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Abstract. In this study, we attempt deriving rules to estimate the productivity

of dairy cows using inductive logic programming (ILP) for dairy farming. The

milk yield of dairy cows is economically important and, of course, should be

large. Accordingly, we selected data using the total milk yield in a lifetime as a

threshold, and our ILP algorithm learned about positive and negative cases. As

a result, 42 rules in positive, and 11 rules in negative were derived. ILP is also

applicable for dairy farming and can provide useful information for farmers.

Keywords: Inductive Logic Programming · Prediction · Dairy Cow · Productiv-

ity.

1 Introduction

Till date, inductive logic programming (ILP) approaches have been applied to a wide

range of pattern matching tasks, as the ordinary ILP algorithm can produce a set of

interpretable rules in terms of logic programming based on first-order logic as a (su-

pervised) machine learning model [1]. In contrast to ordinary machine learning models

such as deep neural networks, the resultant rule set produced by an ILP algorithm di-

rectly explains the hidden patterns in a given training set. In some cases, applying the

resulting rules to the desired applications directly is possible.In this study, we apply an

ILP approach to the field of dairy farming. Our aim is to provide helpful feedback to

dairy farmers using an ILP system. To achieve this, this short paper focuses on deriving

hidden rules to describe the productivity of dairy cows at an early stage of rearing.

From 2009 to 2018, the number of dairy farmers in Japan decreased by 4% ev-

ery year, i.e., 32% in total [2]. However, as the number of breeding cows per dairy

farm increases, many farmers face heavier workloads. To overcome this issue, some

dairy farmers have started automating tasks such as milking, employing robots, e.g.

the DeLaval Voluntary Milking System (DeLaval VMS). Using such milking robots,

we can effectively collect data from the dairy cows: milking yield, milking time, feed

intake, hormone content of the yield milk, among others. In this study, we propose an

ILP-based method to find hidden rules of highly (or lowly) productive dairy cows by

combining various data from the aforementioned milking robot and medical histories

recorded by a veterinarian.
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2 Related Work

It is known that the productivity of dairy cows is linked to their pregnancy status.

Hence, relevant studies for modeling the productivity of dairy cows have focused on

the pregnancy status in terms of success or failure of artificial insemination. In 2014

, Shahinfar et al. proposed a method to predict, via machine learning, the chances of

successful pregnancy in cows at the time of artificial insemination based on the data

of the cow’s medical history including production/reproduction [3]. They trained and

compared five machine learning models: decision tree, bagging, random forest, naive

Bayes, and Bayesian network. From the results it was found that the best model was

the random forest, with an accuracy of 70%. As for ILP approaches, Matsumoto et al.

proposed a method to find the hidden rules of optimal conditions for successful artifi-

cial insemination of dairy cows [4]. They obtained rules that explain possible optimal

artificial insemination timings and conditions based on progesterone value, feed intake,

activity amount, and parity.

3 Outline of Our Method

To obtain a set of rules to suit our purpose, we follow the usual ILP preprocessing

techniques. That is, we select data such as milk yield, feed intake and hormones levels

etc. from our raw dataset, extracting features by calculating the mean and variance of

the obtained subset and converting them into logic programming form. Afterwards, we

label such features in terms of the logic program and obtain a set of rules using the

learning algorithm of ILP.

3.1 Data Set

As mentioned in our introduction, we use information on milk yield, feed intake and

hormones levels in the milk collected from dairy cows by the DeLaval VMS milking

robot. A cow enters the apparatus and the robot begins to locate its udder with a three-

dimensional scanner. After detecting the appropriate position of the udder, it attaches a

vacuum cup to milk the udder and starts automatically. During milking, the robot also

records data such as milking time, milk yield and hormones levels in the milk, to be

saved in a management database. For the purpose of our study, we collected the data of

9011 cows in 29 Japanese farms from 2015 to 2019. Our raw dataset consists of almost

2 million rows and 11 columns.

3.2 Preprocessing

In this study, if the raw data entry does not contain any missing columns, and matches

at least one of the following conditions, we use it to extract features: (1) The status of

a cow is ‘retired’ (2) The status of the cow is both ‘active’ and over 3 parities (3) The

milking period of a cow exceeds 300 days. From the obtained subset of our dataset,

we extract 25 types of features, including parity, number of failed inseminations and

before/after of milking peak at each parity. Then, we convert the extracted features into
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logic programming form. In this study, we use the following definitions of 13 predicates

in terms of the logic program to represent both features and rules, where the arguments

of every predicate are a cow number and entry value :

1. Parity of cow

2. Number of times insemination failed

3. Average milk yield of cow

4. Average feed intake of cow

5. Average beta-hydroxybutyric acid content of milk

6. Average lactate dehydrogenase content of milk

7. Average progesterone content of milk

8. Standard deviation of milk yield of cow

9. Standard deviation of feed intake of cow

10. Standard deviation of beta-hydroxybutyric acid content of milk

11. Standard deviation of lactate dehydrogenase content of milk

12. Standard deviation of progesterone content of milk

13. Days until milking peak

14. Days after milking peak

15. Milking days in this parity

To calculate milk yield peak, we use an exponential moving average, which is a moving
average that gives a positive weighting to the most recent data:
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This measure has a smaller amplitude and faster response than a simple moving av-

erage, so the turning point is recognized faster. In this study, we set the parameters as

n = 3 and α = 2
(n+1)

.

We divide the data of 663 cows into a 1:1 positive or negative group. The threshold

in this case is about 18300 kg of milk yield in a lifetime. Afterward, we use Parallel

GKS, developed by Nishiyama et al. [5] to obtain a set of rules as a model of ILP. In

order to use Parallel GKS, we need to specify parameters called Plimit and Nlimit. Here,

Plimit and Nlimit indicate the minimum number of positive cases that must be included

and the maximum number of negative cases that can be tolerated, respectively. We set

the parameters at 30 for Plimit, which corresponds to approximately 9% of the learning

target, and 10 for Nlimit, which corresponds to approximately 3% of the learning target.

4 Result and Discussion

As a result, we obtained 42 rules from the positive group whose total milk yield is more

than average, and 11 rules from negative group. The classification accuracy is 71.43%

for positive cases and 79.56% for negative cases. As an example, we focus on two

rules for the positive group in what follows. Here {T, F} denotes the number of positive

examples (T) and the number of negative example (F) the rule covers.
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{96, 10} class(A) :-

aveBHB 2 before(A, smallLow(0.05:0.07)),

aveBHB 3 after(A, smallHigh(-0.03:0.01)) .

{60, 10} class(A) :-

aveBHB 1 after(A, smallHigh(-0.03:0.00)),

aveBHB 2 after(A, smallHigh(-0.02:0.01)),

aveLDH 2 after(A, smallLow(21.85:31.78)),

aveLDH 2 all(A, smallLow(23.65:32.06))

This rule indicates the following: the BHB average before milking peak at 2 parities was

slightly smaller, and the BHB average after milking peak at 3 parities was considerably

smaller. The second rule indicates that the BHB average after milking peak at 1 parity

was considerably smaller, the BHB average after milking peak at 2 parities was consid-

erably smaller, the LDH average after milking peak at 2 parities was slightly smaller,

and the LDH average at 3 parities was slightly smaller. From the above examples, the

rules related to BHB can be seen. It is known that dairy cows with high BHB con-

centrations might be malnourished. However, it is understood that the generated rules

are appropriate because they showed that the BHB value is smaller than average. On

the other hand, cows must give birth to at least two calves to meet generated rules. In

further studies, we want to derive rules that can be applied to dairy cows at an earlier

period than these results were. In addition, we want to provide a helpful implementation

that allows dairy farmers to utilize these results using touchscreen devices, e.g., tablets.
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