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Abstract—Network congestion control and management has
long been a major issue in providing low-latency, high throughput
and high link-utilisation. In particular, Data Center Network
(DCN) environments, often dominated by partition-aggregate
workloads, suffer performance collapse due to TCP Incast
caused by inadequate congestion control parameters. This paper
proposes a step in solving this problem. In particular, we describe
a novel framework to overcome and control congestion in DCNs
based on Software Defined Networking (SDN). We propose a
native SDN-based congestion control mechanism, termed Fair
Data Center TCP (F-DCTCP). As we shall see, the experimental
results show that F-DCTCP outperforms all previous proposals
by providing the best combined overall performance in terms of
throughout, fairness and flow completion times, making it highly
attractive for next generation networks.

Index Terms—SDN, TCP, Congestion, DCTCP, FDCTCP

I. INTRODUCTION

Traditional approaches to manage network resources are

based on manual configuration of proprietary devices; which

are cumbersome, error-prone and fail to fully utilize the

capacity of physical network infrastructures. They also lack

flexibility as they tend to be optimised only in a specific

subnet of a larger network, this limitation significantly reduces

the overall performance of the network [1]. Recently, SDN

(Software Defined Network) [2] [3] [4] [6] has emerged as

a promising solution for a more robust and efficient means

of Network management. SDN is characterized by its two

distinguished features; decoupling the control plane from the

data plane in switching devices and allowing network control

to be directly programmable. With respect to this advance-

ment, SDN has proved largely successful in solving most of

the problems and limitations in traditional networks [7].

Conversely, congestion control is a perplexing issue in the

area of network management. As traditional Transmission

Control Protocol (TCP) congestion control mechanisms are

designed to operate in diverse networks, their control mea-

sures are based on estimation of network traffic patterns; as

such they are menaced with inconsistencies resulting in the

throttling of network performance [8]. In light of this problem,

SDNs inherent capability of a centralised control and global

view of the entire network is one which brings a glimpse of

hope to the eradication of this dominant predicament. The

level of abstraction added by SDN to the functionalities of the

network equipment (switches, routers,...) and the possibility

to manage them all globally requires rethinking congestion

control and management paradigms in order to develop a

revolutionary congestion control mechanism and also provide

performance enhancing capabilities of the inherent features of

SDN.

Motivated by the lack of adequate congestion control mech-

anism able to keep up with current and next generation

networks traffic, this paper proposes a novel SDN-based con-

gestion control mechanism that addresses the above-mentioned

shortcomings. In particular, the main contributions of this

paper are as follows:

• We propose a novel and efficient SDN-based conges-

tion control mechanism, termed Fair Data Center TCP

(F-DCTCP), to overcome and control congestion in

DCNs. F-DCTCP is natively designed for SDN-based

controllers, allowing for a new class of pure SDN-based

congestion control solutions.

• We demonstrate that F-DCTCP outperforms all previ-

ous proposals by providing the best combined-overall-

performance in terms of throughout, fairness and flow

completion times respectively, making it highly attractive

for next generation networks.

The remainder of this paper is structured as follows: Section

2 states the problem in detail with a brief study of two

scenarios from our performance evaluation of traditional TCP

congestion approaches. Section 3 gives a succinct critical

review of similar works in the area of adapting TCP to

different domains. Section 4 describes our approach in details

and expatiates on how the envisaged result can be achieved

by describing the algorithm in stages. Section 5 presents a

performance evaluation and analysis of our solution; further

comparing this with existing works. Section 6 concludes the

work and gives recommendation for future work.

II. PROBLEM STATEMENT

While the demand for internet services continues to grow

enormously, the resources to provide them are greatly limited

in terms of cost, processing power, capacity and perfor-

mance [4]. The TCP is the main Internet transport protocol

that carries 90% of the Internet traffic [5]. Hence when

incoming requests increases aggressively, in a network, to a



point where it eclipses the outbound capacity of a router, a

network congestion occurs. This causes delay, packet loss,

low throughput and in worst cases result to network collapse.

Hence, congestion control is paramount in any network [9].

TCP congestion control has been the standardised approach

to solving this problem in traditional networks. It works by

limiting the amount of data sent by a host every round-trip

time (RTT), thus keeping the network stable. However, due

to the heterogeneity of the internet and limited information

on the instantaneous state of a network, TCP is designed to

operate based on allusive network statistics; as a result of this

and the diverse nature of different networks, a performance

instability occurs whereby TCP intermittently increases and

decreases its congestion window size to cater for changes in

traffic. This limitation seriously degrades the throughput and

utilisation of individual networks irrespective of the capacity

of that network [10]. We will describe this problem in detail

with a brief study of two scenarios from our performance

evaluation of Traditional TCP congestion approach.

A. Case 1: TCP in Long Fat Networks

We performed a TCP throughput test in a high-speed

network with long delay, known as long fat network where

four flows are sharing a 250Mbps bottleneck link. Fig. 1 shows

the result of the test in terms of achievable throughput. It was

realised that regardless of the high capacity dedicated link

(250Mbps) that was put in place for this network connection,

its throughput was 75% lower than the theoretical performance

of TCP, this is certainly a very poor performance and under-

utilization of resources. This fact is strengthened by the result

represented in the second graph of Fig. 2, which shows a

maximum utilisation of 18% by TCP CUBIC [11] and just

about 12% for the default TCP Reno [12].

Fig. 1. Average TCP Throughput Analysis of four TCP flows.

B. Case 2: TCP Incast

We performed an another throughput analysis of TCP

congestion control in Data Centre Networks, to determine

the suitability of each TCP variant. Fig. 3 shows that there

was a total throughput collapse of 88% witnessed while using

different TCP congestion control variants; only the newly

developed DCTCP was able to achieve higher throughput.

Fig. 2. Link utilisation of four TCP flow variants.

However, its performance in this scenario remains unsatisfac-

tory with respect to fairness among competing flows (flow 4 is

starved using DCTCP). This also establishes that if the default

TCP congestion control was used, there will be a significant

reduction in throughput and a network collapse.

Fig. 3. Incast Throughput analysis of TCP variants.

From the above study, we clearly see the variations in

performance of TCP congestion control algorithms in different

network domains and we can appreciate that there is a need

to adopt or optimise different TCP congestion algorithms in

different networks. As SDN becomes increasingly popular,

with its deployment in several high-speed networks [10], there

exists two pressing needs:

• To adapt traditional TCP congestion control to SDN.

• To optimise these algorithms such that we can explore the

features of SDN to achieve an optimal congestion control

mechanism.

III. RELATED WORK

Aside from the core (traditional) TCP congestion control

mechanisms and its variants; Following the discovery of

the TCP incast problem by Nagle et al. [13] a number of

propositions have been made. In this section, we give a brief



summary of relevant solutions based on the implementation

domain. These domains can be grouped into these areas:

Application based solutions, switch assisted solution, window

based solution and SDN based solutions. The works are

described below:

A. Application Based Solutions

Solutions in this category are based on utilising application

information (e.g. knowing the amount of parallel connections

to different servers), to ensure the avoidance of the scenarios

necessary for incast to occur. The most notable works in this

aspect include [14] and [15]. The practicability and stability

of this solution becomes a major problem as it is difficult to

get a timely global knowledge of application information and

ensuring synchronisation in all connections. This makes the

solution difficult to implement and deploy.

B. Switch Assisted Solutions

These solutions propose a modification to switches to pre-

dict the occurrence of TCP incast and pro-actively avoid it. A

notable implementation of this is IQM; which works by setting

the transfer rates of elephant flows to 1 MSS upon detection

of TCP incast. Aside from the unfairness of this approach a

major drawback is in the need to modify the switches hardware

to support this functionality.

C. SDN-Based Solutions

A number of solutions for congestion control in SDN

have been proposed; the worthy ones are: OpenTCP [16] and

SDTCP [17]. OpenTCP is not a new solution but just an SDN

application that enables network operator implement different

TCP variants in advance. For example, it allows the selection

of either CUBIC or Vegas [18] as the default congestion

control or tuning of pre-determined congestion parameters,

which also lacks accuracy and timeliness. SDTCP [13], pro-

poses an incast congestion control mechanism that utilises

the SDN functionality and implements a network side con-

gestion control. The mechanism involves prioritising bursty

flows over elephant flows; subsequently updating the flow

table to decrease the sending rate of elephant flows. This

solution lacks fairness as it does not assure good throughput

for elephant flows. Another major problem however is the

proposed detection of the flows which is fairly inaccurate

estimation, this could potentially result to a case of reduction

of multiple flow sending rate which ultimately leads to poor

utilisation.

D. Window Based Solutions

These solutions involve utilising various parameters and

characteristics of Traditional congestion mechanism to adjust

the congestion window of the sender or the receive window

of the receiver as a means to proactively reduce transfer

rate before congestion occurs. Two major approaches in this

domain are DCTCP [19] and ICTCP [20]. DCTCP provides

a congestion control scheme that utilizes the ECN feedback

from congested switches to help the sender adjust the con-

gestion window based on the network congestion; Whereas

ICTCP estimates available bandwidth and per-flow throughput

at the receivers gateway to adjust the senders transfer rate.

These two implementations curbs timeouts and achieve fairly

better throughput for TCP incast traffic. However, ICTCP is

ineffective if the bottleneck is not at the receivers switch. This

makes it a half-built solution that will prove ineffectual a large

amount of the time; the incast problem could be evident at

any switch in the network. DCTCP, on the other hand, is

to be regarded as a well-designed approach which exhibits

desirable performance and control characteristics when TCP

incast is at its infant. However, DCTCP exhibits poor stability

and convergence as a result of inaccuracies in its congestion

detection and notification mechanism [17].

IV. F-DCTCP: FAIR SDN-BASED DCTCP

Having described existing solutions and their major draw-

backs; in this section, we describe the idea of our F-DCTCP

SDN based solution and explain the working mechanism

clearly. Our design is motivated by the SDN and window

based solution approach; utilising the best of both worlds to

achieve an optimal all-purpose congestion control. Based on an

extensive performance evaluation of selected TCP congestion

control algorithms, the goal of F-DCTCP is to improve upon

the implementation of DCTCP using the centralised control

advantage of an SDN controller, to achieve a much accurate

detection of congestion and fair control of all senders transfer

rates.

A. F-DCTCP system design

The basic idea of F-DCTCP is to monitor the possibility of

congestion occurrence in all the switches under the domain

of a controller and proactively reduce the sending rate of

participating flows to avoid it. We believe that at a time of

imminent congestion, it is only optimal to limit all flow rate

fairly to a maximum that prevents overloading of the switches

buffers.

In doing this, we developed 3 mechanisms; Congestion De-

tection, Fair Adaptive Transfer Rating and Enforcing Adaptive

Transfer Rate. Fig. 4 represents the interaction between the 3

modules our system.

Our robust congestion detection is achieved by monitoring

the switch buffers’ queue occupancy for medium congestion

monitoring and receipt of multiple SYN request from the same

host to different servers for incast mitigation. Whenever we

discover either of this, we trigger the congestion avoidance

state; which is implemented as a max-min fair allocation of

the switches non-congestible bandwidth. The optimal rate is

enforced by rewriting the receive window of the ACK packet

from the receiving hosts, which we regard as the network

bottleneck receive window (NetWin). Subsequently, this rate is

adapted until the impending congestion is annulled. However,

in a high-speed oversubscribed network, our solution ensures

that the offered load at any time is exactly what the network

can handle at that time, thus keeping the network in a stable

state.
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Fig. 4. System Architecture Diagram showing the interaction of the different modules

B. F-DCTCP Blocks

We give a detailed description of the three stages of our

proposed solution below.

1) Congestion Detection: We designed a network con-

gestion detection module at the OF-switch to monitor two

congestion scenarios: monitoring Queue occupancy for simple-

medium congestion and monitoring parallel connections for

Complicated Congestion (notably TCP incast). A congestion

flag is defined in this module, which takes a value ’1’ signify-

ing imminent congestion and ’0’ signifying no congestion. The

congestion avoidance solutions are triggered when the value

of this flag is ’1’ and a return to normal state is triggered when

the value is ’0’.

a) Queue Occupancy Monitoring: The queue occupancy

section of the congestion detection module employs the open-

Flow statistics request message to get real time information of

the switch activities. A stats query is issued to all output ports

every 1ns and we provide a means for tuning the interval for

different network scenarios. In our queue monitoring design,

we consider all the contributing factors to the over filling of a

switch buffer; the current queue capacity, the sending rate of

flows over the port and the bandwidth of the port. This enables

us to characterise the arrival rate, service rate and capacity of

the switch. We established that the outgoing port is under the

danger of congestion if the queue length is beyond a defined

threshold and the packet arrival rate is eclipsing the service

rate of the port.

b) Parallel connections monitoring: The most crucial

part of the detection module is monitoring parallel connections

from a single client to multiple servers, which is a major

indication of the likely occurrence of TCP incast. We achieve

this by keeping track of SYN-ACK packets to record the source

and destination address pair of a TCP connection. If multiple

SYN-ACK packets are detected to have come from a single

host to different senders, the number of senders (destination

address of SYN-ACK packets) is recorded as the number of

parallel connection to that host, hence the Second stage of

our Algorithm is triggered when any one host has N parallel

connections which is more than 30% of the total number of

flows over an outgoing port. This condition only holds for

N > 2 and not equal to the total number of flows.

2) Fair Adaptive Transfer Rate: This stage is triggered

when congestion is imminent, which is indicated by a conges-

tion flag set to 1. In our Fair rate module we implemented the

Max-Min fairness algorithm to compute the optimal transfer

rate for all the flows over the congested port. The threshold

bbthresh for all the flows is computed as follow:

bbthresh = (
free buffer space

total buffer size
)×Available bandwidth

Using max-min fairness, we considered the congestion win-

dow of each flow as the requested rate and a fair allocation of

the bottleneck threshold capacity is made on a per flow basis.



3) Enforcing Adaptive Transfer Rate: In order to enforce

the adaptive transfer rate of participating flows, we modify the

advertised received window of TCP ACK packets from the

receivers at the OpenFlow switch. The basis of this approach

is in the congestion window implementation in TCP; the

implementation limits a TCP senders send window to the

minimum between the senders congestion window and the

receivers receive window. The formula is given below:

swnd = min(cwnd, rcvwnd)

This implementation forces the participating senders to always

transfer at a rate which is less or equal to our predetermined

adaptive transfer rate. Ensuring this is a major performance

achievement in our implementation as this rate allows for max-

imal fair allocation of the available resource of the switches

in the network.

4) Ensuring stability: To ensure the stability of our solu-

tion, the RCV window of the ACK packet is only set to the

adaptive transfer rate if the current rcvwin > adaptive transfer

rate; otherwise it is left unchanged. This little modification is

crucial as it ensures that the final transfer rate of witch the

participating hosts are allowed to utilise will be the minimum

non-congestible rate of the entire path, which is equivalent

to the transfer rate allowed on the most congested switch.

This achieves a network wide congestion control that will

always achieve optimal performance regardless of the traffic

characteristics of the network.

5) Recovering: The recovery process is simply a fall back

to the congestion monitoring state, which occurs when the

congestion flag is set to 0. This state is closely linked to

the congestion detection state. As at this state, an ongoing

monitoring of the switch statistics continues until a possibility

of congestion is noticed. However, in certain cases a network

administrator may prefer a re-iteration of the Fair adaptive

transfer rate stage; such that an optimal and fair rate keeps

getting allocated to participating flows, hence forever prevent-

ing congestion while allowing for the maximum utilisation

of the available resources. An external parameter is added to

enable this functionality.

6) Alternative Implementation - Enforcing Adaptive Trans-

fer Rate: As a result of possible limitations in the widespread

deployment of a scheme that involves the receiver window

rewriting due to OpenFlow protocol ver 1 not supporting the

SetField functionality. We propose another alternative. But it

has to be mentioned that the option should only be used if

the OpenFlow protocol used by the switch is version 1 as it

is an aggressive way of enforcing the controlled rate. It has

to be stated further that this add-on simple ensures fairness

hence increasing average flow completion time, but provides

no additional performance improvement to throughput.

a) Preventive Thresholding: The alternative approach

involves setting the Adaptive Transfer rate as an implicit

congestion threshold for participating flows in the OpenFlow

switch. Setting a threshold involves using the metering func-

tionality of the OpenFlow protocol. Metering involves setting

a maximum transfer rate for each group of flows in the flow

table, such that a received packet is dropped if its sending

rate is higher than this metered value. In this approach, a

set of adjustable metered groups are created and based on

the computed Adaptive transfer rate, flows are written into

corresponding groups. This implementation causes packets

transferred at rates higher than the required rate to be dropped,

consequently resulting in the trigger of the congestion avoid-

ance phase at sending host. This implementation requires a

congestion cleared state, which is a simple additional variable

at the congestion detection module to indicate that the switch

is no longer congested and the flows removed from metered

groups. This allows for the participating flow enter into the

AIMD phase, consequently preventing a quick I/O saturation

of the link.

V. PERFORMANCE EVALUATION

In this section, we present a performance evaluation and

comparison of our proposed F-DCTCP algorithm with other

TCP congestion control algorithms. The performance metrics

of interest are throughput analysis with link utilisation, fairness

and bandwidth share amongst competing flows and finally flow

completion time. The experimental environment is set up to

realise an Incast scenario. Table I illustrates the parameters

used for the experiments.

TABLE I
EXPERIMENTAL PARAMETERS

Parameters Values

Link Latency 5ms

Round Trip Time 10ms

Switch Buffer size 0.1MB

Bottleneck Link Speed 1Gbps

Client Link Speed 1Gbps

Number of Concurrent Flows 4

Fig. 5. Average and Total throughput result

The first performance metric we tested is the throughput

of F-DCTCP as compared to its competitors. Fig. 5 depicts

the average throughput of each of the algorithms under the

given settings. We can observe from the Figure that F-DCTCP

exhibits the best overall performance amongst all the schemes.

Not only in terms of throughput, but also in terms of fairness



amongst the competing flows. DCTCP, for example, while has

high average throughput, does not have good fairness (flow

4 is almost starved). We can see that the flows are treated

unequally/unfairly, as opposed to F-DCTCP that gives a fair

share of the bottleneck link. Traditional schemes (CUBIC

Reno) have low performance, which is attributed to their

inability to cope in partition-aggregate workloads.

Fig. 6 plots the aggregate throughput per flow over time for

each of the algorithms. Again, F-DCTCP maintains a high-

overall aggregate per-flow throughput.

Fig. 6. Aggregate Throughput over time

One of the important features of F-DCTCP is its combined

throughput-fairness performance. In order to study the fairness

performance of F-DCTCP, we used Jains fairness index [21]

which provides a fairness metric that takes all participating

flows into consideration. It is bounded between 0 and 1 and

provides a direct relationship in percentage scale. It also

represents the users perception of the resource sharing clearly.

An optimal congestion control solution should maximize this

index while ensuring maximum utilisation of the available

bandwidth [22]. As depicted in Fig. 7, we can observe that

F-DCTCP’s fairness index is much better than that of DCTCP.

While F-DCTCP’s average index is 0.82, the average fairness

index of DCTCP is 0.49. Notably, the best fairness is exhibited

by traditional schemes (CUBIC and Reno), however they

suffer low throughput and link utilisation. This makes F-

DCTCP the best overall solution in terms of combined per-

formance. Ensuring fairness here brings a major performance

optimisation that requires further attention and development.

With the possibility that OVS will include more functionality

in its design, this solution can be further improved to achieve

ground breaking results.

Finally, we wanted to study the flow completion time

of each of the algorithms. Fig. 8 depicts the average flow

completion time of four concurrent flows under each of the

tested algorithms. As shown in Fig. 8, F-DCTCP has the

shortest average completion time amongst all others. Thanks to

the global view brought about by SDN that allowed F-DCTCP

to optimise flow processing and act on very fine-grained scale.

Fig. 7. Jains fairness comparison of F-DCTP to traditional algorithms.

Fig. 8. Average Flow completion time of four concurrent flows.

VI. CONCLUSION

In this paper, we developed a solution-based framework for

adapting traditional congestion control to SDN environment,

practically assessing the features of SDN that can be used

to optimise congestion control. This work does not converge

at just describing a way of adapting traditional algorithms to

SDN, we proceeded with implementing an innovative conges-

tion control in SDN, tagged F-DCTCP, this solution majorly

focussed on a menacing congestion scenario native to Data

Centre Networks (TCP Incast). Following this, we performed

a detailed analysis of the benefits of our solution in comparison

with existing solutions, establishing that adapting congestion

control algorithms to SDN encompasses a distinct performance

improvement.

In light of the recommendation above and the proposed F-

DCTCP,future work can be tailored along this line especially

in creating a flexible and autonomous controller functionality

for congestion control and performance optimisation.
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