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A B S T R A C T   

What is the economic value of storing water for future droughts, and what are the consequences 
of this valuation for water management? One way to answer this question is to ask: ‘what is the 
valuation, which if used, would maximize a region’s economic use of water?’ This prescriptive 
valuation can be done by linking classical hydro-economic models to global search methods. 
Another way to answer this question is to ask: ‘what do historical water management operations 
reveal about water’s economic value?’ Indeed, past reservoir uses reveal the empirical inter- 
temporal valuations of past water managers. Although they may not have been optimized in a 
formal sense, in mature water resource systems with economic water demands, reservoir storage 
rules evolve via a socio-political process to embody societies’ valuation of water. This empirical, 
‘positive’, or descriptive valuation is captured by calibrating a hydro-economic model such that 
carry-over storage value functions enable simulated storage to match a historical benchmark. This 
paper compares both valuations for California’s Central Valley revealing that carryover storage 
values derived from historical operations are typically greater than prescribed values. This leads 
to a greater reliance on groundwater use in historical operations than would have been achieved 
with system-wide optimization. More generally, comparing the two approaches to water valua-
tions can provide insights into managers’ attitudes as well as the impact of regulatory and 
institutional constraints they have to deal with – and that are not necessarily included in opti-
mization models.   

1. Introduction 

What can water storage valuation tell us of the difference between optimal and historical water management decisions? Economic 
valuation of water across space and time informs water allocation and the design of the physical and regulatory infrastructure that 
supports it; this valuation reflects the hydrological, economic, institutional and ecological situation of a river basin [1,2]. 
Modeling-based approaches that derive water values aim to integrate these various aspects within a river basin model. Such ap-
proaches can be descriptive or prescriptive, used to examine historical or optimal water management decisions respectively. 
Descriptive approaches generally integrate the existing allocation rules and benefits from water allocation into a simulation framework 
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to derive a valuation [3]. Prescriptive approaches use optimization to find a “best” system-wide allocation strategy according to a 
benefit-maximization criterion, and get an economically “efficient” valuation of water as a by-product of optimization [4–6]. Eco-
nomic valuation of water according to these two types of approaches has different interpretations. Water values in descriptive models 
come from the actual allocation whereas in prescriptive models, they correspond to value extracted from optimal use. What is more, 
descriptive valuations are generally set to reflect the rules that direct water management rather than reproduce historical operations – 

i.e., historical outcomes of this rule system. 
This paper contributes a methodology to infer a descriptive valuation directly from historical operations, in a way that makes it 

comparable to a prescriptive valuation. It uses a recent modeling framework fit for prescriptive valuation of surface water storage in 
large-scale conjunctive use systems [6], and instead finds the valuation of water storage that calibrates the model against a historical 
benchmark - making it a descriptive valuation approach. A higher water value in a given reservoir from one approach to another would 
reflect a premium placed on conservation of water from that reservoir. This enables further investigation of the cause for these dis-
crepancies: is it because managers had a myopic behaviour in historical operations? Or is the prescriptive model missing something? 
Previous “positive” approaches [7] aimed to calibrate users’ benefit functions in hydro-economic models, generally focusing on 
agriculture [8,9]. In contrast, this framework aims to investigate the water value implications of already derived benefit functions. 

These modeling-based approaches are a type of non-market valuation techniques – such techniques can also be survey-based [10]. 
In contrast, in market valuation techniques the value of an asset is based on the selling price or the price that consumers are willing to 
pay for a commodity in the market. Water markets are common in Western US [11–13], Australia [14–17], and the UK [18,19]. 

In theory, descriptive and prescriptive market valuations are the same as actual water prices converge towards the socially optimal 
value. Yet, water markets are far from a universal solution [5] and further, they often fail to achieve their primary objective of 
economic efficiency unless an adequate regulatory and institutional framework is designed and implemented to sustain them [20–22]. 
In conjunctive use systems, different prices between local and non-local water, and between surface water and groundwater, may lead 
to overexploitation of groundwater resources even with a functioning market [23]. Optimization models tend to behave like water 
markets in the sense that they allocate water to most beneficial uses first, therefore comparing prescribed valuation to a historical 
benchmark has the potential to unveil some of the mechanisms that separate current operations from those that would result from a 
water market. Besides, system scale and complexity make water valuation more complicated. Under the phrase “curse of dimen-
sionality”, scale by itself is a major obstacle to most optimization methods (e.g., SDP, most recently [24–26]). Even methods that can 
circumvent this limitation (e.g. SDDP [27]) are subject to restricting assumptions. In the case of SDDP for instance, it is necessary for 
future benefits to be convex, which is a problem when studying conjunctive use systems [28]. It is noteworthy that the present work 
builds on an approach [6] that handles system scale as well as non-linearity and non-convexity. That approach was the first to the link 
an evolutionary algorithm (EA) to a hydro-economic model [2] for this purpose. Application of EAs to aid decision-making in eco-
nomics can be seen in several studies [29–31]. The comparison of optimization results to water valuation from a historical benchmark 
is applied to the California Central Valley system, a system with 30 reservoirs in an agricultural area that also relies on groundwater, 
especially in times of drought [32–36]. Results are used to compare the two management practices using the concept of risk aversion. 
Risk aversion is the behaviour of decision-makers when they are exposed to uncertainty. This is quantified by risk aversion coefficient 
[37,38] whose positive (negative) sign reveals risk-taking (risk-averse) attitudes. 

The remainder of this paper is structured as follows. Section 2 explains the proposed approach; section 3 presents the California 
Central Valley application; results are shown in section 4, followed by discussion and conclusions in section 5. 

2. Methods 

2.1. Water storage valuations 

This work looks at the value of water storage for future uses, in a context where benefits from different water uses are already 
known. Valuation of water storage in reservoir balances current and future uses through the carry-over storage value function 
(COSVF). The COSVF describes water value as a function of reservoir storage. This work focuses on the end-of-year COSVF that 

Fig. 1. Relation between demand curve and benefit function of a surface reservoir, in the case of a linear demand function.  
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determines the value of water for next years’ uses. It compares carryover storage values obtained from a prescriptive optimization 
framework, to those that enable reservoir operations to most closely fit a historical benchmark. Therefore, there needs to be a common 
and easily interpretable functional form from which to derive carryover storage values in both cases. 

At each point on the end-of-year COSVF, marginal benefits from an additional unit of storage for future uses are a unit value of 
water. In other words, end-of-year COSVF is the integral of the function known as the demand curve [39], that describes the unit value 
of water as a function of storage (Fig. 1). This unit value can be interpreted as the marginal price that water users are willing to pay, and 
is therefore noted P. In its most general form, the end-of-year COSVF of a single reservoir is a function of that reservoir’s storage S and 
of the parametrisation vector π chosen for the demand curve: 

COSVFðS; πÞ¼

Z S

Smin

Pðs; πÞds (1) 

A direct consequence of equation (1) is that a reservoir’s COSVF is a growing function of storage, with COSVFðSmin; πÞ ¼ 0. In its 
simplest form, the demand curve is linear, therefore the parameters π are water values at minimal and maximal storage (p1 and p2 
respectively): 

PðS; πÞ¼PðS; p1; p2Þ¼ p1 þ ðp2 � p1Þ
S � Smin

Smax � Smin

(2) 

This means that the integral of equation (2), the end-of-year COSVF, is quadratic; since it is 0 at minimal storage, it is entirely 
defined by π ¼ ðp1;p2Þ. When storage in reservoirs is close to dead storage Smin, water is scarce for future uses, therefore each unit of 
stored water is close to its maximal value p1. Conversely, when reservoir levels get close to the maximum allowable storage Smax, water 
is more abundant for future uses, leading to lowering the value of an additional unit of water towards its minimum value p2 (see Fig. 1). 
In practice, this paper will use the linear demand curve of equation (2), and the associated two-parameter end-of-year COSVF, to 
compare prescriptive and descriptive valuations. 

In a river basin comprising multiple reservoirs, end-of-year carry-over storage values can be summed across all reservoirs, and a 
total end-of-year carry-over storage value function COSVFall can be written as a function of the vector of system state x, usually 
including storage values at all the reservoirs, and the vector π of end-of-year COSVF parameters πi at each individual reservoirs: 

COSVFallðx; πÞ¼
X

n

i¼1

COSVFðSi; πiÞ (3)  

where n is the number of reservoirs in the system. For instance with a linear demand function, πi comprises the values of p1 and p2 at 
each reservoir i. 

2.2. Prescriptive water valuation 

Prescriptive water valuation corresponds to the storage valuations that are obtained by maximizing operating benefits from water 
uses in a water resource system over a given time frame [1, T], with discrete time-steps of a month or less. This is expressed by: 

Z ¼E
h

X

T

t¼1

ftðxt; ut; qtÞþ νTþ1ðxTþ1; uTþ1Þ
i

(4)  

where E [.] is the expectation operator and ft (.) represents the net benefits from water usage (consumptive uses, hydropower gen-
eration, ecological benefits, etc.) at stage t. As introduced for equation (3), vector xt is the state of the system at t, typically including 
storage in the different reservoirs. ut is the vector of operational decisions taken at that stage t, such as reservoir releases and water 
allocations to spatially distributed users, including farmers, industries or domestic uses from cities. qt is the vector of inflows. Finally, 
νTþ1 (.) is a final value function that expresses that reservoirs should not be simply emptied at the end of the optimization horizon, 
because water has value beyond that. In short, νTþ1 (.) expresses the carry-over value of water within the system. This optimization 
problem is subject to a number of constraints such as the water balance equation, lower/upper bounds on flows and storage levels, or 
hydropower generation capacity, to name a few. Solving the stochastic maximization problem of equation (4) requires mapping de-
cisions ut as a function of system state and expected inflows. Except for situations where specific assumptions such as convexity hold 
[40], this maximization problem is plagued by the well-known curse of dimensionality, whereby the required computational resources 
increase exponentially, making the resolution of large-scale problems intractable. 

Khadem et al. [6] proposed a general approximate solution methodology to the problem of maximizing (4), based on two key 
remarks. The first relates the general optimization problem of equation (4) to prescriptive water valuation in reservoirs across the 
water resource system of interest. Indeed, defining single-year maximization problems involves end-of-year COSVF as a final boundary 
condition. For year ðk ¼  1…KÞ spanning ½tk þ1; tkþ1� , the single-year maximization objective can be written as a function of current 
year inflows Qk ¼ ðqtkþ1; …; qtkþ1 Þ and end-of-year COSVF parameter vector π: 

ZkðQk; πÞ¼
X

tkþ1

t¼tkþ1

ftðxt; ut; qtÞ þ COSVFallðxtkþ1
; πÞ (5) 
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Contrary to the stochastic problem of equation (4), each maximization of the single-year objective Zk is a deterministic optimization 
problem that can be handled by state-of-the-art solvers (e.g. the 30-reservoir problem in the application is solved in 15 seconds for each 
year). Then, the second key remark is that maximizing the objective of equation (4) can be approximated by the following objective 
function (see Ref. [6] for details): 

ZðπÞ¼
X

K

k¼1

ðmax
ut

�

ZkðQk; πÞg�COSVFallðxtkþ1
; πÞÞ (6) 

The problem of maximizing equation (6) and that of equation (4) are subject to the same physically-based constraints (water 
balance, limits on reservoir storage and hydropower production, etc.), but crucially, equation (6) transforms the decision problem of 
equation (4) (intractable for large systems) into a problem of finding the end-of-year COSVF parameters in the system reservoirs. 
Evolutionary algorithms are well-suited to searching this large parameter space provided they can associate a value to each parameter 
vector. This value is: 

min
π

FpresðπÞ¼min
π
½ � ZðπÞ� (7) 

It is interpreted as “prescriptive” and noted Fpres because the vector π that solves the maximization problem of equation (6) directly 
gives the functional form of end-of-year COSVF at each of a system’s reservoirs. This enables a prescriptive valuation of end-of-year 
water storage. 

2.3. Descriptive water valuation 

In contrast to the prescriptive valuation, a descriptive valuation seeks end-of-year COSVF parameters that maximize the fit with 
benchmark time series, reflecting the system’s states (e.g., storages) across the study area. The descriptive case seeks to find COSVFs 
that reflect how water storage has been valued in practice, which is not necessarily equal to marginal benefits from future water uses in 
the prescriptive case. For a given vector π, we can compute ZðπÞ as in equation (6), by sequentially solving the single-year optimization 
problem of equation (5). Yet, instead of being interested in maximizing the value of the economic objective ZðπÞ itself, we are now 
interested in the vector of system states xðπÞ that has been computed to obtain ZðπÞ – recall that those typically include reservoir 
storage. We explore the parameter space to find the parameter vector that minimizes the mean-squared errors with the benchmark: 

min
π

FdescðπÞ¼min
π

�

1

N:T

X

N

n¼1

X

T

i¼1

�

xt;iðπÞ � xbenchmark
t;i

�2
�

(8)  

where N is the number of state variables used for calibration and Fdesc is the descriptive objective function to minimize. 

2.4. Workflow 

For both water storage valuations, parameter values that maximize the respective objectives are found by evolutionary compu-
tation. Yet in both cases, many reservoirs will be refilled every year if p2 is above a threshold value p0

2. Then, any value of p2 above this 
threshold (i.e., in ½p02;þ∞½Þ produces the same operations – stored water is valuable enough to warrant the reservoir to be full at the end 
of any water year. Then, the algorithm could return a marginal water value of $5 million per MCM without affecting the system’s 
operations at all. To ensure the parameter values found by the algorithm make economic sense, a second objective is introduced to 
limit the value of p1 and p2, similar to what was done in Ref. [6]: 

min
p

F2 ¼min
p

1

N

X

N

n¼1

pminn þ pmaxn

2
(9) 

This second objective turns the single objective optimization problem into a multi-objective optimization problem. This type of 
problem is solved by multi-objective evolutionary algorithms (MOEA) which are broadly similar to genetic algorithms except for the 
fact that they can optimize two objectives or more at once. As a result, contrary to traditional genetic algorithms that return a single 
solution, a MOEA generally returns a set of solutions such that one cannot improve any objective without degradation in another 
objective. These solutions are called non-dominated and are collectively called the Pareto front (see Ref. [41] for details on MOEA). In 
this work, the MOEA is meant to find the set of states such that one cannot find a better solution both in the minimization of the first 
objective (either Fpres or Fdesc) and in the minimization of the second objective F2. Each solution associates to these objectives a vector of 
parameters that fully define the COSVF for all reservoirs. 

2.5. Post-Pareto analysis 

The output of a multi-objective optimization problem is the Pareto front, a set of non-dominated ‘best’ solutions. This often contains 
hundreds of solutions which sometimes complicate the decision-making process: which solution or group of solutions are preferred? 
This paper answers this using a post-Pareto stage which prunes the non-dominated set of solutions following the concept of knee points 
[42]. In knee points, small improvement in either of objectives will cause a large degradation in other objective(s) [42]. This essentially 
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means moving in either direction is less desirable. This method is chosen owning to the fact that without any knowledge about users’ 

preferences, the zone around the knee is most likely to be favourable for decision-makers [43]. 
Here, we measure the level of degradation of objectives by looking at slope (or difference) between any two adjacent solution points 

from the Pareto trade-off. The judgement on when a severe deterioration happened is made visually. This is where the slope notably 
changes compared to its next immediate value. This process creates a box within which lies Pareto non-dominated solutions with high 
optimality quality with respect to all objectives. This box is called “zone of concentration”. 

Fig. 2. The Central Valley reservoir and river system (Adopted from Khadem et al. [6]).  
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2.6. Risk aversion coefficient 

Since COSVFs are utility functions, a common way of comparing the two management practices (that is used to derive descriptive 
and prescriptive valuation) in terms of how cautious they are, is to illustrate it through risk aversion coefficient [37,38]. This coef-
ficient determines how much satisfaction or utility can be obtained from an experience, a commodity, or money [44]. We use 
Arrow-Pratt risk aversion coefficient (AP), also known as absolute risk aversion coefficient, which is mathematically described as: 

AP¼ �
COSVF’’ðxtkþ1

Þ

COSVF’ðxtkþ1
Þ

(10) 

Considering the functional form of the quadratic COSVF used in this study (a and b being the quadratic and linear coefficients of 
COSVF respectively; see equation (21)), the above equation for each reservoir sr is: 

APsr ¼ �
2asr

tkþ1

2asr
tkþ1

xtkþ1
þ bsr

tkþ1

(11)  

3. Application 

3.1. California’s Central Valley 

California’s Central Valley (Fig. 2) is one of the world’s most productive agricultural regions [45] with over 2.3 million ha of 
irrigated farmland [46]. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year 
[47]. About 75% of California’s irrigated land is in the Central Valley, which depends heavily on surface water diversions and 
groundwater pumping [45]. Nearly 75% of renewable water supply originates in the northern third of the state in the wet winter and 
early spring while almost 80% of agricultural and urban water use is in the southern two-thirds of the state in the dry late spring and 
summer [48]. In the context of California’s Mediterranean climate, perfect within-year foresight is consistent with early spring 
measurements of the depth and water content of the snowpack which enable predicting discharge months ahead with reasonable 
accuracy and until the end of the water year [49]. The Central Valley often suffers from droughts such as 1918–20, 1923–26, 1928–35, 
1947–50, 1959–62, 1976–77, 1987–92, 2007–09, and 2012–16 [50]. 

The illustrative case of this paper is built upon CALifornia Value Integrated Network (CALVIN [51]). CALVIN OP, a hydro-economic 
model [2] with perfect foresight, is the ‘unconstrained’ run of CALVIN used to simulate the Central Valley water system by maximizing 
the system-wide net economic benefit from water allocation. CALVIN OP applies economic drivers to allocate water rather than 
existing system of water rights and contracts [49]. Yet, the perfect hydrological foresight of CALVIN limits its applicability. We use an 
extended version of CALVIN OP for calibration which corrects the perfect foresight by dividing the planning horizon into year-long 
runs with initial condition of each run being the ending condition of the previous one and an end-of-year COSVF, representing the 
potential benefit of allocating water for future uses, set as the terminal condition of each run. Another extension to CALVIN comes from 
improving the groundwater pumping cost scheme. The CALVIN model represents pumping costs by multiplying the unit pumping cost 
of $49.42 per MCM/m lift ($0.20 per af/ft lift; MCM is a million m3) by a static estimate of the average pumping head in each aquifer 
[52]. The extended version of CALVIN includes pumping costs that dynamically vary with head in the aquifer. This head-dependent 
pumping cost introduces non-convexity into the problem. 

The water system is represented as a network of nodes and arcs [53], where nodes include surface and groundwater reservoirs, 
urban and agricultural demand points, junctions, etc., and arcs (links) include canals, pipes, natural streams, etc. The water network of 
the Central Valley comprises 30 surface reservoirs, 22 groundwater sub-basins, 21 agricultural demand sites, 30 urban demand sites, 
220 junction and 4 outflows nodes; and over 500 links (river channels, pipelines, canals, diversions, and recharge and recycling fa-
cilities). The period-of-analysis is 72 years, 1922–93, and monthly time-steps are chosen for the hydro-economic model run. This 
accounts for the strong seasonality of water supply and demands, a key feature of many irrigated water systems [54]. 

3.2. Model formulation 

This section describes in detail how the generic equation (7) was implemented for this California Central Valley application. For 
details, please see Ref. [6]. ft (.), the net benefit function at date t, is composed of the following terms: 

ftðxt; ut; qtÞ¼URtðxtÞþAGtðxtÞþHPtðxtÞ�NWtðxtÞ�GWtðht; xtÞ � INFtðxtÞ (12)  

with 
URtðxtÞ¼

X

ur

aur
t x2

t þ bur
t xt (13)  

AGtðxtÞ¼
X

ag

aag
t x2

t þ bag
t xt (14)  
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HPtðxtÞ¼
X

hp

xhp
t PFhp

t pt (15)  

NWtðxtÞ¼
X

i;j

ci;j
t xi;j

t (16)  

GWtðxt; utÞ¼
X

gw;j

PC
gw
t xgw;j

t (17)  

PC
gw;j
t ¼ unitc ⋅

�

elevgw � hgw
t

� (18)  

hgw
t ¼ h

gw

t�1
þ

q
gw
t þ

P

jx
j;gw
t �

P

jx
gw;j
t

scgw � areagw
(19)  

INFtðxtÞ¼
X

i;j

infxi;j
t �m (20)  

here, UR is the urban benefit (utility) function with aur and bur being the quadratic and linear coefficients of the function respectively 
and xt showing the flow to urban node ur; Similarly, AG is the agricultural benefits form allocating water to farms with aag and bag being 
the quadratic and linear coefficients of the utility function respectively; HP is the linear economic benefit produced from hydropower 
generation where PF is the power factor of hydropower plant hp that relates release to hydropower generation and p is the monthly- 
varying hydropower unit price; NW shows the network cost, cost incurred due to treatment, conveyance, and conjunctive uses with c 
representing such cost per unit of flow in link between nodes i and j; GW is the groundwater cost from aquifer gw which is the product of 
pumping cost PC and discharge rate x; PC varies dynamically as the piezometric head h in the aquifer changes. The calculation of PC 
follows storage coefficient formulation [55] where a unit pumping cost unitc is multiplied by the distance that water needs to be lifted 
to reach ground level for allocation. elev is the mean ground elevation above aquifer gw. According to the storage coefficient 
formulation, sc is the mean storage coefficient and area is the surface area of an aquifer. INF represents the infeasibility costs. Nu-
merical infeasibilities may appear in the model, making the network problem infeasible. In order to guarantee feasibility, artificial 
inflows (infx) are made available to the model at each node. These flows are included in model’s conservation of mass equations to 
ensure that such flows are accounted for. These artificial flows which are in fact slack/surplus variables in a mathematical pro-
gramming context, are not desirable therefore in order to deter the model from introducing infeasibility flows, they are penalised by a 
high cost (m) coefficient in the objective function. 

In implementing above equations for the case of California Central Valley few points must be considered: (1) A piece-wise linear 
equivalent of equation (14) was used for farms. This was due to the slope of the benefit function (marginal value of water delivered) at 
or near full demand being zero which caused farmers to opt not pumping as it would be more economic to not pay for groundwater 
pumping costs while any additional unit of allocated water produces near zero benefit. (2) In California, the presence of “high-head” 

facilities where the effect of reservoir storage on turbine head is small allows for a linear relationship between head and hydropower 
generation [56,57]. 

As explained in Section 2, the model is solved sequentially on a year-by-year basis for all the 72 hydrological years considered, 
using the maximization problem defined by equation (5). In that equation, end-of-year COSVFs are set as boundary conditions at the 
end of each year-long model run to prevent depletion of reservoirs. This function represents the potential benefit gained from not 
releasing for immediate uses and preserving water for future droughts. End-of-year COSVFs are quadratic utility function: 

COSVFtðπ; xtÞ¼
X

sr

asr
t x2

t þ bsr
t xt 8t¼ tkþ1 (21)  

where asr and bsr are the quadratic and linear coefficient of the COSVF for reservoir sr, deduced from the demand curve parameters π 

using equations (1) and (2). In this case, the end of year is the end of the water year, that is, September 30 in the U.S. 

3.3. Historical benchmark 

In order to produce water marginal values that are descriptive of historical operations, storage data from a historical benchmark are 
required. In the Central Valley, this benchmark is CALVIN BC, a ‘base case’ or ‘constrained’ run of the CALVIN model which applies 
constraints to reproduce historical events [51]. It is used because observed storage data is not available for all reservoirs for the entire 
period of analysis. CALVIN BC is an effort to integrate surface and groundwater hydrology developed for the two models of the Central 
Valley’s water system, i.e., DWRSIM and CVGSM. It reconciles inconsistent assumptions in these two separate models, as well as 
agricultural water demand assumptions with water deliveries. More details on CALVIN BC’s modeling approach and assumptions can 
be found in Draper et al. [51]. Khadem et al. [6], compared observed storage level data of Shasta, the largest reservoir in the Central 
Valley, with those of CALVIN BC’s and demonstrated a close match between them. As such, we refer to CALVIN BC’s results as the 
historical benchmark hereafter [58]. 
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3.4. Getting water values 

Borg [59] was used as the multi-objective evolutionary algorithm (MOEA) because Borg’s self-adaptive features increase its 
robustness and effectiveness while minimizing the search parametrisation by the user. Borg has been proved to be a top performing 
MOEA in systems comprising nonlinearities [60] and for multi-objective reservoir management problems [61]. There are 30 surface 
reservoirs, so there are 60 decision variables for the evolutionary algorithm to find. End-of-year carryover storage values are positive 
and bounded by the maximal value among the urban and agricultural water demand curves, i.e., $5,291,378 per MCM. For the case 
study, an initial population size of 100, 100,000 maximum number of function evaluations as the stopping criterion, and epsilon 
(search resolution) value of 100,000 MCM2, $1,000,000, and $8107 per MCM ($10 per af) for the objective functions (Fdesc, Fpres, and F2 
respectively) were used. The nonlinear hydro-economic model of the California system was coded in Generalized Algebraic Modeling 
System (GAMS) and solved using the Minos solver version 5.5 [62]. Minos applies the generalized reduced gradient method, which is 
suitable for nonlinear programming problems with linear constraints [63].The case presented here was solved using 96 Intel processors 
working jointly on a Unix-based computing cluster. Results took about 45,000 h of computation time to produce for the descriptive 
valuations and 42,000 for the prescriptive valuation (see Ref. [6]). 

4. Results 

This section uses the solution analysed in-depth in Khadem et al. [6] as the prescriptive solution. For this reason, Section 4.1 and 4.2 
focus respectively on the obtaining of descriptive valuations and on their fit with the historical benchmark. Then, Section 4.3 compares 
the two valuations and Section 4.4 investigates what they mean for water management in the Central Valley. 

4.1. Trade-off analysis for the descriptive valuation of storage 

A five-seed Random Seed (RS) analysis was performed to obtain the Pareto trade-off and to ensure robust algorithm convergence 
towards the same Pareto-set. By definition, a Pareto front (Fig. 3) consists of non-dominated solutions with respect to the two objective 
functions, where any improvement on the value of either objective function comes at the expense of the other. 

This analysis focuses on the zone of concentration (ZC) within the Pareto set (grey box in Fig. 3, as outlined in section 2.5). 
Concentration of solution points in this zone suggest that the estimate for historical water marginal values can be sought there. The 
analysis will consider both this ensemble of solutions and a “representative solution” obtained by simulating the system using for each 
reservoir the average pmin and pmax across all solutions within the zone of concentration. 

4.2. Quality of the fit with the historical benchmark 

The quality of the fit is evaluated through the classical Nash-Sutcliffe efficiency criterion (NSE [64]) at individual reservoirs by 
comparing benchmark historical storage values with storage from the representative solution (Table 1 and Fig. 4). NSE is chosen as a 
goodness-of-fit criterion because it is coherent with the MOEA’s first objective; it determines the relative magnitude of the residual 
variance compared to the observed data variance [65]. It has a range of (-∞,1], with NSE ¼ 1 indicating a complete match between the 
modeled and observed values. A value between 0 and 1 shows an acceptable calibration performance and a negative NSE means that 
observed value is a better predictor than the simulated value, which indicates unacceptable performance. In Table 1, NSE values 
ranging from 0.82 to 1 indicate an excellent fit with the historical benchmark, which becomes close to perfection for some reservoirs 
(Fig. 4). To better understand the quality of different solutions across the Pareto trade-off (Fig. 3), solutions with the best and worst 
quality (those with lowest and highest value of Fdesc respectively) are compared to the representative solution (average of solutions 
from zone of concentration) in Table 1. The quality of fit is also expressed by the fact that average relative deviations from the historical 

Fig. 3. Pareto non-dominated solutions of the two objective functions (arrows show the direction of preference).  
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benchmark are relatively low. 
This quality-of-fit at individual reservoirs holds across the ensemble of solutions within the zone of concentration, because op-

erations are robust to different water valuations within this zone. Supplementary material illustrates this with three of the system’s 
major reservoirs. This said, it is worth noting that the zone of concentration figures a range of valuations and not a single valuation, be 
it at dead storage (Fig. 5a) or full storage (Fig. 5b). This means that this range, and not only the representative solution, must be used 
when comparing descriptive and prescriptive storage valuations. 

4.3. Comparison of reservoir storage valuations 

Having verified that the descriptive valuation of water storage led to a good fit between the benchmark historical operations and 
simulated operations, we compare the descriptive and prescriptive storage valuations, using both the ensemble of descriptive solutions 
(Fig. 6), and the representative solution (Table 2). Column (1) of Table 2 contains active storage (full storage – dead storage) of surface 
reservoirs in the last month of the water year, i.e. September. Note that maximum capacity varies per month due to flood control 
requirements. The second column shows the annual net inflow calculated as annual surface runoff minus any loss (e.g. seepage and 
evaporation). Columns (3) and (4) include the descriptive marginal water values for the representative solution. Values in column (5) 
are the average of values in columns (3) and (4), which corresponds to the average marginal value of water from the representative 
solution – total water value (Fig. 6) is then the product of that figure and the active storage. Column (5) of Table 2 can be used as an 
economic proxy for comparing reservoirs valuation, and to contrast descriptive valuation against its prescriptive counterpart (column 
6). 

Compared with the prescriptive valuation, the descriptive one is higher for most major reservoirs. Examples are Shasta, Oroville, 
Berryessa, New Melones, Don Pedro, San Luis, and Pine Flat; and those located in the Sierra Nevada on the eastern range of the Central 
Valley (e.g. Oroville, New Bullards Bar, Folsom, New Melones, Lloyd & Eleanor, Don Pedro, McClure, and Pine Flat – note how some 
reservoirs make both groups). These results hold for both Fig. 6 and Table 2. This higher valuation in the descriptive solution means 
that operations conserve surface water in large reservoir by implicitly valuing it more than in smaller surface reservoirs and 
groundwater reservoirs alike. This has two consequences: (1) groundwater resources are first to supply water; and (2) when it comes to 
surface reservoirs, smaller reservoirs are prioritised for release. End-of-year COSVF for each reservoir can be derived from values in 

Table 1 
Quality of fit quantified by Nash-Sutcliffe efficiency and deviation from observed values as a percentage of storage capacity for the 30 reservoirs of the 
Central Valley system. Values are presented for three solution qualities from the Pareto trade-off (Fig. 3): Worst NSE with the lowest value of Y axis, 
Average NSE with the values from the average of zone of concentration (ZC)-this is also called representative solution, and Best NSE with the highest 
value of Y axis.  

Reservoirs Worst NSE Average of ZC NSE Best NSE 
NSE Deviation (%) NSE Deviation (%) NSE Deviation (%) 

Shasta 0.87 3.29 0.89 3.12 0.95 2.31 
Whiskeytown 0.60 10.11 0.92 3.05 0.97 2.13 
Black Butte 0.82 9.42 0.97 3.53 0.98 2.50 
Oroville 0.78 2.85 0.82 1.51 0.98 0.47 
New Bullards Bar 0.94 4.19 0.95 3.27 0.95 3.17 
Camp Far West 0.87 7.46 0.99 2.04 0.99 1.15 
Folsom 0.91 5.09 0.94 3.96 0.96 3.22 
Indian Valley 0.99 1.78 1.00 0.12 1.00 0.12 
Berryessa 0.99 1.40 0.99 1.23 0.99 1.20 
Pardee 0.93 5.13 0.99 1.72 1.00 0.12 
New Hogan 0.95 4.50 0.98 2.26 0.98 2.05 
Los Vaqueros 0.65 5.32 0.97 1.00 1.00 0.21 
EBMUD 0.66 4.53 0.94 1.63 0.98 0.67 
New Melones 0.98 1.02 0.99 0.61 0.99 0.49 
Turlock 0.55 9.16 0.82 4.97 0.87 3.43 
Lloyd-Eleanor 0.96 4.09 0.98 2.38 0.99 1.68 
Don Pedro 0.99 1.02 1.00 0.19 1.00 0.12 
Hetch Hetchy 0.93 5.86 0.96 3.46 0.96 2.73 
Del Valle 0.59 10.37 0.80 2.35 1.00 0.14 
San Luis 0.97 1.12 1.00 0.15 1.00 0.03 
Santa Clara 0.57 12.92 0.91 5.05 0.96 2.98 
SF aggregate 0.22 8.74 0.79 4.03 0.93 1.87 
McClure 0.98 2.10 0.99 1.32 0.99 1.14 
Eastman 0.89 4.45 0.96 2.45 0.96 1.83 
Hensley 0.57 11.50 0.91 5.22 0.94 3.73 
Kaweah 0.75 8.62 0.96 5.51 0.97 3.07 
Success 0.78 11.27 0.95 5.12 0.97 3.95 
Isabella 0.98 2.00 0.99 1.21 0.99 1.09 
Pine Flat 0.95 3.04 0.97 1.69 0.97 1.51 
Millerton 0.96 3.43 0.99 0.95 0.99 0.65 

Note: EBMUD stands for East Bay Municipal Utility District and SF is San Francisco. 
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columns (3) and (4) of Table 2. 
COSVF of four large Central Valley reservoirs are compared (Fig. 7). To better interpret this result, one can look at the average 

volumetric water value of these four reservoirs at their full storage i.e. maximum of COSV divided by maximum storage capacity. For 

Fig. 4. Comparison of the calibrated storage trajectories of major reservoirs to the benchmark values.  
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Fig. 5. Dispersion of descriptive marginal water value solutions from zone of concentration at: a) dead storage, and b) full storage.  

Fig. 6. Distribution of the total storage value from the solution points of the zone of concentration. Red points show the maximum COSVF of the 
prescriptive solution. 
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the descriptive case, the average volumetric water values at full storage are 33419, 28527, 31605, and 34086 $/MCM for Shasta, 
Oroville, Don Pedro, and Pine Flat respectively. This suggests that attitudes to water conservation in the historical benchmark are 
similar across these large reservoirs, regardless of their situation within the basins. For the prescriptive case however, the same figures 
drop to 21672, 14439, 18727, and 5505 $/MCM respectively. This suggests different water storage values depending on location 
within the basin: reservoirs situated upstream can redirect water for use in larger portions of the basin and this makes them more 
valuable than reservoir situated downstream. More generally, the comparison of these valuations confirms that the descriptive case 
values stored water more than the prescriptive case, regardless of location. 

4.4. Consequences for water management in California 

The system-wide consequences of the difference between the two valuations of water storage are clear through comparison of 
aggregated surface and groundwater storage during 1922–93 (Fig. 8). Implicit overvaluation of surface reservoirs with operations 
based on a descriptive valuation resulted in a comparative overexploitation of aquifers. At the level of individual reservoirs, columns 
(1) and (5) of Table 2 show that the historical operation favoured smaller reservoirs when it comes to surface reservoir releases. This 
can become problematic when a small reservoir is the sole supplier to a demand site (e.g. New Hogan supplying for Stockton). This 
overcautious operation has led to 80% increase in the annual average scarcity volume [6] compared with operations derived from an 
“optimal”, prescriptive valuation, and to a 5% increase in the average unit pumping cost across the Central Valley. 

To better demonstrate how risk averse the two reservoir operations are, the absolute risk aversion coefficient for each reservoir is 
computed and illustrated in Table 3. COSVFs derived from (equation (1)) the obtained marginal water values of Table 2 for the 
descriptive model and Khadem et al. [6] for the prescriptive model, are used to calculate the risk aversion (AP). 

Table 3 reveals that the prescriptive model is in fact more risk averse in the face of uncertain hydrology. This is consistent with the 
fact that prescriptive operations minimize shortage. Less intuitively, it shows that even though they value surface water storage more, 
operations observed in the historical benchmark are not necessarily less risk averse. In fact, this higher valuation is linked with 
excessive water conservation for future uses in a way that sometimes penalises current uses. This behaviour could be explained by 
regulatory constraints that water managers have to deal with, but that the model does not account for, such as stream temperature 

Table 2 
Descriptive marginal water values of end-of-year surface reservoirs’ storage in the Central Valley, listed from north to south compared with pre-
scriptive values.  

Reservoir End-of-year 
active storage 

(MCM) 
(1) 

Annual average 
net inflow 

(MCM) 
(2) 

Descriptive marginal 
value at dead storage 

($/MCM) 
(3) 

Descriptive marginal 
value at full storage 

($/MCM) 
(4) 

Descriptive average 
marginal value 

($/MCM) 
(5) 

Prescriptive average 
marginal value 

($/MCM) 
(6) 

Shasta 3344 6816 52,666 38,549 45,608 29,576 
Whiskeytown 138 1144 12,484 9542 11,013 39,923 
Black Butte 122 488 480 189 334 393 
Oroville 2682 4966 45,830 42,139 43,985 22,263 
New Bullards 

Bar 
560 1496 32,382 28,429 30,406 38,775 

Camp Far 
West 

126 458 1872 1817 1844 108 

Indian Valley 731 529 15 13 14 10,825 
Folsom 701 3271 27,638 5830 16,734 34,979 
Berryessa 1926 438 18,915 18,865 18,890 10,656 
Pardee 235 840 107 14 60 13,334 
New Hogan 263 184 347 120 234 15,416 
New Melones 1507 1285 74,067 9108 41,588 19,500 
EBMUD 63 0 516 286 401 48 
Los Vaqueros 41 0 145 27 86 8 
Lloyd-Eleanor 333 542 28,437 28,129 28,283 27,953 
Hetch Hetchy 399 936 7911 7104 7507 1403 
Del Valle 23 0 1273 1181 1227 276 
Don Pedro 1727 792 69,837 10,213 40,025 23,716 
Turlock 69 0 369 94 232 182 
McClure 907 1128 42,123 5940 24,032 20,314 
SF aggregate 277 0 1071 650 860 0 
Eastman 99 82 959 10 485 264 
Santa Clara 209 156 1766 727 1246 89 
Hensley 79 101 329 135 232 30,892 
San Luis 1958 0 1275 467 871 1 
Millerton 495 2082 35,190 747 17,969 37 
Pine Flat 1177 2041 63,661 7752 35,706 5767 
Kaweah 101 581 5884 5747 5816 913 
Success 81 170 281 8 144 5387 
Isabella 453 876 1670 1011 1340 526 

Note: EBMUD stands for East Bay Municipal Utility District and SF is San Francisco. 
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requirements that necessitate cold water released from deep reservoirs lakes to favour salmon habitats. 

5. Discussion and conclusion 

This paper proposes a methodology to derive comparable descriptive and prescriptive valuations of water storage. In both ap-
proaches, values are deduced from a hybrid setup where an EA is linked to a hydro-economic model. While EA searches for the value of 
stored water, the role of the hydro-economic model is to link water allocation decisions with the space and time distribution of the 
value of stored water for future uses. In the prescriptive approach, the EA aims at optimizing long-term benefits from water use, 
whereas in the descriptive approach, the objective is to provide a valuation that calibrates a historical benchmark. To avoid unrealistic 
storage valuations in small reservoirs, an auxiliary objective is introduced, meaning that both problems are formulated as being multi- 
objective, and solved using an MOEA. The resulting modeling approach is generalizable because 1) its applicability is not plagued by 
the curse of dimensionality linked with system size, and 2) it is assumption free, e.g., it does not require non-convexity assumptions 
that do not apply in conjunctive use systems. The proposed approach is illustrated through valuation of 30 surface reservoirs in 
California’s Central Valley water system. 

The descriptive approach is descriptive insofar as it matches a historical benchmark whose outcome – storage levels across time and 
space – reflects the regulatory and institutional setting that resulted in the operations that led to this outcome. Yet, the approach itself 
is not based on simulation but on hybrid optimization, in that it uses an intra-annual optimization model coupled with an EA. The EA 
calibrates water marginal values to find those that replicate real-world observations. This is done by first taking water marginal values 
as EA’s decision variables (calibration parameters). EA randomly assigns values to these parameters and the water resources system is 
simulated using these values and a hydro-economic model. Note that this optimization-based descriptive approach, though counter- 
intuitive, is necessary to adequately compare descriptive and prescriptive valuations. This approach is generalizable and can readily be 
used when market valuation is absent or inefficient and when non-market methods are plagued with non-convexity and/or curse of 
dimensionality. Yet, the necessity to assume intra-annual foresight means that this approach may be difficult to apply to tropical and 
temperate areas where runoff is not snow-dominated. 

Results are also interesting in several respects. First, they vindicate the choice to represent intra-annual operations with a perfect 
foresight optimization models. This indicates that this complex system could be simulated with this simple assumption. In particular, it 
shows that regardless of the uncertainty concerning snowpack, monthly operations are robust to the consequences of that uncertainty. 
This robustness may break down on a finer, e.g. daily, timescale, but it is worth noting that most state-of-the-art global hydrological 
models representing complex multi-reservoir systems use a monthly time step [66], and that their results are not yet accurate enough 
[67] to justify a finer time resolution. 

Beyond, the comparison of descriptive and prescriptive operations is a two-way street. On one hand, it provides insights into the 
differences between the historical benchmark and optimized operations, by providing comparable valuations of surface water storage. 
In the case of California, this translates into showing how surface water valuation leads to using groundwater instead. On the other 
hand, interpreting this finding beyond the confines afforded by the models’ formulation provides insights into possible causes of 

Fig. 7. Comparison of the representative solution in descriptive and normative valuation, COSVF of reservoirs in (a) Shasta, (b) Oroville, (c) Don 
Pedro, and (d) Pine Flat. 
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historical management decisions. For instance, the quality of the calibration given constant storage valuations, constant groundwater 
pumping costs, and constant crop prices, shows a remarkable stability of their relative values throughout most of the twentieth 
century. But both groundwater pumping costs and crop retail prices have changed through time: the storage valuation could suggest 
that cheap energy may have favoured mining groundwater – a resource for which no strong management institutions exist in California 

Fig. 8. Comparison of the historical simulation and the optimized model for: a) surface reservoirs over 1922–57; b) surface reservoirs over 1958–93; 
and c) groundwater over 1922–93. 
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– whereas surface water rights ensured a greater conservation of surface water. This would link cheap energy prices with unsustainable 
water management practices, a speculative insight that deserves further investigation. More generally, the difference in surface water 
valuation from the two approaches reflects the role of institutions providing incentives for surface water conservation, and that are 
traditionally difficult to represent in an optimization model of that size. This was evidenced by further analysis involving risk aversion 
coefficients. The exercise revealed that the prescriptive valuation showed a more risk-averse approach to managing water resources. 
The overcautious operation observed in the historical benchmark was perhaps due to other constraints not seen in the model. 

Finally, it is worth elaborating on the fact that different storage valuations could lead to a similar fit of the descriptive model with 
the historical benchmark it is meant to reproduce. The existence of different parametrisations leading to similar goodness-of-fit is well- 
known in hydrology as equifinality [68,69]. Equifinality had also been found in water resources systems models, but only in the fact of 
producing very different reservoir operations leading to similar value of an economic objective [70,71]. In the descriptive approach 
proposed here, the opposite occurs as, similar to hydrological modeling; different parametrisations lead to similar operations. This 
finding runs contrary to the idea that there exists a unique water price that water markets can organically find to arrive to a 
near-optimal solution. 
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Table 3 
Absolute risk aversion coefficient for each reservoir of the descriptive and the prescriptive model. Note that wherever no AP is reported, the first 
derivative of the COSVF i.e. marginal water value is zero.  

Reservoirs September storage (MCM) AP of the descriptive model (1/MCM) AP of the prescriptive model (1/MCM) 
Dead 

storage 
Mean 

storage 
Full 

storage 
at dead 
storage 

at mean 
storage 

at full 
storage 

at dead 
storage 

at mean 
storage 

at full 
storage 

Shasta 1220 2892 4564 0 0 0 0 0 0.002 
Whiskeytown 152 221 290 0.002 0.002 0.002 0.0006 0.011 0.048 
Black Butte 12 73 134 0.005 0.007 0.013 0.008 0.016 – 

Oroville 1453 2794 4135 0 0 0 0 0 0.000 
New Bullards 

Bar 
310 590 870 0 0 0 0.001 0.002 0.003 

Camp Far West 1 64 127 0 0 0 0.007 0.012 0.052 
Folsom 102 453 803 0.001 0.002 0.005 0.001 0.002 0.016 
Indian Valley 0 366 731 0 0 0 0.001 0.003 2.274 
Berryessa 13 976 1939 0 0 0 0.001 0.001 – 

Pardee 15 133 250 0.004 0.007 0.028 0.004 0.008 – 

New Hogan 22 153 285 0.002 0.004 0.007 0.004 0.008 4.675 
Los Vaqueros 89 109 130 0.020 0.034 0.107 0.025 0.049 – 

EBMUD 102 134 165 0.007 0.009 0.013 0.016 0.032 – 

Turlock 14 48 83 0.011 0.017 0.042 0.014 0.029 – 

Lloyd-Eleanor 38 205 371 0 0 0 0 0 0 
Hetch Hetchy 45 245 444 0 0 0 0 0 0 
Santa Clara 46 128 210 0.004 0.005 0.009 0.005 0.009 0.035 
SF aggregate 38 158 278 0.002 0.002 0.003 – – – 

Kaweah 1 51 101 0 0 0 0.010 0.020 – 

Success 1 41 81 0.012 0.023 0.444 0.012 0.025 – 

Isabella 0 226 453 0.001 0.001 0.001 0.002 0.003 0.011 
Pine Flat 56 645 1233 0.001 0.001 0.006 0.001 0.001 0.002 
New Melones 978 1732 2485 0.001 0.001 0.005 0 0.001 0.002 
San Luis 99 1078 2057 0 0 0.001 0.001 0.001 – 

Del Valle 12 23 35 0.003 0.003 0.003 0.045 0.089 – 

Millerton 148 395 643 0.002 0.004 0.093 0.002 0.004 – 

McClure 143 596 1050 0.001 0.002 0.007 0.001 0.002 0.006 
Hensley 5 44 84 0.007 0.011 0.018 0.013 0.025 – 

Eastman 12 62 111 0.010 0.020 0.948 0.009 0.017 0.124 
Don Pedro 460 1324 2187 0 0.001 0.003 0 0.001 0.002 
Aggregate 

storage 
5586 15,957 26,329 0.097 0.157 1.761 0.190 0.372 7.252  
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