficients should still be tested [18].  

Moreover, clinical studies in RDs are obviously small because of the disease’s rarity and consequent 

difficulties in recruiting representative patients. Small samples may affect the robustness of mapping 

coefficients and increase the risk of prediction errors, especially at the ‘extremes’ of EQ-5D distribution. 

However, the distance between actual and predicted HSUVs should be compared with the minimally 

important difference (MID), which is not yet established for all conditions [35]. Some studies reported MIDs 

between 0.033 and 0.082 in non-cancer conditions [50], which might be used as a reference for most RDs. 

One study [32] pooled data from multiple studies to increase the study’s power; however, this might 
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introduce extra heterogeneity within the database, and attention should be given to inclusion criteria’s 

comparability. Another study [43] pooled data across different time points of a RCT, although loss to follow-

up raises the possibility of selection bias [20, 44]. 

A further issue relates to the selection of ‘target’ PROMs for mapping. Several items included in RD-specific 

PROMs turn out to be unrelated to generic PROMs. In a recent survey, 60% of a sample of patients with 

RDs revealed that important health issues such as ‘fatigue’, ‘social life’ and ‘comorbidities’ were not 

captured by EQ-5D-5L [70]. Thus, the degree of ‘overlap’ between ‘source’ and ‘target’ measures should be 

assessed in advance using proper correlation tests (e.g., Pearson) in order to foresee the mapping’s predictive 

ability [18, 43]. Moreover, the lack of interchangeability among different preference-based measures should 

be considered when using algorithms mapping to SF-6D or 15D to derive HSUVs in HTA processes 

requiring EQ-5D [39, 48].  

Lastly, the generalizability of mapping algorithms developed in similar non-RDs to RD datasets needs 

careful attention. Overall, there is a tendency for mapping to overestimate HSUVs in poor health states. This 

should be considered when applying existing algorithms to RDs, since the rare variant or evolution of a 

condition (e.g., AIDS wasting syndrome) is usually more severe than the condition itself (e.g., HIV), where it 

is more likely that a mapping study is available [71]; for example, five-year survival in rare cancers is much 

lower than in common cancers (47% vs. 65%, source RARECAREnet). As a rule, the estimation population 

must be as similar as possible to the RD population in order to minimize prediction errors. For example, in 

the study by Arnold [47] on pleural mesothelioma, the algorithm by Jang [53] presented a good performance 

likely due to being developed in a comparable disease (i.e., non-small cell lung cancer). Similarly, in the 

study by Rowen [XX], the worst performing algorithm [54] was that developed in a breast cancer population, 

which little resembled the multiple myeloma dataset adopted. Moreover, identical ‘source’ PROM versions 

should be used in mapping algorithms and RD studies using them [48]. A justification for choosing a specific 

algorithm, such as its external validation or wide adoption in HTA, should be given when many competing 

algorithms exist, as it is for the numerous mapping studies in oncology that are potentially applicable to rare 

cancers. However, the preferred algorithm might not generate the most plausible HSUVs, thus it is essential 

to evaluate the impact of using different algorithms on predicted HSUVs and related cost-utility results [50-

51]. Overall, careful sensitivity analyses should be performed when cost-utility models are populated with 

mapped HSUVs [31, 32, 49, 50]. 

The study also presents some limitations. First, the list from ORPHANET was screened until a 

prevalence/incidence of around 0.01 per 100,000, thus excluding the ‘very rare’ diseases for which less than 

1000 cases (or families) are documented in the literature. This resulted in searching around one fourth of the 

RDs reported by ORPHANET. However, terms related to very RDs for which an orphan drug is available 

(resulting from the EMA website search) were used for database searching. Overall, very RDs are extremely 

unlikely to be provided with mapping algorithms because of the difficulty in recruiting sufficiently large 
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samples, the lack of disease-specific PROMs, and the lack of treatments that incentivize the estimation of 

HSUVs for HTA. Moreover, by searching title/abstract in PubMed, we are likely to have missed some 

studies applying existing mapping algorithms, but mentioning them only in the full-text. We also did not 

include other databases (e.g., EMBASE) that might have provided more eligible studies. Second, a quality 

assessment of the included studies was not performed due to the absence of checklists developed for this 

purpose, and we just reported the number of studies explicitly referring to any guidelines in the mapping 

field (e.g., the MAPS Statement [46]). Third, since mapping is considered as a ‘second best’ solution [25, 

XX], there might be studies in RDs that collected HSUVs directly from patients using generic preference-

based PROMs or direct elicitation techniques (e.g., TTO). There might also be studies that applied HSUVs 

estimated for other similar non-RDs  to the RDs in question. Although such studies were beyond the scope of 

this review, we used those retrieved by the online searches to identify any additional records and to inform 

the interpretation of the review results.  

5. Conclusion 

This systematic review synthetized the available mapping literature on RDs to derive HSUVs. New mapping 

algorithms should be developed to cover a much broader spectrum of RDs, including childhood diseases 

such as Duchenne muscular dystrophy, Gaucher disease or neuroblastoma, to inform the reimbursement 

decisions for new drugs. This would allow exploiting the usability of RD-specific PROMs for HTA purposes 

beyond clinical assessment. In addition, the quality of future studies should be enhanced by following up-to-

date recommendations in the field. An incentive to perform high-quality mapping studies, especially in the 

UK, could come from NICE recommending undertaking mapping in the absence of EQ-5D data collection in 

clinical trials. However, the limitations of using such approach to derive HSUVs should be acknowledged in 

HTA processes, and possibly overcome by future research.  
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