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Development and simulation of multi-diagnostic Bayesian analysis for 2D inference of divertor plasma characteristics
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We present results of the design, implementation and testing of a Bayesian multi-diagnostic inference system which

combines various divertor diagnostics to infer the 2D fields of electron temperature Te, density ne and Deuterium neutral

density n0 in the divertor. The system was tested using synthetic diagnostic measurements derived from SOLPS-ITER

fluid code predictions of the MAST-U Super-X divertor which include appropriate added noise. Two SOLPS-ITER

simulations in different states of detachment, taken from a scan of the Nitrogen seeding rate, were used as test-cases.

Taken across both test-cases, the median absolute fractional errors in the inferred electron temperature and density

estimates were 10.3% and 10.1% respectively. Differences between the inferred fields and the test-cases were well

explained by solution uncertainty estimates derived from posterior sampling. This work represents a step toward a

larger goal of obtaining a quantitative, 2D description of the divertor plasma state directly from experimental data,

which could be used to gain better understanding of divertor physics phenomena.

■✳ ■◆❚❘❖❉❯❈❚■❖◆

❆✳ ▲✐♠✐t❛t✐♦♥s ♦❢ ❝♦♥✈❡♥t✐♦♥❛❧ ❞✐✈❡rt♦r ❞✐❛❣♥♦st✐❝ ❛♥❛❧②s✐s

The divertor of a magnetic confinement fusion device is a

complex system involving transport, atomic, molecular and

impurity processes in the plasma as well as at the divertor

surfaces, all giving rise to energy, momentum and particle

sources and sinks1. These processes are influenced by other

aspects of the divertor such as the divertor geometry (e.g. what

fraction of recycled neutrals escape the divertor) and magnetic

topology. All of the above make it difficult to separate out the

effects of individual processes to verify whether our physics

understanding, embodied in 2D models of the divertor such as

SOLPS-ITER2, are correct.

Despite the variety of diagnostic systems available in the

divertor, they each have limitations such that any single in-

strument cannot directly determine the 2D fields of plasma

characteristics (e.g. electron/ion temperature and density) or

the properties of the neutrals (e.g. atomic and molecular den-

sities). For example, Langmuir probes and Thomson scatter-

ing systems can directly measure some of these fields, but do

so only at a series of isolated points. Filtered camera imaging

systems can collect information from a large fraction of the

divertor cross-section, but provide line-integrated measure-

ments of spectral line emissivities, which are a complicated

function of the underlying plasma fields3.

Due to these limitations, studying the physics of divertor

plasmas has often relied on matching the predictions of codes

like SOLPS-ITER to diagnostic measurements, to find a set

of plasma fields which are consistent with the available data.

This matching process can be extremely time intensive, and

typically requires ‘by-hand’ tuning of input parameters (e.g.

recycling coefficients, boundary conditions such as upstream

density, transport coefficients etc.) over many iterations, and a

period of weeks to months. Conceptually, in this approach as-

sumptions are made regarding how divertor physics processes

and boundary conditions determine the divertor plasma state,

which then implies a corresponding set of expected diagnostic

measurements.

We propose to instead take the inverse approach, where

starting from the diagnostic measurements the plasma state

is inferred, and from the inferred plasma state the underlying

physics processes can be determined. Here we demonstrate

that the first part of this approach, direct inference of the di-

vertor plasma state, is possible using an ‘integrated’ approach

to divertor analysis in which data from multiple diagnostic

systems are combined.

Such an integrated approach, if successful, would not serve

as a replacement for 2D divertor modelling codes. Rather it

is an alternative path to studying the role of various divertor

processes and how they vary during and across discharges. It

may provide an independent test of the validity of the physics

we believe is responsible for determining the divertor plasma

state, and is implemented within 2D divertor modelling codes.

For the purposes of this study we use the geometry

and planned diagnostics of the MAST-U spherical tokamak

as a test-case to investigate integrated divertor diagnostic

analysis4. The MAST-U divertor will be well diagnosed, pos-

sessing a multi-wavelength imaging (MWI) system based on

the MANTIS system at TCV5, which can simultaneously im-

age the divertor for each of up to 10 atomic lines, spectrom-

eters, bolometers, Langmuir probes and a dedicated divertor

Thomson scattering system. A cross-section of MAST-U is

shown in figure 1, and the coverage of diagnostics relevant to

our analysis is illustrated in figure 2.

❇✳ ❆♥ ✐♥t❡❣r❛t❡❞✱ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤ t♦ ❞✐✈❡rt♦r ❛♥❛❧②s✐s

We will make use of the Bayesian approach to data anal-

ysis, in which probability is used as a means of quantifying

the information content of experimental data with respect to

model parameters. By formalising the information content
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FIG. 1. Cross-section of the MAST-Upgrade tokamak. The Super-X

outer divertor configuration can be seen at the top and bottom of the

device.

in this way, we are able to combine data from multiple di-

agnostics in order to strengthen our knowledge of the plasma

fields. This is highly desirable, but comes at the cost of an

increase in the complexity and computational expense of the

data analysis, as typically all data must be analysed simul-

taneously. Multi-diagnostic Bayesian analysis has been suc-

cessfully applied within tokamak plasma studies for profile

diagnostic analysis6,7 and equilibrium reconstruction8,9, but

not yet to inference of the 2D divertor plasma state.

Here we discuss the design, implementation and testing of a

Bayesian multi-diagnostic inference system for the MAST-U

Super-X divertor which aims to infer the fields of plasma elec-

tron temperature and density, and hydrogen neutral density,

throughout the divertor, including associated uncertainties. In

section II we discuss the parametrisation of the problem and

design requirements of the system. In sections III and IV

we show how information regarding the plasma fields in both

measurement data and prior knowledge may be expressed as

probability distributions. In section V the construction of syn-

thetic test-cases using SOLPS simulations is discussed. In

section VI we discuss the numerical strategies used to char-

acterise the posterior distribution for the plasma fields. The

results of analysing the synthetic data are presented in section

VII. A discussion of potential improvements and further work

is given in section VIII, followed by conclusions in section IX.

■■✳ ❙❨❙❚❊▼ ❉❊❙■●◆

❆✳ P❛r❛♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ♣❧❛s♠❛ ✜❡❧❞s

We choose to represent each of the 2D plasma fields via

linear interpolation on a triangular mesh, shown in figure 2,

which covers the relevant areas of the divertor cross-section.

Specifically, this means that by defining the value of a field

at each vertex of the mesh, that field is defined continuously

inside each triangle of the mesh as the plane that connects the

three points which define that triangle.

Using this approach a field, for example the electron tem-

perature field Te(R,z), is defined as

Te(R,z) =
V

∑
k=1

T
(k)

e φk(R,z) (1)

where T
(k)

e is the electron temperature at vertex k, φk(R,z) is

the linear interpolation basis function for vertex k, and V is

the number of mesh vertices. This model for the plasma fields

has the advantage that the model parameters themselves are

the values of each field at each mesh vertex, allowing physics

constraints to be easily applied. For example, to ensure that

the electron temperature field is greater than zero everywhere,

we need only ensure that the parameters which set the temper-

ature at each vertex are greater than zero, i.e. that T
(k)

e > 0∀k.

The mesh shown in figure 2 was used to produce all re-

sults presented in this paper. It was generated by first creating

a mesh of equilateral triangles of side length 35mm which

aligns with a toroidally-symmetric approximation of tile 5,

where the outer strike-point will typically be located. In se-

lect regions of the mesh covering the expected position of the

divertor leg and strike point, triangles were partitioned to pro-

duce a higher-resolution area with side-lengths of 17.5mm,

yielding a refined mesh with V = 586 vertices.

❇✳ ❉❡s✐❣♥ r❡q✉✐r❡♠❡♥ts

To guide the direction of the system design a set of require-

ments were chosen. Firstly, we want to be able to choose eas-

ily which diagnostics are included in the analysis. This means

that diagnostic systems should be able to be added or removed

from the analysis without making direct alterations to the sys-

tem code. Instead, there should be a ‘higher-level’ interface

for specifying the choice of diagnostics.

A key part of the system are the diagnostic forward models.

Also sometimes referred to as ‘synthetic diagnostic’ models,

forward models simulate the experimental data we would ex-

pect to measure using a particular instrument under a given

set of plasma conditions (in this case, the 2D fields of elec-

tron temperature Te, electron density ne and hydrogen neutral

density n0 defined by the mesh). There may be many possible

forward models for a given diagnostic, which vary based on

the physics assumptions they make, their level of complexity

and their computational cost. As before, we want an interface

which allows us to specify which model is used for a given

diagnostic system without making changes to the code.
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FIG. 2. Illustration of diagnostic coverage in the MAST-U Super-X divertor region. (a) poloidal cross-section showing the triangular mesh used

to represent the plasma fields. The filtered cameras (MWI) have a view which covers the entire mesh due to the fact their viewing direction has

both a poloidal and toroidal component (see (b)). The Thomson scattering measurement points are located in the private-flux region for this

particular equilibrium, which is used for MAST-U SOLPS simulations, but can also be located around the separatrix or in the scrape-off layer

depending on experimental set-up. Only the Langmuir probes on tile 5 (highlighted in green) are used for this work. However, others exist on

most divertor surfaces. The dashed line shows a scrape-off layer flux surface which is later used to produce profiles of plasma properties. (b)

top-down view of the Super-X divetor chamber showing the filtered-camera field-of-view (in blue) and the Thomson-scattering laser path (in

red).

❈✳ ❈❤♦✐❝❡ ♦❢ ❞✐❛❣♥♦st✐❝s

In order to infer Te, ne and n0 without including additional

fields, we must choose diagnostics whose measurements can

be predicted using these fields only. The divertor Thomson

scattering system is able to make direct measurements of Te

and ne making it an obvious choice10. We also include the

target Langmuir probes on tile 5 (shown in figure 2) as they are

located where the primary heat and particle fluxes are incident

on a divertor surface. The probe measurements, under certain

assumptions, can also be modelled using only Te and ne
11.

The emissivity of line radiation has a dependence on both

Te and ne, so any filtered camera data will carry information

about the Te, ne fields. However, the emissivity of a given

line also depends on the density field of the corresponding

emitting species, which is charge-state and metastable-state

resolved. For the initial development and testing of this tech-

nique, we consider only Hydrogenic line emission, which can

be modelled using only Te, ne and n0. Consequently we in-

clude 4 filtered cameras which view the Hydrogen Balmer α ,

β , γ and δ lines, which correspond to the n= 3,4,5,6 to n= 2

transitions respectively.

This initial version of the system represents a first step

toward integrating as many divertor diagnostics as possible;

other diagnostics which may be included in future are dis-

cussed in section VIII.

■■■✳ ❇❆❨❊❙■❆◆ ▼❯▲❚■✲❉■❆●◆❖❙❚■❈ ❆◆❆▲❨❙■❙

In Bayesian analysis, our knowledge regarding a set of

model parameters is expressed as a probability distribution

over those parameters, which can be thought of as the distri-

bution of possible ‘causes’ that could have produced the mea-

sured data.

In this case the set of model parameters, which we will call

θ , are the values of Te, ne and n0 at each vertex of the mesh

(which are used by the model in (1) to specify the plasma

fields) such that

θ = {T
(1)

e , . . . ,T
(V )

e ,n
(1)
e , . . . ,n

(V )
e ,n

(1)
0 , . . . ,n

(V )
0 }. (2)

Our goal is to learn about the distribution of θ constrained by

the set of diagnostic data, which is commonly referred to as

D . This distribution is expressed mathematically as the prob-

ability of θ given D , i.e. P(θ |D). This is called the ‘posterior

distribution’, and is given by Bayes’ theorem as

P(θ |D) =
P(D |θ)P(θ)

P(D)
. (3)

Constructing the posterior distribution and learning about its

properties is absolutely central to Bayesian analysis, so it is

worthwhile to discuss the terms on the right-hand side of (3)

individually.

P(θ) is the prior distribution, and represents any informa-

tion we have regarding the model parameters before we in-

clude information from the diagnostic data. For example,

this information may be a physics constraint such as non-

negativity of the plasma fields. This information could be



Development and simulation of multi-diagnostic Bayesian analysis for 2D inference of divertor plasma characteristics 4

encoded into the prior distribution by having the prior prob-

ability fall to zero if any field values are negative. Typically

the prior distribution must be chosen rather than derived - this

choice will be discussed in section IV.

P(D) is usually referred to as the model evidence, and is

important in model selection problems, however we may ig-

nore it in this analysis as the posterior need only be determined

up to a constant of proportionality in order for it to be charac-

terised.

P(D |θ) is the likelihood, and is the probability that we

would observe a dataset D assuming the plasma were in a

state described by a given θ . The use of D serves as a use-

ful shorthand to represent distributions over many individual

data values. For example, suppose that d(i) represents a sin-

gle data value from our full dataset - the likelihood is actually

the joint distribution over every individual data value given

the model parameters, i.e. P(d(1),d(2), . . . ,d(n)|θ). By letting

D = {d(1),d(2), . . . ,d(n)} we may write the likelihood more

concisely as P(D |θ).
If some set of random variables, in this case D , are mutually

conditionally independent (i.e. the uncertainties of all data

values are independent) then the joint distribution of all the

variables can be written as the product over the distributions

for each variable such that

P(d(1),d(2), . . . ,d(n)|θ) =
n

∏
i=1

P(d(i)|θ). (4)

This assumption of independence may not always be valid and

depends on the instruments in question, but it is strongly sim-

plifying so should be made where possible.

❆✳ ■♥❞✐✈✐❞✉❛❧ ❞✐❛❣♥♦st✐❝ ❧✐❦❡❧✐❤♦♦❞s

In multi-diagnostic inference, it is often practical to sepa-

rate out the overall likelihood for all data into a product of

the likelihoods for each diagnostic system. Let the dataset for

the Thomson scattering system and Langmuir probes be la-

belled Dts and Dlp respectively. We will separate out the data

for each filtered camera, such that data for the i’th camera is

represented by Dfc,i. Again making the assumption of mutual

independence between the datasets, the likelihood for all data

can be now written as

P(D |θ) = P(Dts|θ)P(Dlp|θ)∏
i

P(Dfc,i|θ). (5)

It is common practice to work in log-probabilities, not only

for the conceptual simplification that large products of prob-

abilities become sums of log-probabilities, but also for im-

proved numerical stability. Here we use L to indicate a log-

probability density function, such that L (A|B) = lnP(A|B).
Now combining (3) and (5) we can express the log-posterior

distribution L (θ |D) as

L (θ |D) = L (Dts|θ)+L (Dlp|θ)+

(

∑
i

L (Dfc,i|θ)

)

+L (θ)−L (D). (6)

All terms in (6) (except L (D), which is in practice discarded)

can be evaluated independently. From a programming per-

spective, this allows each term to be implemented a separate,

self-contained object, encapsulating all experimental data and

forward models required to evaluate that term. This approach

was used when designing the system, and the resulting struc-

ture of the code is illustrated in figure 3. This allows any of the

terms to be easily included or excluded from the log-posterior,

fulfilling one of the design requirements.

❇✳ ❚❤♦♠s♦♥ s❝❛tt❡r✐♥❣ ❛♥❞ ▲❛♥❣♠✉✐r ♣r♦❜❡ ❧✐❦❡❧✐❤♦♦❞s

A single Langmuir probe or spatial channel of the divertor

Thomson scattering system accumulate their signal over a vol-

ume which can be thought of as a spatial instrument function.

However, if the extent of this instrument function is small

compared to the scale lengths over which the relevant plasma

fields vary, we may approximate them to be point measure-

ments. Making this approximation de-couples the analysis of

the raw Thomson and Langmuir data from the problem of in-

ferring the fields. For example, the posterior distribution for

electron temperature and density for a single Thomson chan-

nel can be computed in advance and stored, and then referred

to when assessing the likelihood of that spatial channel with

respect to a set of proposed fields.

This approximation while convenient is not strictly neces-

sary, and in future when the system is applied to real experi-

mental data we may forgo this assumption and forward-model

from the proposed fields directly to the raw Thomson scatter-

ing and Langmuir probe data. Presently however, we seek

only to demonstrate that the multi-diagnostic inference ap-

proach has value, so we are free to prescribe a sensible likeli-

hood for the data of a point measurement given Te and ne. For

this purpose, we use a uncorrelated bivariate normal distribu-

tion such that

L (Dts|θ) =−
1

2
∑

i





(

∑ j Wi jT
( j)

e −µ
(i)
Te

σ
(i)
Te

)2

(7)

+

(

∑ j Wi jn
( j)
e −µ

(i)
ne

σ
(i)
ne

)2


 .

As in (1), T
( j)

e , n
( j)
e refer to the model parameters which

specify the temperature and density at the j’th vertex of the

mesh. For the electron temperature and density respectively,

µ
(i)
Te
,µ

(i)
ne are the measured values and σ

(i)
Te
,σ

(i)
ne are the uncer-

tainties for the i’th spatial measurement point. Wi j is a matrix

of pre-calculated linear interpolation weights which give the

prediction of the fields at the spatial measurement points. As

the Langmuir probes are also treated as being point measure-

ments of Te and ne, the total log-likelihood for the Langmuir

probes L (Dlp|θ) is also of the form given in (7).
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FIG. 3. Flow chart illustrating the code structure of the system. The posterior distribution is encapsulated as a single object which takes model

parameters (which define the plasma fields) as inputs and returns the posterior log-probability. The prior distribution and the likelihood for

each diagnostic system are separated into self-contained objects, which can independently request the specific information they require about

the plasma fields from the plasma state object. The diagnostic and prior objects each return a log-probability value, which are summed to

produce the posterior log-probability. The ‘MCMC sampler or global optimiser’ is responsible for choosing the next set of parameters to pass

to the posterior object, with the objective of either sampling from the posterior or finding its maximum.

❈✳ ✜❧t❡r❡❞ ❝❛♠❡r❛ s②st❡♠ ❧✐❦❡❧✐❤♦♦❞

The emissivity at the j’th mesh vertex for a given hydrogen

spectral line E j is approximated as a sum of excitation and

recombination emission such that

E j = n
( j)
e n

( j)
0 PECex(T

( j)
e ,n

( j)
e )+(n

( j)
e )2PECrec(T

( j)
e ,n

( j)
e )

(8)

where PECex, PECrec are the photon emissivity coefficients

for excitation and recombination respectively, whose values

are taken from the ADAS database3. This model assumes that

only atomic emission channels contribute meaningfully to the

Hydrogenic spectral emission and that Zeff = 1. The exper-

imental data are camera images, each of which are analysed

as vector of pixel-brightness values b. The brightness at the

i’th pixel bi is modelled as the integral along that pixel’s line-

of-sight through the emissivity field defined by the values in

the emissivity vector E . As the fields are defined through

Barycentric interpolation, which is linear, this line-integral

can be represented exactly by a weighted sum of the emis-

sivities at each mesh vertex. Given a particular mesh, and a

set of lines-of-sight for the pixels, these weights can be pre-

calculated and stored as a ‘geometry matrix’ G such that the

product of this matrix with the emissivities GE yields a pre-

diction of the pixel brightness values. We represent the filtered

camera likelihood as multivariate normal such that

L (Dfc|θ) =−
1

2
(GE −b)⊤ Σ−1 (GE −b) (9)

Experimental calibration of filtered camera systems typically

finds the variance of the pixel brightnesses (assuming the pixel

is not near saturation) to be linear12 such that

Σii = αbi +β (10)

where α,β are constants determined as part of the calibra-

tion. For our synthetic camera model, we re-parametrise (10)

so that the coefficients are more easily interpreted. First sup-

pose that the error at zero brightness can be expressed as some

fraction f0 of the maximum brightness bmax. Second, we fix

the fractional error at the maximum brightness to be a constant

fmax. Under these assumptions the variance may be expressed

as

Σii = bi

(

f 2
max − f 2

0

)

bmax + f 2
0 b2

max (11)

■❱✳ P❘■❖❘ ❈❖◆❙❚❘❆■◆❚❙

We are always forced to choose a prior distribution - even

omitting the prior is equivalent to using a uniform prior (i.e.

one which deems all possible sets of θ to be equally likely),
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FIG. 4. The space of realistic plasma conditions in the MAST-U

divertor as predicted by a group of SOLPS simulation results span-

ning various experimental configurations. (a) The space of realistic

(Te,ne) can be well approximated by placing upper limits on Te, ne

and Pe. (b) The space of realistic n0/(ne + n0) can be bounded by

placing an upper limit on n0/(ne +n0) as a function of Te.

which is itself a choice. Our goal here is to construct a

prior which excludes unrealistic plasma conditions. In or-

der to do this, we require information about the space of re-

alistic plasma conditions that exist within the divertor. To

gain insight into this, we examined a collection of 25 MAST-

U SOLPS simulations which were carried out in support of

a study on enhancements to the plasma exhaust operational

space of MAST-U13. These simulations cover a range of

plasma densities at the core grid boundary (3.6 × 1018 →
1.5×1020 m−3), and heating powers (1.7→ 2.5 MW). In each

case, the fields of Te, ne and n0 in the lower divertor were

extracted, and the values of each field across all simulations

were gathered into a single dataset. By plotting the gathered

field values against one another we are able to derive sim-

ple but useful constraints on plasma conditions which dictate

whether a given triple of (Te,ne,n0) is considered realistic -

these results are summarised in figure 4.

Our chosen prior is made up of three components: a con-

straint on the static electron pressure, a constraint on the neu-

tral fraction and a constraint on the spatial ‘smoothness’ of the

plasma fields. This can be expressed mathematically by writ-

ing the log-prior L (θ) as a sum of three terms, one for each

constraint such that

L (θ) = L (θ)pressure +L (θ)fraction +L (θ)smoothness. (12)

We will now discuss each of these terms individually.

❆✳ ❙t❛t✐❝ ❡❧❡❝tr♦♥ ♣r❡ss✉r❡ ♣r✐♦r

The prior on the static electron pressure for each vertex is

uniform if the pressure is less than the chosen limit Pmax
e , and

Gaussian for values above the limit. The resulting static elec-

tron pressure log-prior is

L (θ)pressure =−
1

2σ2
prs

∑
i

max

(

n
(i)
e T

(i)
e

Pmax
e

−1, 0

)2

. (13)

The value of σprs can be thought of as a ‘fractional tolerance’

of the limit Pmax
e , i.e. by what fraction the limit may be vio-

lated before the prior probability drops significantly. Based on

the SOLPS data we set Pmax
e = 2×1020 eVm−3 and σprs = 0.1.

❇✳ ◆❡✉tr❛❧ ❢r❛❝t✐♦♥ ♣r✐♦r

The upper limit on the neutral fraction at each vertex f max
i

is set as a function of the temperature at each vertex such that

f max
i = (1− c)exp

(

−T
(i)

e /l
)

+ c, (14)

where c = 0.04 and l = 5eV. In figure 4 this limit is shown

to be greater than 99.5% of neutral fractions in the SOLPS

dataset. The neutral fraction prior has the same form as that

used for the static electron pressure in (13) such that

L (θ)fraction =−
1

2σ2
frc

∑
i

max

(

1

f max
i

n
(i)
0

n
(i)
e +n

(i)
0

−1, 0

)2

,

(15)

where σfrc = 0.1.

❈✳ ❙♣❛t✐❛❧ s♠♦♦t❤♥❡ss ♣r✐♦r

We want our prior to favour solutions where the plasma

fields are spatially smooth. This requires us to choose a met-

ric for the overall ‘roughness’ of the fields, so that solutions

which are too rough can be penalised by assigning them a

lower prior probability. Suppose v is a vector of field values

at each mesh vertex, and define the ‘umbrella’ matrix operator

U such that

Ui j =











−1 if i = j

1/n if vertex j is one of n vertices connected to i

0 if vertex j is not connected to i

(16)



Development and simulation of multi-diagnostic Bayesian analysis for 2D inference of divertor plasma characteristics 7

TABLE I. Upper and lower bounds placed on the values of the plasma

fields at all mesh vertices.

Te ne n0

lower bound 0.2 eV 1×1016 m−3 1×1015 m−3

upper bound 60 eV 2.5×1020 m−3 2×1020 m−3

The product Uv is then a vector of differences between the

field value at each vertex and the average field value of all ver-

tices to which it is connected. For a purely equilateral mesh, if

the value of a vertex and all its neighbours lie in a plane, then

this difference will be exactly zero. In this sense the umbrella

operator measures how much the field deviates from a plane

in the local region of each vertex. We therefore take the sum

of the squares of the umbrella differences, |Uv|2, as our metric

for the total ‘roughness’ of a field.

It is helpful to consider whether the fields can be trans-

formed such that the expected solutions for the transformed

fields better satisfy the assumption of smoothness. Enforcing

smoothness on these transformed fields means that real fea-

tures of the fields, which we want to preserve, are less likely

to be penalised by the smoothing prior.

For this reason we enforce spatial smoothness on the natu-

ral log of the plasma fields, rather than the fields themselves.

Let T̃e, ñe, ñ0 represent the vectors of log-temperature, log-

density and log-neutral density at each vertex of the mesh,

and define S = U
⊤

U. The roughness of one of the log-

fields, for example the log-temperature, can now be written as

|UT̃e|
2 = T̃⊤

e ST̃e. By introducing a constant σsmth, which de-

termines how strongly overly-rough fields are penalised, we

can define the smoothing log-prior as

L (θ)smoothness =−
1

2σ2
smth

(

T̃⊤
e ST̃e + ñ⊤e Sñe + ñ⊤0 Sñ0

)

.

(17)

Unlike the priors on the static electron pressure and neutral

fraction, which effectively set upper limits on those quantities,

the smoothness prior has a strong impact on the entire poste-

rior distribution. Consequently, additional work is required to

select an appropriate value for σsmth - this is discussed further

in section VII.

❉✳ ❇♦✉♥❞s ♦♥ ✜❡❧❞ ✈❛❧✉❡s

Upper and lower bounds are placed on the electron tem-

perature, density and neutral density at every vertex. These

bounds, chosen based on the SOLPS data, are given in table I.

The bounds could be imposed by including an additional term

in the definition of the log-prior in (12), but in practice it is

easier to allow the bounds to be enforced by the optimisation

or sampling algorithm which is being used to characterise the

posterior distribution.

❱✳ P❘❖❉❯❈❚■❖◆ ❖❋ ❙❨◆❚❍❊❚■❈ ❚❊❙❚✲❈❆❙❊ ❉❆❚❆

❆✳ ❙❖▲P❙ t❡st✲❝❛s❡s

In order to test the system we require synthetic data for each

instrument, and that this data is as representative as possible

of the real experimental data which will be measured dur-

ing MAST-U operation. For this purpose we use results from

SOLPS simulations of the MAST-U edge and divertor to pre-

scribe the fields of electron temperature, density and neutral

density from which the synthetic data will be derived.

Here we consider two SOLPS cases taken from a scan of

the Nitrogen seeding rate to detachment. Both cases have the

same magnetic equilibrium, 2.5 MW of heating power and a

Deuterium fuelling rate of 2×1021 s−1. The two cases, which

we will from now refer to as the low- and high-seeding cases,

have Nitrogen seeding rates into the divertor of 2× 1020 s−1

and 5×1020 s−1 respectively. These two cases are not part of

the set used to inform the prior constraints discussed in section

IV, however their field values lie well inside the limits set by

the chosen prior.

Note that although in the SOLPS data itself the electron

density and hydrogen ion density fields maybe be different

due to the presence of the seeded Nitrogen, we set them to

be equal when producing synthetic data, as this equality is

assumed in the emission model in (8).

The field values on the SOLPS grid are interpolated on to

the triangular mesh prior to producing the synthetic data, such

that the resulting mesh representation of the fields becomes

a test-case which we will attempt to reconstruct. The mesh-

representations of the plasma fields for each of the two test-

cases are shown in figure 5.

❇✳ ❆❞❞✐t✐♦♥ ♦❢ s✐♠✉❧❛t❡❞ ♥♦✐s❡ t♦ s②♥t❤❡t✐❝ ❞❛t❛

After synthetic measurements for each instrument are gen-

erated using their respective forward-models, simulated noise

is added to the data. For the filtered camera images, the vari-

ance of the noise added to each pixel is set according to (11),

where fmax = 0.025 and f0 = 1/256.

The point measurements of electron temperature taken by

the Thomson scattering and Langmuir probes systems have

an assigned uncertainty of σTe = Te/10+0.1eV, and the cor-

responding electron density measurements have an assigned

uncertainty of σne = ne/10+1018 m−3.

❱■✳ ❈❍❆❘❆❈❚❊❘■❙■◆● ❚❍❊ P❖❙❚❊❘■❖❘
❉■❙❚❘■❇❯❚■❖◆

Now that all terms in (6) which have a dependence on θ
have been defined, the posterior log-probability can be evalu-

ated for any chosen set of plasma fields. The posterior must

now be characterised in a way that allows us to extract useful

information about the plasma fields.
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FIG. 5. Plots showing the mesh-representations of the electron temperature, electron density and neutral density taken from the Nitrogen-

seeded SOLPS predictions. Plots (a,b,c) and (d,e,f) show the low- and high-seeding cases respectively

❆✳ ▼❛①✐♠✉♠ ❛ ♣♦st❡r✐♦r✐ ❡st✐♠❛t✐♦♥

The first stage of characterising the posterior is to find the

set of model parameters which maximises its value, referred to

as ‘maximum a posteriori’ (MAP) estimation14. To locate this

maximum, we employ a ‘hybrid’ approach which combines

both stochastic and gradient-based optimisation - a more de-

tailed description of this approach is given in appendix A.

❇✳ ❍❛♠✐❧t♦♥✐❛♥ ▼♦♥t❡✲❈❛r❧♦ s❛♠♣❧✐♥❣

Although MAP estimation yields a useful single-value es-

timate of the model parameters, it does not provide any infor-

mation regarding the uncertainties associated with that esti-

mate. To characterise these uncertainties we employ ‘Hamil-

tonian Monte-Carlo’ (HMC), a gradient-based sampling algo-

rithm which is particularly effective (in comparison to other

approaches) in cases where the number of model parameters

is large, and strong correlations are present15.
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FIG. 6. Mean absolute difference between the field values of the low-

seeding case and those of the corresponding MAP estimate for each

of the plasma fields as a function of the smoothing prior uncertainty

σsmth. The chosen value of σsmth = 0.2 is indicated by the dashed

vertical line.

❈✳ ▼❛r❣✐♥❛❧ ❡①♣❡❝t❛t✐♦♥

An alternative to the MAP estimate is the marginal expecta-

tion (MEX), where the value of each parameter is taken to be

the mean of its corresponding marginal distribution. Where

as the MAP is the single most probable solution, the marginal

expectation can be thought of as the ‘average’ of the possible

solutions. The marginal expectation estimate can be calcu-

lated easily by taking the mean of the sample generated using

Hamiltonian Monte-Carlo.

❱■■✳ ❘❊❙❯▲❚❙ ❖❋ ❙❨◆❚❍❊❚■❈ ❚❊❙❚■◆●

❆✳ ❙❡❧❡❝t✐♥❣ t❤❡ s♠♦♦t❤✐♥❣ ♣r✐♦r ✉♥❝❡rt❛✐♥t②

The value of the smoothing prior uncertainty σsmth, which

appears in (17), can have a strong impact on the posterior dis-

tribution and therefore the MAP estimate. To assess this im-

pact we evaluated the mean absolute difference between the

MAP estimate and the low-seeding case at all vertices for a

range of values of σsmth - the results of this scan are shown

in figure 6. The minima in the error for each field are fairly

broad, but do not all occur at the same value of σsmth. The

results presented here used a value of σsmth = 0.2 which pro-

vides a good balance between low error in electron tempera-

ture and electron density.

In an applied case using experimental data we cannot select

the smoothing uncertainty in this fashion as the true values of

the fields are unknown. As such, testing selection criteria for

the smoothing uncertainty which are applicable to experimen-

tal data will be the subject of further work.

❇✳ ❈♦♠♣❛r✐s♦♥ ♦❢ ✐♥❢❡rr❡❞ ✜❡❧❞s ❛♥❞ t❡st✲❝❛s❡s

The maximum a postiori (MAP) and marginal expectation

(MEX) estimates were evaluated as described in section VI

for both test-cases. The inferred field values from the MEX

estimate are compared with those from the corresponding test-

case in figure 7. The mean-absolute-difference between the

inferred and test-case fields is used to quantify the accuracy of

the estimates. The mean-absolute-difference for the electron

temperature is given by

〈|∆Te|〉=
1

V

V

∑
k=1

|T
(k)

e, inf −T
(k)

e, test| (18)

where T
(k)

e, inf and T
(k)

e, test are the inferred and test-case elec-

tron temperature at vertex k respectively. The mean-absolute-

differences for each test-case are given in table II for both the

MAP and MEX estimates. The marginal expectation ap-

pears to outperform the MAP estimate for these cases, but

with the exception of the high-seeding neutral density esti-

mation, the differences in the mean absolute error values are

less than 10%.

We note that the estimate of the electron temperature be-

comes less reliable above ∼10 eV - this may occur because

at these higher temperatures the emission is almost purely due

to excitation, which is very insensitive to electron temperature

above 10 eV for the Balmer series.

Conversely, in regions where the temperature is very low,

the emission becomes dominated by recombination, which

has no dependence on the neutral density. We suspect this

is the cause of the large errors in the neutral density estima-

tion for the high-seeding test-case, which is more strongly de-

tached than the low-seeding case, and therefore has a large

region of recombination-dominated emission.

The absolute fractional error |T
(k)

e, inf/T
(k)

e, test − 1| is another

useful metric for gauging the overall accuracy of the inferred

fields. Averaged over both the low and high-seeding test-

cases, the median absolute fractional errors in the electron

temperature and density estimates were 10.3% and 10.1% re-

spectively. We use the median rather than the mean in this

case as it is more robust against large outliers that can occur

when field values get very small.

The inferred fields for the low-seeding case, along with the

differences between the inferred fields and the test-case are

shown in figure 8. These difference plots highlight spatial

structure in the estimation errors, such as the under-estimation

of the temperature along the separatrix. The peak in the elec-

tron temperature at the separatrix is a very sharp feature which

will be penalised by the spatial smoothing prior. This, com-

bined with the relatively weak temperature dependence of the

emission in that region, is likely the reason for the under-

estimate of the separatrix temperature. This highlights a com-

mon difficulty of regularising solutions which possess a wide

range of spatial scale-lengths - any level of smoothing which

suppresses non-physical fluctuations in regions with a long

scale-length will also over-smooth in regions with short-scale

lengths.
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TABLE II. The mean-absolute-difference as defined in (18) for Te, ne and n0 in each test-case, and for both the MAP and MEX estimates.

〈|∆Te|〉 (eV) 〈|∆ne|〉 (m−3) 〈|∆n0|〉 (m−3)

low-seeding MAP 1.12 1.57×1018 3.50×1017

low-seeding MEX 1.09 1.46×1018 3.38×1017

high-seeding MAP 0.81 1.60×1018 7.37×1017

high-seeding MEX 0.74 1.65×1018 4.05×1017
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FIG. 7. Scatter plots of the field values of the test-cases versus those of the MEX estimate at each vertex of the mesh. Plots (a,b,c) and (d,e,f)

show results from the low- and high-seeding cases respectively.

Tests were also carried out wherein only measurements

from a single filtered camera were used to constrain the

plasma fields in order to verify the effects of a multi-

diagnostic approach. The MAP estimates of the fields ob-

tained in these tests were completely erroneous, and posterior

sampling predicted very large uncertainties in the solution.

Although imaging data for a single emission line does pro-

vide some information about Te, ne and n0, it is not a strong

enough constraint to estimate them with useful accuracy. This

is because the set of plasma fields which reproduces the mea-

sured image to within experimental error is too large and too

varied. Inclusion of additional filtered images of different

Balmer lines improves the estimate significantly because the

size of this set of potential solutions is greatly reduced, as now

a valid solution must reproduce all of the images simultane-

ously rather than just one.

❈✳ ❯♥❝❡rt❛✐♥t② ❡st✐♠❛t✐♦♥

Uncertainties in the inferred fields for both test-cases were

estimated by sampling from the posterior distribution using

Hamiltonian Monte-Carlo.

Figure 9 shows a comparison of the test-cases and inferred

fields along a scrape-off layer flux-surface (shown in figure 2),

and shows the 95% highest-density interval derived from the

sample. We see that the differences between the test-case val-

ues and the inferred fields are well explained by the estimated

uncertainties almost everywhere. One notable exception is

that the uncertainty in the electron temperature and density

appears to be under-estimated close to the target.

For an inverse problem of this type the posterior is typically

highly multi-modal. It is possible that the Markov-chains used

to generate the sample were trapped near the maxima corre-

sponding to the MAP estimate, and were unable to explore

other maxima which may feature more varied configurations

of the fields near the target. To investigate this we plan to
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FIG. 8. The marginal expectation estimate of the electron temperature, electron density and neutral density fields for the low-seeding case are

shown in (a), (b) and (c) respectively. The corresponding differences between the marginal expectation estimate of a field and the test-case

values are shown in (d), (e) and (f).

test extensions to standard Markov-chain Monte-Carlo which

are designed specifically to allow exploration of multi-modal

distributions such as parallel tempering16.

❉✳ ■♥❢❡r❡♥❝❡ ♦❢ ♣❤②s✐❝❛❧ ♣r♦❝❡ss❡s

The long-term goal of developing this analysis is to help

advance our understanding of divertor physics by providing

direct information about the 2D divertor plasma state. We are

therefore interested not only in plasma fields like Te and ne,

but also the behaviour of physical processes like ionisation

and recombination which are partially responsible for deter-
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FIG. 9. Comparison of profiles along a scrape-off layer flux-surface (shown in figure 2) derived from the inference results and the test-cases.

Plots (a,b,c) and (d,e,f) show results from the low- and high-seeding cases respectively. The coloured areas indicate the 95% highest-density

intervals (HDI) derived from the sampling results.

mining the plasma state.

If these processes can be modelled using only the inferred

plasma fields, then their values and uncertainties can also be

inferred from the posterior sample. An example of this is

shown in figure 10, where the Deuterium ionisation rate along

a scrape-off layer flux-surface was calculated from the poste-

rior sample, and is compared with the corresponding ionisa-

tion calculated from the test-cases.

❱■■■✳ ❉■❙❈❯❙❙■❖◆

❆✳ P♦t❡♥t✐❛❧ ✐♠♣r♦✈❡♠❡♥ts t♦ ✐♥str✉♠❡♥t ♠♦❞❡❧❧✐♥❣

All synthetic diagnostic models are ‘idealised’ to some ex-

tent, as they cannot reasonably capture every subtlety of the

experimental set-up perfectly. Our goal however should be to

make these models more realistic where possible, and this will

be the focus of further work on the system before it is applied

to real experimental data.

For example, uncertainty in the absolute brightness calibra-

tion of filtered cameras is a potentially important effect for

which we do not currently account. This can be achieved by

including the calibrations as so-called ‘nuisance parameters’.
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FIG. 10. The Deuterium ionisation rate, calculated using ADAS,

along a scrape-off layer flux surface (shown in figure 2). The points

show ionisation calculated from the test-cases, and the lines show

the inferred ionisation (calculated from the inferred plasma fields).

Uncertainties on the inferred ionisation are given by the coloured

areas, which show the 95% highest-density interval.

This process involves allowing the calibration values them-

selves to be free parameters in the system, with a prior dis-

tribution determined by the measurement of those calibration

values. By allowing the calibration values to vary in this way,

effects of the uncertainty in their value are reflected in the in-

ferred plasma fields.

Some of the light collected by the MWI system will have

reached the camera after being reflected by a material surface

in the divertor. The algorithm used here to calculate the Ge-

ometry matrix G, which appears in (9), only accounts for light

which has travelled directly from the plasma to the camera. It

is however possible to account for reflections from material

surfaces by using a more sophisticated approach to calculat-

ing the geometry matrix17, with an associated increase in the

computational cost of the filtered camera forward-model.

It may be the case that in practice, the Langmuir probes

are unable to measure the electron temperature with an un-

certainty comparable to that which we assume when generat-

ing synthetic data when the temperature drops below 5 eV. In

such cases, the probes may only provide an ‘upper limit’ mea-

surement on the temperature. Accounting for this will require

forward-modelling to produce synthetic probe data, which can

be analysed to calculate joint-distributions of Te, ne to be used

in place of the assumed Gaussian errors.

In this work the SOLPS test-cases were treated as if no

impurities were present. However, in real experiments with

strong impurity seeding, the presence of impurities can affect

measured diagnostic signals. Consequently, modifications to

the diagnostic forward-models may be required to properly

account for these effects. For example, the emission model in

(8) assumes that the hydrogen ion and electron densities are

equal, which may no longer be reasonable with strong seed-

ing. Although the effect is expected to be small, impurities

can also impact Langmuir probe measurements18.

❇✳ ■♥❝❧✉s✐♦♥ ♦❢ ❛❞❞✐t✐♦♥❛❧ ❞✐❛❣♥♦st✐❝ s②st❡♠s

The MAST-U divertor spectroscopy system could be a use-

ful additional source of information for inferring the plasma

fields. The system will observe a large number of spectral

lines, including many from various impurities, so modelling

all data produced by the spectrometers is not feasible. How-

ever, if we restrict the analysis to spectral lines which are al-

ready being viewed by the MWI system, then this data can

be modelled without greatly increasing the number of model

parameters. The brightness of these lines as measured by

the spectrometers would provide a cross-check on the bright-

nesses measured by the MWI system, and it may also be pos-

sible to constrain the electron density along the spectrometer

line-of-sight using information encoded in the spectral line-

shape due to Stark-broadening19.

❈✳ ❈❤♦✐❝❡ ♦❢ ✐♠❛❣❡❞ s♣❡❝tr❛❧ ❧✐♥❡s

The emissivity model in (8) does not account for emis-

sion resulting from the production of excited Deuterium atoms

due to plasma-molecule interactions. This emission may be

a non-negligible component of low-n Balmer series emissiv-

ities, particularly for Deuterium Balmer-α , in strongly de-

tached conditions19,20. Deuterium-α through δ were chosen

as a starting point from which to develop and test the system,

but there are many possible choices of atomic lines, including

higher-n Balmer lines and impurity emission lines.

Determining the optimal group of lines for inferring the

plasma fields is complex - one needs to consider not only the

information content of the lines with respect to the plasma

fields, but also how well those lines can be measured (con-

sidering their brightness, wavelength and contamination from

neighbouring spectral lines), how accurately their emissivity

can be modelled, and the total number of plasma fields re-

quired in order to model them. Testing alternative groups of

atomic lines which best meet these criteria will be an impor-

tant part of the ongoing development of the system.

❉✳ ■♠♣♦s✐♥❣ ♣❤②s✐❝s ❝♦♥str❛✐♥ts ✉s✐♥❣ ❡q✉✐❧✐❜r✐✉♠
✐♥❢♦r♠❛t✐♦♥

The spatial structure of the Te and ne fields in the divertor is

closely tied to that of the magnetic field and the resulting flux-

surfaces. If the mesh used to parametrise the plasma fields

were constructed such that every vertex of the mesh lay on one

of a chosen set of flux-surfaces, this would allow additional

physics constraints to be imposed.

For example, we could include an additional term in the

prior distribution which requires that the electron tempera-

ture decrease monotonically along each flux surface when ap-

proaching the strike-point. It would also allow for a more

powerful constraint on spatial smoothness of the fields, as we
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could require that the fields vary much more smoothly along

flux-surfaces than perpendicular to them.

There are some disadvantages to this approach however.

The equilibrium reconstruction required to build such a grid is

itself an inverse problem whose solution is uncertain. Given

equilibrium reconstructions which include uncertainty esti-

mates (which are typically unavailable), propagating this un-

certainty through the system so that it is reflected in the un-

certainties on the plasma fields would be difficult, as the grid

remains fixed throughout the analysis.

Imposing physics constraints in this way, and the effect this

has on the accuracy of the inferred 2D plasma fields will be

explored as part of further work.

❊✳ ❚♦r♦✐❞❛❧ ❛s②♠♠❡tr② ❡✛❡❝ts

The major radius of tile 5 in the MAST-U divertor (visible

in figure 2) varies as a function of toroidal angle, with a peri-

odicity that matches the toroidal-field ripple of the device in

order to distribute power more evenly across the tile surface.

Cases in which there is strong emission close to the surface

of tile 5 may introduce 3D effects into filtered camera mea-

surements which cannot be reproduced by the 2D model we

use here for the plasma fields. The significance of this effect

could be explored theoretically using 3D simulations of the

MAST-U divertor which account for the toroidal asymmetry

of tile 5.

■❳✳ ❙❯▼▼❆❘❨ ❆◆❉ ❈❖◆❈▲❯❙■❖◆❙

We have presented details of the first design, implementa-

tion and testing of a Bayesian multi-diagnostic inference sys-

tem, which can infer the 2D fields of electron temperature,

density and neutral density over the divertor cross-section.

The system has been designed to be modular and flexible, so

that the diagnostics utilised by the system, and the underlying

fields that are to be obtained by the analysis, can be changed

easily.

For this initial test of the system we restricted the inferred

plasma fields to only electron temperature, electron density

and Deuterium neutral density. These fields were inferred

using simulated experimental data, which included appropri-

ate added noise, derived from two SOLPS-ITER simulations

taken from a scan of the Nitrogen seeding rate. The syn-

thetic diagnostic models used to generate the simulated data

included four filtered cameras as part of the multi-wavelength

imaging system viewing the first four Balmer lines, as well

as divertor Thomson-scattering system and target Langmuir

probes.

These system tests have demonstrated that for the given

synthetic data, the 2D plasma fields can be inferred with

enough accuracy to give powerful insight into the physics of

plasma behaviour in the divertor. It was also demonstrated

that uncertainties in the inferred plasma fields can be reliably

estimated using Hamiltonian Monte-Carlo sampling, which

would allow conclusions to be drawn from the results with

greater confidence.

This first effort at Integrated data analysis for the divertor

has thus been successful in demonstrating that the use of a

Bayesian, multi-diagnostic approach to infer the plasma ‘so-

lution’ merits further investigation. Future work will focus on

the inclusion of additional diagnostic systems, and the appli-

cation of this analysis to real diagnostic data from tokamak

experiments.

❆❈❑◆❖❲▲❊❉●▼❊◆❚❙

This work has been carried out within the framework of

the EUROfusion Consortium and has received funding from

the Euratom research and training programme 2014-2018 and

2019-20 under grant agreement No 633053. The views and

opinions expressed herein do not necessarily reflect those of

the European Commission. This work has also received fund-

ing from the EPSRC under the grant EP/N023846/1 and the

research by B.Lipschultz was funded in part by the Wolfson

Foundation and UK Royal Society through a Royal Society

Wolfson Research Merit Award as well as by the RCUK En-

ergy Programme (EPSRC grant number EP/I501045).

❆♣♣❡♥❞✐① ❆✿ ❖♣t✐♠✐s❛t✐♦♥ ♠❡t❤♦❞♦❧♦❣②

The line-integrated nature of filtered camera measurements,

and the non-linear relationship between line emissivities and

the plasma fields introduces strong non-linear correlations be-

tween the model parameters. The presence of correlations

and a large number of free parameters (around 1800 in this

case) usually necessitates the use of gradient-based optimisa-

tion and sampling techniques.

Such techniques require the derivative of the log-posterior

with respect to the model parameters. However approximat-

ing this derivative via finite-difference is prohibitively expen-

sive as the number of model parameters is large. The sys-

tem was therefore designed such that the gradient of the log-

posterior can be calculated analytically. As a result, evaluat-

ing the gradient takes around 3 times longer than evaluating

the log-posterior itself - this is approximately 600 times faster

than evaluating the gradient using finite-difference for the cur-

rent number of model parameters.

However, we also found the posterior distribution to be

highly multi-modal, which causes issues for gradient-based

optimisation algorithms which tend to converge to local rather

than global maxima.

To address this we employ a ‘hybrid’ approach which com-

bines a genetic algorithm with the L-BFGS algorithm21. In

this approach a set of candidate solutions is created (initially

by random sampling), and then each candidate is used as a

starting-guess for the L-BFGS algorithm, which convergences

to a (typically local) maximum in the posterior log-probability

density. Based on the resulting set of local maxima, a new

set of candidate solutions is generated using the genetic algo-

rithm, and this process is repeated until the highest observed
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log-probability converges.

Evaluating the L-BFGS algorithm for each candidate solu-

tion is an independent computation, allowing them to be ef-

ficiently distributed across multiple CPUs. The results pre-

sented here used a population of 20 candidate solutions dis-

tributed over 20 threads of a Intel Xeon E5-2695 v3. The

maximum log-probability had converged sufficiently after 80

generations, taking around 80 minutes in total.
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