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ARTICLE

Multiple network properties overcome random
connectivity to enable stereotypic sensory
responses
Aarush Mohit Mittal 1, Diksha Gupta 1,2, Amrita Singh1,3, Andrew C. Lin 4 & Nitin Gupta 1✉

Connections between neuronal populations may be genetically hardwired or random. In the

insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon

cells of the mushroom body. Consequently, while the odor responses of the projection

neurons are stereotyped across individuals, the responses of the Kenyon cells are variable.

Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy

in their responses. We found that the stereotypy is enabled by the convergence of inputs

from many Kenyon cells onto an output neuron, and does not require learning. The stereo-

typy emerges in the total response of the Kenyon cell population using multiple odor-specific

features of the projection neuron responses, benefits from the nonlinearity in the transfer

function, depends on the convergence:randomness ratio, and is constrained by sparseness.

Together, our results reveal the fundamental mechanisms and constraints with which con-

vergence enables stereotypy in sensory responses despite random connectivity.
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I
s your red the same as my red? This question and its variations
have puzzled humans for generations. Modern neuroscience
offers a way to answer a more tractable form of this question:

does your brain generate the same neural activity in response to a
red stimulus as my brain does? Experiments have shown that
neurons in some brain areas have hard-wired connections, iden-
tical across individuals of the same species, and consequently also
have stereotypic neural responses across individuals1–5. However,
neurons in some areas show variability in their synaptic partners
across individuals6–8. Can brain areas receiving inputs through
non-stereotypic connections generate stereotypic responses?

The insect olfactory system provides an ideal system to examine
this question because of its well-characterized circuitry in the first
four layers of sensory processing, and individually identifiable
neurons. Olfactory sensory neurons located on the antennae
or palps connect to projection neurons (PNs) in the antennal
lobe. These connections are highly stereotyped across indivi-
duals9–13. Expectedly, the responses of PNs to odors are also
stereotyped14,15. Axons of PNs form synapses with Kenyon cells
(KCs) in the mushroom body. Anatomical studies suggest that,
unlike the connections at the previous layer, the PN-KC connec-
tions are random and non-stereotyped across individuals8,16–18,
and intracellular recordings found no stereotypy in the responses
of KCs16. KCs send their output to a small population of mush-
room body output neurons (MBONs); in Drosophila melanogaster,
there are 34 MBONs in all, belonging to 21 morphological types19.
Hige et al.20 measured the odor responses of identified MBONs in
different flies and found that MBONs responses across individuals
were not identical but many of the MBONs had significantly more
correlations across individuals than expected by chance. How do
these MBONs generate stereotypic responses, when their input
comes from KCs with non-stereotypic responses? Although
mushroom bodies have been traditionally viewed as responsible
for learning and memory, recent studies show that some MBONs
are also involved in innate behaviors21–23, and thus consistent
responses across animals for untrained stimuli are desirable.

Schaffer et al.24 looked at a similar question in the vertebrate
olfactory system, where mitral cells and piriform cortex neurons
have connectivity and responses analogous to PNs and KCs,
respectively25–28. The computational model in the study exhibited
stereotypy in the output of the piriform cortex when different
cortices were pre-trained with the same odor, but not in the absence
of such training; thus, this study implied that learning is necessary
for stereotypy24. On the contrary, experimental data from flies
showed that stereotypy increases when learning is impaired: ruta-
baga mutant flies, which are deficient in learning, show more ste-
reotypy in MBON responses compared to wild-type flies20.

Here, we confirm the presence of stereotypy in MBON
responses with intracellular recordings from another species, the
locust Schistocerca americana. With network simulations con-
strained by the experimental data from the Drosophila olfactory
system, we identify the factors that contribute to stereotypy. We
show that stereotypy is a natural consequence of convergence
following random connectivity and does not require learning.
These observations from simulations are confirmed by deriving a
closed-form expression for stereotypy in an analytical model. The
simulations also predict an antagonism between sparseness and
stereotypy, which we test using in vivo recordings from locusts
and flies. Our results reveal the fundamental mechanisms and
constraints that determine the level of stereotypy in any neural
network with random connections.

Results
Experimental evidence for stereotypy using two metrics. As
stereotypy has been examined in only Drosophila MBONs so

far20, we first checked whether MBONs in other species also have
stereotypic responses. Like flies, locusts have multiple classes of
MBONs, of which the class bLN1 has only one neuron per
hemisphere and therefore can be uniquely identified across
individuals; in terms of firing rates or response probabilities,
bLN1 is not very different from other classes of MBONs, all of
which respond broadly (~97% probability) to odors29. We ana-
lyzed a dataset of bLN1 responses (see Methods; Fig. 1a and
Supplementary Fig. 1a and b) to 6 odors in 6 individuals29. In
previous studies, response stereotypy of a neuron has been
quantified as the Pearson’s correlation coefficient between its
response vectors in two individuals, where each vector contains
the trial-averaged responses of an individual to a given set of
odors20,24. We found that the average correlation between the
bLN1 responses across individuals was 0.66 (Fig. 1b), significantly
greater than the chance level of 0 (P= 4.58 × 10−11, n= 15 pairs
of individuals, t-test). Thus, bLN1 responses in locusts are ste-
reotyped across individuals; together with the previous observa-
tions in Drosophila20, this finding suggests that response
stereotypy in MBONs, despite their random connectivity, is likely
to be a general property across species.

The stereotypy in the responses of a neuron indicates how
similar or consistent the sensory responses of that neuron are in
different individuals; this response stereotypy would make
behavioral responses across individuals more consistent for the
same inputs. It is important to note that, in this context, the
stereotypy is a characteristic of a type of response (e.g., the
olfactory response of a particular neuron or the total olfactory
response in a brain region), and not a property of specific odors
or specific individuals, even though in practice it is estimated by
looking at the responses to a limited set of odors in a limited set
of individuals. Correlation is just one of the ways in which the
response similarity across individuals can be quantified. Using
correlation as a metric for stereotypy captures whether the
relative responses to different odors follow similar patterns in
individuals but ignores the absolute differences in the responses
between the individuals. On the other hand, using the Euclidean
distance (between the response vectors of individuals) as a
measure of stereotypy would capture the absolute differences but
miss the information about the relative response patterns for
different odors. We developed a new and simple metric for
stereotypy, called pairwise relative distance (PRED), which takes
into account both the absolute distances between the responses of
individuals (as Euclidean distance does) as well as their relative
patterns across odors (as correlation does). This metric is
calculated using data of pairs of individuals for pairs of odors,
and essentially quantifies whether individual A’s response to odor
1 is closer to individual B’s response to odor 1 than to B’s
response to odor 2 (Fig. 1c; see Methods). In other words, PRED
stereotypy quantifies whether the responses of two individuals
differ more for different odors than for the same odor.

PRED relates to the idea of odor discriminability or
classification accuracy, but differs in an important way: conven-
tional metrics for odor discrimination or classification measure
how separable the responses to different odors are within an
individual; on the other hand, PRED stereotypy measures how
separable the responses to different odors are across individuals.
If the response is stereotyped, it should be possible to predict
whether a given response value in individual A belongs to odor 1
or odor 2, by comparing it to the known responses of individual B
to the same two odors—this is feasible when the response of
individual A to odor 1 is more similar to individual B’s response
to odor 1 than to B’s responses to odor 2, and A’s response to
odor 2 is more similar to B’s response to odor 2 than to B’s
response to odor 1. PRED stereotypy, like correlation stereotypy,
ranges between −1 and 1, where 1 indicates a perfectly
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stereotyped response (i.e., identical responses across individuals),
0 indicates no stereotypy (e.g., unrelated responses), and −1
indicates the case when two individuals have different responses
to the same odor but similar responses to different odors. If
response data are available for more than two odors or more than
two individuals, the metric can be calculated for all possible pairs
and then averaged to get the final value.

We calculated PRED stereotypy in the locust bLN1 responses
using all combinations of the 15 pairs of odors and 15 pairs of
individuals, and found it also to be significantly above the chance
level of 0 (mean= 0.27, P= 2.25 × 10−20, n= 225 combinations,
t-test; Fig. 1d; random resampling test, P < 0.001). Thus, both
metrics confirm the presence of stereotypy in locust MBON
responses. These observed stereotypy values were smaller than
those seen in PNs (Supplementary Fig. 1c; see Methods), but
much higher than those seen in genetically labeled KCs
(Supplementary Fig. 1d; see Methods) in Drosophila.

Stereotypy originates in the KC population. The observations
made above in locusts, along with previous observations in
Drosophila20, suggest that MBON stereotypy may be a general

phenomenon among insects, as the basic organization of the
olfactory circuit is similar across species. To understand the
origin of stereotypy in insect MBONs, we constructed a com-
putational model of the inputs received by an MBON (see
Methods and Fig. 2a), constrained with parameters taken from
the more widely studied Drosophila system. The model included
three layers of neurons: an input layer with 50 PNs, each corre-
sponding to an olfactory glomerulus8,30,31; a middle layer of 2000
KCs32; and an output layer with the MBON. Although there are
~160 PNs in Drosophila33,34, PNs that innervate the same glo-
merulus have similar morphology13,35,36 and similar responses to
odors15,16,37. Previous recordings have shown that each odor
activates a unique set of PNs, such that any PN responds to a
given odor with about 50% probability and an odor-specific
spiking rate15,38. We set the threshold of KCs such that only
~10% of KCs responded to any given odor, to mimic the sparse
responses observed in these neurons experimentally38,39. The
MBON was connected to half of the KCs40. With these settings,
the model MBON responded to all odors, in agreement with
experimental reports20,29. We simulated two networks, corre-
sponding to two individuals, and measured the response of each
network to a hundred different odors.
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Fig. 1 Stereotypy in locust MBON responses confirmed with two metrics. a Raster plots with representative recordings showing responses of the locust

bLN1 MBON in two individuals to two odors. Odor was presented for 1 second (red bar) and the spikes in the responses were counted in a 2-s window

following odor onset (green bar); scale bar for recordings, 10 mV. In this sample, the responses appear to be stereotypic, with more spikes for octanol 0.1%

and fewer spikes for cyclohexanone 0.1% in both the individuals. b Violin plot showing the value of correlation stereotypy in bLN1 responses in the locust

dataset. Each point represents the Pearson’s correlation coefficient, calculated using the 6-length vector (responses to 6 odors) for a pair of individuals

(n= 15 pairs of individuals). c Schematic description of the PRED metric for stereotypy and comparison with the correlation metric. d PRED stereotypy in

bLN1 responses in the locust dataset used in (b). Note the bias towards positive values. Each point represents the pairwise PRED stereotypy value,

calculated for a pair of odor responses in a pair of individuals, giving a total of 225 values (15 pairs of odors × 15 pairs of individuals). In b, d black horizontal

line represents the mean. Error bars represent s.e.m.
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As a positive control and a simple verification of our analysis
procedures, we first confirmed that MBON responses were
stereotyped in a modified (and unreal) network with identical
connections between PNs and KCs across individuals, even in
the presence of noise (Supplementary Fig. 2a). As a negative
control, we verified that stereotypy was not seen in the MBON
response if the PN responses in the two individuals were made
non-stereotypic (Supplementary Fig. 2a). We then analyzed the
real network with non-stereotypic PN-KC connections and
stereotypic PN responses across individuals (Fig. 2a). Even
with the random connections, the MBON showed a surpris-
ingly high stereotypy: correlation stereotypy was 0.98 (P=

7.45 × 10−228, n= 100 network iterations, t-test; Fig. 2b) and
PRED stereotypy was 0.75 (P= 1.22 × 10−131, n= 100; Fig. 2b),
with both metrics behaving similarly (Pearson correlation, r=
0.57, P= 5.06 × 10−10; Fig. 2c). These values are higher than
experimentally measured values of stereotypy probably because
biological and experimental noise reduces stereotypy; adding
noise to the inputs of neurons in our simulations indeed reduced
the stereotypy (Supplementary Fig. 2b; the distribution of
stereotypy values in the rightmost panel is comparable to the
distribution of experimentally measured PRED stereotypy shown
in Fig. 1d). Robust stereotypy values were obtained even as we
varied the number of PNs or their response probability in our
simulations, indicating that the observation of stereotypy is not
limited to a narrow range of input parameters (Supplementary

Fig. 2c and d; other network parameters are analyzed in later
sections).

It was not immediately clear what led to stereotypic responses
in the MBON in our simulations, since the individual KCs driving
its activity showed extremely low stereotypy (correlation stereo-
typy: 0.0616 ± 0.1478 (s.d.); PRED stereotypy: 0.0084 ± 0.0201;
n= 100537 KCs that responded to at least one odor in both
individuals, out of the 200,000 KCs from 100 network iterations;
Fig. 2d top). Spatially identical KCs (having the same index in the
list of KCs) in two different individuals were no more correlated
to each other than to other KCs (Fig. 2e top), in agreement with
experimental observations16,20,41; contrast this with the high
correlation between identical PNs in different individuals (Fig. 2e
bottom). Since the MBON receives converging inputs from
multiple KCs, we looked at stereotypy in the total KC response
(the sum of the KC spiking rates). The total KC response revealed
high stereotypy with both metrics (correlation stereotypy= 0.99,
P= 2.36 × 10−254; PRED stereotypy= 0.81, P= 1.46 × 10−152;
Fig. 2d bottom), in agreement with experimental data20. These
results confirm that stereotypy is already present in the total
response of the KC population, even if not observed in the
responses of individual KCs. Given that an MBON receives input
from a large fraction of the KC population19, the presence of
stereotypy in the KC population can explain the stereotypy in the
MBON. Henceforth, we focus on understanding the origin of
stereotypy in the KC population.
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Fig. 2 Stereotypy in model MBONs and KCs. a Schematic representation of the simulated mushroom body networks in two different individuals. Projection

neuron (PN, green) to Kenyon cell (KC, pink) connections are random and vary across individuals. The number of KCs connected to the mushroom body

output neuron (MBON, blue) was kept same across individuals. b Correlation stereotypy and PRED stereotypy in MBON response in a realistic network

with random PN-KC connections across individuals; for correlation, n= 100 points corresponding to different network iterations with different random

seeds; for PRED, n= 495000 points (100 iterations × 950 odor pairs from 100 odors). c Scatter plot of correlation stereotypy versus PRED stereotypy in

MBON response for the same simulations as in (b) shows that both metrics behave similarly. The PRED stereotypy is averaged over all 4950 odor pairs

within a network iteration (n= 100 iterations). d (top) Correlation stereotypy and PRED stereotypy in individual KC response for the same simulations as in

(b). Both metrics confirm the absence of stereotypy in individual KCs, n= 100537 KCs that responded to at least one odor in both individuals, out of the

200,000 KCs from 100 network iterations. (bottom) Correlation stereotypy and PRED stereotypy in total KC response for the same simulations as in (b);

number of data points same as in (b). e Correlation between the responses of the PNs (bottom) and the KCs (top) in two individuals in a simulation. The

correlation is calculated using the 100-length vector (responses to 100 odors) for each pair of PNs (50 in total) or for each pair of KCs among the first 50

KCs (by spatial ordering) that responded to at least one odor in both individuals.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14836-6

4 NATURE COMMUNICATIONS |         (2020) 11:1023 | https://doi.org/10.1038/s41467-020-14836-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Stereotypy does not require learning. Piriform cortices in ver-
tebrates are analogous to insect mushroom bodies and connect
randomly with their input neurons26. A recent modeling study by
Schaffer et al.24 concluded that learning is necessary for stereo-
typy across different piriform cortices. In their study, the
responses of the output neurons of two different piriform cortices
were uncorrelated unless the two models were trained with a
common odor to set the synaptic weights between piriform cor-
tical neurons and their outputs. Our results, however, show that
stereotypy exists even in a simple network lacking any form of
learning. This difference is unrelated to the metrics used for
stereotypy; the correlation metric, used by Schaffer et al.24, and
the PRED metric gave similar results for both trained and
untrained networks in their simulations (Fig. 3a, b). Rather, we
found that the difference arose mainly because Schaffer et al.24

used a normalization of weights in their simulations: the weights
of all the incoming synapses to an MBON were scaled to make
the mean weight zero, converting many of the positive synaptic
weights into negative weights. Removing this normalization (see
Methods) produced high stereotypy (in both correlation and
PRED metrics) even without learning in their model (Fig. 3c, d),
confirming our conclusion that learning is not necessary for
stereotypy. (Removing the normalization did not reduce the
signal-to-noise ratio; Supplementary Fig. 3). Our results are also
more consistent with experiments showing high stereotypy in
learning-impaired rutabaga mutant flies20. Although MBONs
receive stereotyped inputs from KCs19, learning can modify the
connections between KCs and MBONs42–46, making the inputs to
an MBON different across individuals. Indeed, when we incor-
porated learning in our model by increasing or decreasing the
numbers of synapses between the MBON and the set of KCs
responding to a learned odor in an individual, the MBON ste-
reotypy decreased (Fig. 3e), in agreement with the experimental
data20. Taken together, these results strongly suggest that learning
is not necessary for stereotypy; rather, learning is antagonistic to
stereotypy.

PRED versus correlation as metrics for stereotypy. In the
analyses of locust bLN1 experimental data, our simulations, and
the simulations of Schaffer et al.24, both the correlation and the
PRED metrics gave similar results. However, we note that there
are certain areas in which PRED offers advantages over correla-
tion. First, if the dataset includes only two odors, the correlation
metric gives only extreme values (−1 or 1) regardless of the
response magnitudes, whereas the PRED metric provides a gra-
ded quantification for high-stereotypy and low-stereotypy sce-
narios, as shown in Supplementary Fig. 4a. If an individual
responds the same to both odors (as in the green shaded example
in Supplementary Fig. 4a), the correlation is undefined while
PRED provides an appropriate value of 0. Second, as stereotypy is
considered a property of a neuron and not of the odors or the
individuals whose data is used to estimate it, the value of ste-
reotypy should not be systematically biased by the number of
odors or the individuals available. When we varied the number of
individuals in our simulations, both metrics gave unvarying
estimates for stereotypy (Supplementary Fig. 4b); this result is
expected as both metrics are calculated on pairs of individuals
and then averaged. However, when we varied the number of
odors, the PRED stereotypy did not vary but the correlation
stereotypy systematically increased in magnitude, suggesting that
the correlation metric is biased by the number of odors available
in a dataset (Supplementary Fig. 4c). Similarly, the correlation
stereotypy values obtained from two non-overlapping sets of
odors were systematically smaller than the stereotypy obtained
from the combined dataset; PRED stereotypy did not change

(Supplementary Fig. 4d). These observations suggest that PRED is
a more robust measure for stereotypy than correlation, especially
when the number of odors is small. In simulations with 100
odors, PRED values were not affected much by exclusion of
random odors, and reduced only slightly if odors with the lowest
or the highest activity were excluded (Supplementary Fig. 4e).
Another advantage of the PRED stereotypy metric, as we show
next, is that its relatively simple form makes it amenable to
analytical modeling. Note that simulations with two odors and
two individuals also showed robust PRED stereotypy (Supple-
mentary Fig. 4b). Henceforth, we use PRED as the default metric
for stereotypy, and use two odors and two individuals in the
simulations.

Theoretical model of stereotypy. There is no analytical model
available yet for understanding stereotypy without running the
simulations. To complement the findings from our simulations,
we developed an analytical model to calculate the expected value
of PRED stereotypy in a simplified network with no learning
mechanism. We considered a network of binary PNs and KCs
connected to each other by random connection matrices
(see Supplementary equations). We then derived a formula for
the expected value of stereotypy in the total KC response by
considering two random odors and two random individuals at a
time. The formula confirms the presence of stereotypy even in
this simple network without any learning (0.96; Supplementary
Fig. 5a), providing theoretical support to the findings from the
experiments and the simulations. Further, the calculations show
that the stereotypy increases with the number of KCs (Fig. 3f),
providing a clue for network parameters that are important for
stereotypy. The calculations also show that the stereotypy remains
high even if the PN-KC connection probability or the number of
PNs in the model are varied over a wide range (Supplementary
Figs. 5b and c). Below we use simulations to further investigate
the contributions of various properties of the network to
stereotypy.

Multiple features of PN responses contribute to stereotypy. We
first studied how the inputs received by the KCs affect their
stereotypy. Stereotypy in the KC population did not depend on
the correlation between the PN response profiles of different
odors, as any such correlations are discarded by the random
connectivity at the next level (Supplementary Fig. 6a). Hige
et al.20 speculated that the total input drive to the KCs (i.e., the
total output of PNs) could be a characteristic of each odor. In
flies, it has been observed that increasing odor concentration
increases PN activity, although not steeply because of lateral
processing within the antennal lobe47,48. In locusts, higher odor
concentrations have been shown to generate more synchrony
among PN responses49, which could also make the PN drive
more effective in activating KCs. How would the differences in
input drives affect the stereotypy? Differences in the total PN
output generated by two odors would translate into differences in
(a) the total inputs received by the KCs and (b) the total response
produced by the KCs. We first looked at the total KC input,
calculated as the sum of inputs received by each KC (so that PNs
that are connected to more KCs contribute more to the total), and
found that it was stereotyped (0.89, P= 1.42 × 10−53; Fig. 4a).
Further, as the difference in the total input drives (the total
number of spikes in the PN population) increased, stereotypy also
increased in the total KC input (Pearson correlation, r= 0.43,
P= 6.64 × 10−06; Fig. 4b) as well as in the total KC response (r=
0.50, P= 9.33 × 10−08; Fig. 4c).

These simulations predict that stereotypy for a pair of odors
should be higher when the drives generated by the two odors
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differ more. To test this prediction, we used the locust bLN1
dataset, which included responses for two different concentra-
tions (0.1 and 10%) of three odorants. We divided the pairwise
stereotypy values from the locust dataset into two groups: a
within-concentration group, including values calculated for pairs
of odors at the same concentration; and an across-concentration
group, including values calculated for pairs of odors at different
concentrations (that is, with one odor in the pair at 0.1% and the
other at 10%). The across-concentration group is expected to
have more differences in the input drives between the two odors
in a pair, and therefore more stereotypy. The experimental data
confirmed this prediction: the within-concentration group had a
stereotypy of 0.17 which was significantly less than 0.34 seen in
the across-concentration group (P= 2.20 × 10−03, unpaired t-test;
Fig. 4d).

Although stereotypy was positively correlated with differences
in input drives in our simulations, these correlations were small
(0.43 and 0.50 for stereotypy in total KC input and total KC
response, respectively), and there was high stereotypy in some

simulations with little difference in input drives (Fig. 4b, c). These
results indicated that the odor-specificity of the total PN drive is
not the sole contributor to stereotypy. The number of active PNs
and the range of spiking rates of these PNs show some variation
across odors15,38. We reasoned that these two factors could also
contribute to stereotypy. To measure the effect of these two factors
independently, we first constrained the total input drives to be the
same for both odors (see Methods). In this case, there was no
stereotypy in the total KC input (0.02, P= 0.5763; Fig. 5a) or the
total KC response (0.04, P= 0.3692; Fig. 5b). Then we made either
the number of active PNs or their spiking rate range different for
the two odors. Stereotypy increased on increasing the spiking rate
range of PNs for one odor while keeping it at the default value for
the other odor (Fig. 5c). Similarly, the stereotypy increased when
we increased the number of active PNs for one odor while keeping
it at the default value for the other odor (Fig. 5d). This increase in
stereotypy was not simply due to larger values of the parameters
but due to the differences in their values between the two odors:
stereotypy did not increase when we increased the parameters for
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Fig. 3 Stereotypy does not require learning. a, b Comparison of PRED stereotypy with correlation stereotypy in the responses of the readout neuron in the

simulations of the untrained (a) or trained (b) piriform network using code provided by Schaffer et al.24. c, d Stereotypy in the simulations of the untrained

piriform network, with and without the weight normalization step calculated using both correlation (c) and PRED (d) metrics. The three different colors

represent simulations with different levels of overlap among the olfactory bulb responses to odors as described by Schaffer et al.: 70% overlap (green),

30% overlap (blue) and 0% overlap (gray). a–d have 18 data points each (6 iterations × 3 sets of odors). e Stereotypy in MBON response reduces with the

learning rate, as seen in simulations with 100 odors and 2 individuals. Learning of an odor resulted in either increasing or decreasing the number of

synapses between the MBON and the KCs activated by that odor. Half of the odors, selected randomly for each individual, were learnt sequentially, and

each learning event resulted in increase or decrease in synapses with equal probability. When the synapses were increased, of all the KCs that were

activated by the learned odor and were not connected to the MBON, a certain fraction (indicated by the learning rate) were connected to the MBON.

When the synapses were reduced, of all the KCs that were activated by the learned odor and were connected to the MBON, the same fraction were

disconnected from the MBON. The MBON responses for both individuals were recalculated after modifying the synapses, n= 100 iterations. Error bars

represent s.e.m. f Analytical model proved the existence of stereotypy in absence of learning. Plot of stereotypy versus the number of KCs suggested a

dependence of stereotypy on the size of the network, as later seen in the simulations (compare to Fig. 6d). Each value is calculated using the formulae

derived in the analytical model (see Supplementary equations). Arrow indicates the default value (matching the Drosophila system).
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both odors in tandem (Fig. 5e, f). Thus, even with the same total
input drives, the KC population could get stereotyped using the
differences in the spiking rate ranges or the number of active PNs
across odors. These two factors may be important given that
lateral processing within the antennal lobe tends to equalize the
total PN drives to different odors48,49.

In these simulations with fixed input drives, while stereotypy
was seen in the total KC response, it was absent in the total KC
input (Supplementary Fig. 6b and c). This observation suggested
that the non-linearity introduced by the response threshold in the
generation of KC responses from their inputs may be required for
stereotypy in the absence of differences in input drives across
odors. To confirm this, we ran the simulations with fixed input
drives but differences in the number of active PNs or spiking rate
ranges with a linear transfer function for KCs; in these
simulations, the stereotypy was lost (Fig. 5g, h), showing the
role of the non-linearity in maintaining stereotypy in the absence
of differences in input drives.

It is intuitively clear that there should be no stereotypy if
different odors generate the same PN responses. What is the
minimal set of parameters that must differ between PN responses
to generate stereotypy? Our results show that when odors elicit
the same numbers of spikes across the PN population, activate the
same numbers of PNs, and result in the same range of PN spiking
rates, there is no stereotypy in the total KC response. This
provides a lower bound: the PN population responses across
odors must differ in at least one of these three parameters for the
existence of stereotypy (Fig. 5c, d; Supplementary Fig. 7). These
results also predict that if PN responses elicited by a given odor
can be obtained by shuffling the PN labels in another odor’s
responses, thereby leaving all the three parameters identical, there
should be no stereotypy. Further simulations confirmed this
prediction (Fig. 5i). The analytical model also confirmed that the
null stereotypy is theoretically expected for shuffled PN responses
and is not dependent on the specific network parameters used in
our simulations (Fig. 5j; see Supplementary equations).

Sparseness constrains stereotypy. A salient feature of KCs is that
very few of them respond to any given odor39,49,50. We asked how
this sparseness in KC responses affects stereotypy. To manipulate
the sparseness of KCs, we varied the mean spiking rate of PNs in
our default simulations (without fixing the three factors discussed
in the last section), while keeping the KC response threshold
constant. Note that in the last section we analyzed the differences

in PN responses between odors; here we varied the spiking rate of
PNs uniformly for both odors. We found that increasing the
mean spiking rate of PNs increased the stereotypy in the total KC
response (Fig. 6a). This manipulation increased the net input to
the KCs relative to their response threshold, an effect that can also
be obtained by increasing the connection probability between
PNs and KCs, or by reducing the threshold of KCs. Indeed, ste-
reotypy increased when we increased the connection probability
between PNs and KCs (Supplementary Fig. 8a) or decreased the
threshold of KCs (Supplementary Fig. 8b). How does a general
increase in the inputs to KCs lead to an increase in stereotypy?

Increasing the mean spiking rate of PNs increases both the
average number of active KCs (Fig. 6b) and the average spiking
rate of KCs (Fig. 6c). To tease apart the contributions from these
two factors, we ran another set of simulations in which we
increased the number of KCs in the model—this increased the
average number of active KCs (Fig. 6e) without changing their
average spiking rate (Fig. 6f). The average stereotypy in this case,
in agreement with our analytical calculations (Fig. 3f), increased
with the increasing number of KCs (Fig. 6d). In both of these
simulations, the stereotypy increased equally with the increase in
the number of active KCs (Fig. 6g), even though in one case the
spiking rate of active KCs remained constant while in the other
case it increased (Fig. 6h). Therefore, the level of stereotypy is
determined primarily by the average number of active KCs and
not their average spiking rate.

Our results reveal a trade-off between stereotypy and
sparseness, i.e., the fraction of KCs not responding: less
sparseness (more active KCs per odor) leads to more stereotypy.
Although stereotypy depends on the absolute number of active
KCs rather than the fraction per se, the two are equivalent in the
context of a particular species’ total number of KCs. It is
noteworthy that the stereotypy increases with the average number
of active KCs quite sharply till this number reaches 200–300
(10–15% of 2000) and begins to saturate for larger numbers
(Fig. 6g); this elbow-point near 10% response probability matches
the experimentally observed levels of sparseness in KCs38,39,50.

Experimental tests of the effect of sparseness on stereotypy. We
used in vivo data to test our prediction that more sparseness leads
to less stereotypy. The membrane potential depolarization of an
MBON reflects the synaptic input it receives from all the con-
nected KCs. We reasoned that if the number of active KCs were
reduced, the depolarization of the MBON would also reduce;
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consequently, the MBON would be less likely to produce spikes,
particularly at those times when fewer KCs are active (that is,
when the depolarization is small). Using the intracellular
recordings of locust bLN1, we extracted the depolarization and
mimicked the effect of increasing sparseness by removing spikes
that occurred when the depolarization was below a threshold
(Fig. 7a). Confirming our prediction, this change led to a sig-
nificant reduction in stereotypy (P= 5.55 × 10−05, paired t-test;
Fig. 7b). (The same result was obtained if we approximated
increasing sparseness in KCs by reducing the number of bLN1
spikes by a constant amount of 20 spikes; P= 8.4 × 10−11, paired
t-test). As we increased the sparseness by further raising the
threshold, the stereotypy also reduced as expected (correlation

between stereotypy and threshold, r=−0.94, P= 0.017, n= 5
thresholds; Fig. 7c).

To test the prediction in the other direction (that is, whether
less sparseness leads to more stereotypy), we used genetic
manipulations in Drosophila. We decreased sparseness in fly
KCs by blocking synaptic output from APL, a single inhibitory
interneuron in the mushroom body that maintains the sparseness
in the KC population51. We expressed tetanus toxin (TNT) in
APL using an intersectional driver (see Methods) that labels APL
~60% of the time; hemispheres where APL was unlabelled served
as controls. We measured stereotypy in the total responses of
large sets of KCs using two-photon calcium imaging in the lobes,
for a set of three odors (Supplementary Fig. 9). We found that the
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control hemispheres showed moderate levels of stereotypy, while
hemispheres with reduced sparseness (APL>TNT) showed
significantly more stereotypy (Fig. 7d). Together, experimental
data from locusts and flies confirm the trade-off between
sparseness and stereotypy predicted by our simulations.

Convergence:randomness ratio determines stereotypy. If more
active KCs lead to more stereotypy, MBONs receiving converging
input from more KCs should generate more stereotypic respon-
ses. Indeed, we found that MBON stereotypy increased with KC-
MBON connection probability (Fig. 8a) and reached the same
level as KC population stereotypy when the MBON received
input from all the KCs. Thus, the 21 different classes of MBONs
present in Drosophila19 are expected to show different levels of
stereotypy depending on the number of KCs they are connected
to; this can provide one explanation for the varying levels of
stereotypy found in experimental recordings of MBONs20. As it
may be easier to measure stereotypy experimentally than to
determine the synaptic connections between neurons, the high
correlation between convergence and stereotypy presents a

convenient experimental method for roughly estimating the
number of KCs connected to an MBON, if the distributions
of KC-MBON synaptic weights across different MBONs are
similar.

The convergence enables the stereotypy in the MBON by
overcoming the randomness in PN-KC connections. Indeed,
simulations with different levels of randomness in PN-KC
connections reveal that these two factors compete: in networks
with lower levels of randomness, a lower level of convergence is
enough to achieve stereotypy, while in networks with more
randomness, a higher convergence is necessary to achieve the
same level of stereotypy (Fig. 8b). In these simulations where both
convergence and randomness were varied, we found that the
convergence:randomness ratio as a single independent variable
can provide a reliable estimate of stereotypy (R2= 0.78; Fig. 8c;
see Methods). Thus, although our simulations in previous
sections assumed complete randomness in the connections
between PNs and KCs, the results here show that the stereotypy
will be higher, or can be maintained with lower levels of
convergence, when the connections are only partially random.
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Discussion
In summary, our results confirm the existence of response ste-
reotypy in an MBON despite its random inputs: this analysis of
locust bLN1 is likely the second demonstration of response ste-
reotypy following random connectivity in any nervous system,
after the first one in flies by Hige et al.20. Our simulations show
that stereotypy emerges within the total population of KCs, even
though individual KCs do not show stereotypic responses. We

also developed PRED, a new metric for quantifying stereotypy,
and showed its advantages over the previously used correlation
metric, especially for datasets which include responses to a small
number of stimuli.

The simulations suggested that stereotypy does not require
learning, and we confirmed this using an analytical model. The
simulations instead pointed to other network properties that
determine stereotypy. KCs receive their input from PNs, and the
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Fig. 7 Experimental data confirm the antagonism between sparseness and stereotypy. a A representative intracellular recording (gray) from locust bLN1

is shown to illustrate the method of removing spikes that occur at depolarizations below a threshold (dashed line). Discarded spikes are labeled ‘−’ and

retained spikes are labeled ‘+’. The depolarization (dark black trace) is extracted by clipping spikes and filtering the recording (50-Hz low-pass). The

threshold is set at one s.d. above the mean depolarization. b Stereotypy in locust bLN1 response reduces when we mimic more sparseness by removing

spikes below the threshold (1 s.d. above mean depolarization). c Stereotypy continues to reduce as sparseness is further increased by raising the threshold

in multiples of s.d. above mean depolarization. In b, c, n= 225 values (15 pairs of odors × 15 pairs of individuals). d Fly KC populations imaged at different

lobes of the mushroom body in control flies reveal significant stereotypy. The stereotypy further increases in all lobes as sparseness is reduced by blocking

APL output (APL>TNT); n= 315 (control, α- and α′-lobes, from 11 hemispheres from 10 flies), n= 570 (APL>TNT, α- and α′-lobes, from 20 hemispheres

from 14 flies), n= 828 (control, β-, β′- and γ-lobes, from 18 hemispheres from 15 flies), n= 1890 (APL>TNT, β-, β′- and γ-lobes, from 36 hemispheres from

24 flies). Error bars represent s.e.m.
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convergence of multiple KCs onto an MBON makes the MBON
sensitive to fine differences in the PN responses to odors, such as
a difference in total PN output. However, we also found that, even
in the absence of differences in this total drive, stereotypy could
arise from the differences in the total number of active PNs or
their spiking ranges, with the help of the non-linearity in the
transfer function of the KCs. Further, we showed with both
simulations and experiments that stereotypy depends on the level
of sparseness. The simulations also revealed that it is the total
number of active KCs and not their spiking rate that is important
for stereotypy. Finally, we showed that convergence:randomness
ratio in a random network is an important determinant of ste-
reotypy. Our simulations allowed us to assess the role of various
network parameters in generating stereotypy (Figs. 3–6 and 8;
Supplementary Figs. 2, 5, 7 and 8); the simulations also showed
that stereotypy is robustly present even when the parameters are
varied from the default values taken from flies, suggesting that
our conclusions can be generalized to many species with different
network parameters.

Although we confirmed stereotypy in MBON and total KC
responses using in vivo data in locusts and flies, the observed
levels of stereotypy were moderate and noisy across different
pairs of odors and individuals. Some of this variability is likely a
result of experimental noise, particularly in calcium imaging
experiments. Physiological noise in the neurons may also reduce
response stereotypy. Response stereotypy will contribute to
behavioral stereotypy, which is perhaps preferable in moderation,
as both behavioral consistency and behavioral stochasticity can
have evolutionary benefits52.

Our results show that the existence of stereotypy does not
require learning. Rather, learning experiences, occurring as
individuals face different environments, may actually decrease the
similarity in the neural and behavioral responses across indivi-
duals. This was indeed found to be the case in the mice accessory
olfactory system53. Among insects, rutabaga mutant flies, which
are deficient in learning, showed higher stereotypy20 across
individuals than wild-type flies. Interestingly, the same study also
showed that across-hemisphere stereotypy within a wild-type fly
brain is higher than across-individual stereotypy20. One can
speculate that the across-individual stereotypy may be as high as
the across-hemisphere stereotypy in newborn flies, but while the
former reduces over time due to the different experiences of
individuals, the latter is maintained as the two hemispheres share

the experiences. In flies, dopaminergic neurons, which send
reinforcement signals to the mushroom body43,54–57 and some of
which have bilateral projections19,58, may contribute to main-
taining across-hemisphere stereotypy.

The default network in our simulations included the assump-
tion that PN responses are fully stereotyped and the PN-KC
connections are fully random. While these assumptions reflect the
prevalent view in the field8–10,14–18, there are counter reports as
well. A recent study analyzing the fine structure of receptor
neuron to PN synapses reported some variability in the synap-
ses59, although the functional impact of this variability on PN
response stereotypy remains to be understood. Another factor
that could add variability to PN responses is the plasticity
within the antennal lobe60,61. PN-KC connectivity patterns are
also debated. Some studies reported that PN axonal projections to
the mushroom body are stereotyped but KC dendritic
projections are not18,62–64, while others found that both are not
stereotyped8,36,65. Despite this uncertainty, both kinds of studies
imply that the fine connections between PNs and KCs are ran-
dom, although some coarse-level biases in connectivity have not
been ruled out17,65. It is also possible that some KCs receive non-
random inputs66. Our results show that in a circuit with only
partial randomness in connectivity, stereotypy can be achieved
even without massive amounts of convergence (Fig. 8b, c). In the
competition between randomness and convergence, the con-
vergence:randomness ratio appears to be the determining factor
for stereotypy. Partial randomness and partial stereotypy in PN-
KC connections could also provide a way for different MBONs to
have reliable differences in their information content, in addition
to having different levels of convergence19 and different temporal
patterns29,42; MBONs also differ in the areas they project to and
the modulatory inputs they receive19,67.

Individual-to-individual variation has been previously studied
in invertebrate central pattern generators like the lobster stoma-
togastric ganglion wherein the phases of generated rhythms
maintain remarkable stereotypy despite differences in the mem-
brane conductance of neurons or synaptic strengths between
coordinating partners across individuals68,69. However, unlike the
largely feedforward PN-KC-MBON circuit (although some
feedback has been observed19,40,66), the stomatogastric circuits
are recurrent networks with significant feedback loops68. The
two systems differ also in that connections between neurons
in central pattern generators are mostly invariant, whereas in the
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b Stereotypy in MBON response as a function of KC-MBON connection probability and the randomness in PN-KC connections (i.e., the fraction of PN-KC

synapses whose values are independently set in the two individuals). Simulations were done for 21 values of each parameter in the range 0.01 to 1.0 on a

log scale. c Stereotypy in MBON response versus the ratio of convergence (KC-MBON connection probability) to randomness (in PN-KC connections) in

the data shown in (b). The dependence of stereotypy (S) on the convergence:randomness ratio (r) is captured well by a fit to the Hill equation, S ¼
r0:65

0:48þr0:65

(black trace); blue trace shows the average stereotypy of points with the same ratio. In all panels, n= 100 iterations.
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mushroom body an entire neural layer is randomly connected to
its predecessor.

Experimental studies have shown that KC responses are sparse
such that only about 5–10% of KCs respond to any odor39,49,50.
Sparse representations have been proposed to be particularly
suitable for learning and memory70. If so, wouldn’t it be better to
have an even smaller fraction of KCs respond to any odor? One
likely reason for not having more sparseness is that the observed
level of sparseness may provide a good trade-off between the
discrimination and generalization of odors71. Our results provide
another possible reason: more sparseness would be detrimental
for response stereotypy (Figs. 6 and 7). Interestingly, our simu-
lations revealed a non-uniform increase in stereotypy with the
fraction of active KCs: stereotypy increased until the proportion
of active KCs reached 10–15%, and saturated beyond that. It is
therefore tempting to speculate that the sparseness of KCs may
have been tuned by evolution to strike a balance between
response stereotypy and efficient learning or generalization.
Given that stereotypy is influenced by the absolute number of
active KCs, changing the total number of KCs during evolution
while keeping sparseness (i.e., fraction) the same could be another
way to alter response stereotypy.

We did not explicitly include inhibitory neurons in the model,
but their effects were taken into account indirectly. In the
antennal lobe, inhibitory local neurons shape the responses of
PNs—this inhibition was accounted for when we set the firing
rates of PNs in the model to match the known firing rates. The
sparseness of KCs is maintained by a GABAergic inhibitory
neuron51,72. The inhibitory effect was accounted for by setting the
spiking threshold of KCs to match the experimentally observed
responses of KCs. The direct KC-MBON synapses have been
observed to be mostly excitatory20, although there may be
indirect inhibitory effects due to lateral connections among
MBONs42.

KCs are among the largest neuronal populations in the insect
brain32. Precise genetic specification of synapses between indivi-
dual neurons in large populations may be inefficient or impos-
sible. Our results suggest that it may even be unnecessary, as
convergence following the random connectivity allows reliable
extraction of sensory information. Although it has only been
possible to evaluate the randomness of connectivity in a few
model systems7,8,26, it is likely to be a more common motif in
bigger brains containing larger populations of neurons. Individual
neurons in randomly connected networks may respond differ-
ently, yet at the level of neurons receiving densely converging
inputs, your brain probably generates the same neural activity in
response to a red stimulus as my brain does.

Methods
PRED stereotypy metric. To estimate pairwise relative distance (PRED) stereo-
typy, we observed the neuronal responses in a pair of individuals (say, A and B) for
a pair of odors (say, 1 and 2). D1 was defined as the squared difference between the
total response to the same odor in two individuals, and D2 was defined as the
squared difference between the total response to different odors in two individuals

(Fig. 1c). Stereotypy was quantified as
D2�D1

D2þD1
and varied between −1 and 1 (Fig. 1c).

If the responses are similar across individuals but vary with the odor, D1 would be
close to 0 and D2 would be large, giving a positive value for PRED stereotypy. If the
responses of two individuals differ as much for same odors as they do for different
odors (or if the responses are random), D1 on average would be equal to D2, giving
PRED stereotypy values close to 0. PRED stereotypy is negative if the odor gen-
erating the higher response in one individual generates the lower response in the
other individual, and vice versa. If all responses were equal, the value of PRED
stereotypy was set to 0. If the number of odors or individuals was more than two,
PRED stereotypy was calculated for all possible pairs and then averaged.

Locust intracellular recordings. We obtained sharp intracellular recordings from
an earlier study29, which had collected odor responses of various MBONs in locusts
but had not looked at stereotypy. These recordings were made in vivo from awake

animals in the β-lobe of the locust mushroom body. In this dataset, the cell-type
was identified based on the recording location and the response characteristics, and
in most cases confirmed with dye-fills. We focused on the class bLN1, which has
only one neuron per mushroom body and shows dense dendritic projections in the
β-lobe29. We analyzed a set of recordings of the bLN1 neuron in 6 different
individuals, all of which were tested for a set of 6 odor stimuli (0.1 and 10%
concentrations of cyclohexanone, octanol, and hexanol each; see Fig. 1a and
Supplementary Fig. 1a and b). The response was quantified as the number of spikes
observed in a 2-s response period following odor onset, minus the number of spikes
in a 2-s period before the stimulus (averaged over 10 trials). Although the odor was
presented for 1 s only, we used a 2-s window as the responses often lasted longer
than the stimulus duration.

Drosophila PN and KC datasets. We obtained whole-cell patch-clamp PN
recordings from an earlier study73 for four classes of PNs: VC4, DL2v, VM5v, and
VC3; for each class, responses to 2–4 odors were available in 2–6 individuals. The
trial-averaged response was quantified as described for locust bLN1 recordings. The
KC responses were extracted from Fig. 3a of Murthy et al.16 containing whole-cell
patch-clamp recordings from a single clonal population (left lateral posterior clonal
unit) of KCs. Only binary responses could be extracted, but they are a reasonable
approximation for the highly sparse KC responses. KCs belonging to the same class
were treated as the same for the calculation of stereotypy.

Simulations. We simulated the responses and inputs of an MBON using a network
of rectified linear units. The network consisted of 50 PNs8,30,31, 2000 KCs32, and
the MBON (Fig. 2a). Connections between PNs and KCs were modeled as a
random binary matrix, where 1 or 0 denote the presence or absence of a con-
nection, respectively. The connection probability, i.e., the fraction of 1s in the
matrix, was set to 0.14 so that each KC, on average, was connected to 7 PNs8,74.
The MBON received input from a fixed subset of 1000 KCs40, set to the first 1000
KCs without loss of generality. PN-KC connection matrix was generated randomly
for each individual in a simulation, while the KC-MBON connections were iden-
tical in all individuals.

For any given odor, each PN responded with 0.5 probability15,38. For
responding PNs, the number of spikes was drawn from a uniform distribution in
the range of 10–30 (mean 20), corresponding to a brief response window15,38. For
non-responding PNs, the number of spikes was set to 0. For the KC and MBON
layers, we used the standard rectifier function to calculate the response of a unit,
f(x)=max[0,k− t], where k denotes the total input received by the unit and t
denotes the response threshold. The value of t was set such that ~10% KCs
responded to odor presentations38,39; the same value (t= 119) was used in all
simulations, except when we tested the effect of the threshold on stereotypy. Note
that PN response vectors varied with the odor but not with the individual, while
PN-KC connection matrices varied with the individual but not with the odor. Each
network simulation was performed 100 times with different initializations of the
random number generator.

Reanalysis of the effect of learning. We used the code from the GitHub repo-
sitory (commit code: c050be6) provided by Schaffer et al.24. We ran the scripts
calculateSumFigParts.m and makeFigure2.m without any modifications and noted
the stereotypy in the piriform cortex responses for the three odor sets as defined by
the researchers24; in their approach, the stereotypy was estimated using the cor-
relation coefficient between two response vectors (one for each cortex), where each
vector contained the responses to a panel of odors. We also calculated the ste-
reotypy using our distance-based method, by first calculating the value for each
pair of odors and then taking the average. For removing weight normalization we
ran the same code after commenting lines 162–163 in calculateSumFigParts.m.
Because the random number generator was not initialized in the provided code, the
simulations produced slightly different outputs on every run. To increase con-
fidence in the results, we repeated the simulations six times.

Analytical model. The analytical model was based on the framework provided by
Jortner75, using binary responses for PNs and KCs, and a binary matrix to
represent the PN-KC connections. A KC is considered to have a response if its net
input crosses a threshold. We derive closed-form expressions for D1 and D2, which
allow estimation of stereotypy without numerical simulations (see Supplementary
equations).

Simulations with fixed input drives. To equalize the input drives from the PN
population to the KC population for different odors, we first fixed the total number
of spikes in the PN layer to 500 (mean spiking rate times half the number of PNs)
and then distributed them randomly among the active PNs. In simulations where
we varied the spiking range of PNs, we set the number of active PNs to be exactly
25, half the total number of PNs. Then we set the spike rate of these 25 PNs by
randomly partitioning the set of 500 spikes into 25 discrete subsets while ensuring
that the size of each subset was within the desired range of PN spiking. In simu-
lations where we varied the number of active PNs, the set of 500 spikes was
partitioned among the chosen number of active PNs while ensuring that the
number of spikes in each active PN was within the default spiking range of 10–30.
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Drosophila calcium imaging. Flies were imaged using two-photon laser scanning
microscopy using the protocol described earlier51. Briefly, the cuticle and trachea
overlying the mushroom bodies were removed and the brain was superfused with
artificial hemolymph (5 mM TES, 103 mM NaCl, 3 mM KCl, 1.5 mM CaCl2, 4 mM
MgCl2, 26 mM NaHCO3, 1 mM NaH2PO4, 8 mM trehalose, and 10 mM glucose,
pH 7.3) bubbled with carbogen (95% O2, 5% CO2). 5-s pulses of isoamyl acetate,
ethyl acetate, or delta-decalactone (Sigma) were delivered by switching mass-flow
controlled carrier and stimulus streams (Sensirion) via software-controlled sole-
noid valves (The Lee Company). Flow rates at the exit port of the odor tube were
0.5 ml min−1.

Fluorescence was excited by ~70 fs pulses of 910 nm light from a Mai Tai eHP
DS Ti-Sapphire laser (Spectra-Physics), attenuated by a Pockels cell (Conoptics)
and coupled to Movable Objective Microscope (Sutter Instrument Co.) with a
galvo-resonant scanner. Excitation light was focussed by a 20 × 1.0 NA objective
(Olympus XLUMPLFLN20XW) and emitted light was detected by GaAsP
photomultiplier tubes (Hamamatsu Photonics, H10770PA-40SEL) and amplified
by a TIA-60 amplifier (Thorlabs). Volume imaging was enabled by a piezo
objective stage (nPoint, nPFocus400) and the microscope was controlled by
ScanImage 5 (Vidrio).

Movies were motion-corrected in X-Y using the moco ImageJ plugin76, with
pre-processing to collapse volume movies in Z and to smooth the image with a
Gaussian filter (standard deviation= 4 pixels; the displacements generated from
the smoothed movie were then applied to the original, unsmoothed movie), and
motion-corrected in Z by maximizing the pixel-by-pixel correlation between each
volume and the average volume across time points. ∆F/F was calculated as earlier51.

Drosophila genetics and structural imaging. Tetanus toxin (TNT) was expressed
stochastically in APL via the intersection of NP2631-GAL4 and GH146-FLP, as
described earlier51. The full genotype was NP2631-GAL4, GH146-FLP/tub-FRT-
GAL80-FRT, UAS-TNT, tubP-GAL80ts; mb247-LexA, lexAop-GCaMP3/UAS-
mCherry or NP2631-GAL4, GH146-FLP/UAS-TNT, tubP-GAL80ts; mb247-LexA,
lexAop-GCaM3P/tub-FRT-GAL80-FRT. Flies were raised at 18 °C and heated to
31 °C for 16–24 h before the experiment to acutely induce TNT expression in APL.
In flies with UAS-mCherry, TNT expression in APL was scored in unfixed, dis-
sected brains by whether APL expressed mCherry. In flies without UAS-mCherry,
TNT expression was scored by anti-TNT immunohistochemistry following an
existing protocol77. Briefly, dissected brains were fixed in 4% (w/v) paraf-
ormaldehyde in PBT (100 mM Na2HPO4/NaH2PO4, pH 7.2 with 0.3% (v/v) Triton
X-100) for 20 min at room temperature. Samples were washed in PBT 2x quickly
then 3 × 10 min, blocked in PBT+ 5% goat serum for 30 min, incubated in 1:100
rabbit anti-TNT antibody (Abcam, ab53829) for 2 d at 4 °C, washed in PBT 2x
quickly then 3 × 10min, incubated in 1:1000 Alexa 546-conjugated goat anti-rabbit
secondary (Thermo Fisher, A-11071), washed in PBT 2x quickly then 3 × 10 min,
and mounted in Vectashield (Vector Labs, H-1000).

Stereotypy versus convergence:randomness ratio. In simulations where both
the randomness in PN-KC connections and the convergence (the KC-MBON
connection probability) were varied, we used the MATLAB curve-fitting toolbox to
fit the stereotypy values to the ratio of convergence to randomness (Fig. 8c). As the
dependence showed a sigmoidal shape, we fitted the data using the standard
Hill equation

S ¼
ra

bþ ra

with the ratio (r) as the independent variable and stereotypy (S) as the dependent
variable. The values of the parameters a and b were estimated by non-linear least
squares regression using the fit function, and the goodness of fit was determined
using the coefficient of determination (R2).

Statistics. Unless specified otherwise, n= 100 in simulations, denoting the total
number of network iterations with random seeds. Comparisons of stereotypy with
baseline (0) were made using one sample two-tailed t-test, except otherwise spe-
cified. Correlations were quantified using Pearson’s correlation coefficient.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data for simulations can be regenerated using the code provided (see Code

availability). The processed files for data from other sources used in the study are also

available in the code repository. A reporting summary for this Article is available as

a Supplementary Information file.

Code availability
The simulations were coded in MATLAB (version r2016a, The MathWorks Inc., Natick,

USA). The figures were plotted using a modified version of the gramm plotting

package78. All source code is available at https://github.com/neuralsystems/

magnitude_stereotypy.
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