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Toward a unified framework for model calibration and optimisation in

virtual engineering workflows

Oliver P. H. Jones1, Jeremy E. Oakley2 and Robin C. Purshouse3

Abstract— When designing a new product it is often advan-
tageous to use virtual engineering as either a replacement or
assistant to more traditional prototyping. Virtual engineering
consists of two main stages: (i) development of the simulation
model; (ii) use of the model in design optimisation. There
is a vast literature on both of these stages in isolation but
virtually no studies have considered them in combination.
The model calibration and design optimisation processes both
however, crucially, draw on the same resource budget for
simulation evaluations. When evaluations are expensive, there
may be advantages in treating the two stages as combined.
This study lays out a joint framework by which such problems
can be expressed through a unified mathematical notation. A
previously published case study is reviewed within the context
of this framework, and directions for further development are
discussed.

I. INTRODUCTION

Virtual engineering (VE) is the use of models to simu-

late the behaviour of complex engineering problems. When

implemented as a part of a product life cycle the process

is called the virtual engineering workflow (VEW) [1]. An

overview of the VEW can be seen in Figure 1.

This work focuses on two of the main components within

the VEW: model calibration and optimisation. Calibration

and optimisation are traditionally separate activities. They

both require multiple function evaluations from a simula-

tion model which, for many real world problems, can be

expensive either monetarily or in terms of computation time.

It is sometimes the case that calibration is not completed

before optimisation begins. This can lead to a restart of

the optimizer thereby wasting part of the available budget

of available function evaluations. We believe there will be

benefits in considering these two processes together.

The optimization community has been mindful that the

cost of evaluating a simulation model can be high, and have

developed algorithms that aim to perform optimization on a

limited budget. For a review of approaches see [2]. Typically,

the total number of evaluations is limited to around 500 [3]

– although both tighter and more relaxed constraints on the
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number of evaluations have been reported in the literature

[2]. Note that these approaches typically assume that the

model parameters are fully determined and do not consider

any evaluations that may have been required to calibrate the

parameters.

We first present a mathematical formulation of the joint

problem of calibration and optimisation. A review of the real

world problem on injection moulding [4] is then performed

using the new joint problem formulation.

II. MATHEMATICAL FORMULATION

To start the formulation the major elements that will be

present within a problem are presented.

A. Problem framework and variables

We represent the physical system by

zs = s(x, ψ), (1)

with

• zs: the outputs of the system;

• x: control inputs to be optimised, potentially subject to

constraints;

• ψ: aleatory inputs, representing uncontrollable quanti-

ties that may differ randomly each time the the physical

system is run.

Both the inputs and outputs of the system can be multi-

dimensional. We also have a computer model of the system,



represented by

zm = f(x, θ, ψ), (2)

which may include additional calibration inputs θ required to

‘tune’ the model to the physical system. Uncertainty about

θ would be epistemic.

The relationship between the model and the physical

system is given by

s(x, ψ) = f(x, θ, ψ) + δ(x, ψ), (3)

where δ(x, ψ) represents residual error in the model predic-

tions, once the model has been tuned by selecting θ. The

function δ() is often referred to as the model discrepancy

[5].

1) Toy Formula - elements of the problem: A simple toy

formulation is now presented in which a ball is thrown with

the aim of hitting a target. In this scenario the objective is

to minimize the distance between where the ball lands and

the target. It is assumed that noisy physical measurements

can be obtained for the distance the ball lands from the

target, and that there a model of how far the ball lands from

the target is also available. For illustration, we suppose that

the true distance to the target (50m), the height at which

the ball is thrown (2m), and the acceleration due to gravity

(9.8m/s2) are all unknown. The different components within

the problem are as follows.

Model inputs:

• Control inputs: horizontal velocity (vh) and vertical

velocity (vv)

• Calibrations inputs: distance to target (Dta), starting

height (Hi) and acceleration due to gravity (g)

• Aleatory input: constant horizontal acceleration exerted

by wind (a)

We suppose that the physical system that described the

distance from the target is

s(vh, vv, a) = |50−Dth| (4)

with

Dth = (vht) + (0.5at2)

t = −
vv

−9.8
+

√

(

vv

−9.8

)2

−

(

4

−9.8

) (5)

The system output (to be minimised) is the distance from

the target, and a constraint on the control input would be a

maximum throwing speed.

We suppose that there is also an (imperfect) computer

model of the system,

f(vh, vv, Dta, Hi, g) = |Dta − vht|, (6)

with

t = −
vv

g
+

√

(

vv

g

)2

−

(

2Hi

g

)

(7)

so that there will be model discrepancy resulting from the

model failing to account for the wind acceleration.

B. Model calibration

Before it is possible to consider the steps that need to be

carried out to implement calibration it is first necessary to

consider what information is available.

1) Available Information: The information available for

the analyst will not necessarily be the same in all problems.

There are two main sources from which new data could be

obtained, either expert opinion or physical experiments. In

this work two cases are considered.

• Case 1: Noisy observations. We obtain physical exper-

imental data with observation error. For i = 1, . . . , n,

experiment i is carried out with control input setting xi
and measured aleatory inputs ψi, giving an observation

yi = s(xi, ψi) + ǫi, (8)

where ǫi is an observation error.

• Case 2: Plausibility/acceptability check. An expert be-

lieves the system output would lie in some range, given

the control and aleatory inputs. For i = 1, . . . , n, the

expert judges

s(xi, ψi) ∈ Si, (9)

for some set Si.

In both cases it is assumed that the value of ψi is known.

In the first case it is possible to work with an unknown ψi

although it would increase the complexity of the problem.

2) Calibration: In model calibration, the aim is to reduce

the error between the predicted and observed behaviour [5].

This is achieved though altering the internal parameters of

the model so that it can as closely predict the real ‘true’

outputs as possible. The term true being used here refers

to the values that would be present/obtained by running

a physical experiment or having perfect knowledge of the

system.

3) Determining parameters: Depending on what form of

information is being supplied by the expert, the method

needed for model calibration will vary.

• Case 1: Noisy observations

The observations from the experiments are

Y = [y1, . . . , yn]. (10)

If we assume a distribution for the errors ǫ1, . . . , ǫn and

for the unknown discrepancy δ(), then from (3) we can

construct a likelihood function p(Y |θ). We may then

choose,

argmax
θ

p(Y |θ), (11)

to obtain a single best point, or, having specified a prior

distribution p(θ) derive the posterior distribution,

p(θ|Y ) ∝ p(θ)p(Y |θ). (12)

Note that such calibration data are not just informative

for θ: they would also be informative for the model

discrepancy δ, so that, as in [5], we can derive a

joint posterior distribution p(θ, δ|Y ). This has important

implications for optimisation: via (3), we can attempt to



optimise the physical system s, rather than the computer

model approximation of it f .

• Case 2: Plausibility/acceptability check. We define D to

be the set of judgements provided by the expert:

D = {s(xi, ψi) ∈ Si, i = 1 . . . , n} (13)

In this case there are two situations that need to be

considered, depending on whether we assume modelling

error (i.e. the model discrepancy δ).

– No modelling error present

In this case, the likelihood function is then

p(D|θ) =

{

1, if f(xi, θ, ψi) ∈ Si for i = 1, ..., n

0, otherwise.

(14)

– Modeling error present

When using the relationship between the model and

system as shown in (3) the uncertainty due to the

model error becomes an issue. One method of over-

coming this is to add a tolerance to each Si based on a

judgment about δ(x, ψ). We define S∗

i with Si ⊂ S∗

i

and write the likelihood as

p(D|θ) =

{

1, if f(xi, θ, ψi) ∈ S∗

i for i = 1, ..., n

0, otherwise.

(15)

As with the noisy observation case, we might then

specify a prior for θ and derive the posterior, using

the likelihood function for the data D. A maximum

likelihood approach may be less suitable here, as

multiple θ may produce a likelihood of 1.

C. Optimisation

We suppose that the aim is to optimise the physical system,

and that model discrepancy is acknowledged, so that we

must consider optimising f(x, θ, ψ) + δ(x, ψ). Were we to

ignore model discrepancy, the subsequent notation could be

simplified by omitting the term δ(x, ψ) throughout.

Assuming vector output quantities, we have a standard

(multi-objective) optimisation problem [6]. Writing

f(x, θ, ψ) + δ(x, ψ) =(f1(x, θ, ψ) + δ1(x, ψ),

. . . , fk(x, θ, ψ) + δk(x, ψ)),
(16)

the optimisation problem can be written as

minimize
x∈X

f(x, θ, ψ) + δ(x, ψ), (17)

subject to any constraints on x, where X is the set of possible

choices of control inputs x, and minimisation is element-

wise.

1) Pareto optimality: Working with multi-objective prob-

lems a trade-off surface between the objectives, known as

the Pareto front, can be obtained by getting the set of

non-dominated points from within the current population of

points. A point x ∈ X is said to be non-dominated when

there does not exist a point x′ ∈ X such that

fi(x
′, θ, ψ) + δi(x

′, ψ) < fi(x, θ, ψ) + δi(x, ψ), (18)

for i = 1, . . . , k.

2) Robust optimisation: Robust optimisation considers

optimisation in the presence of uncertainty [7], and can

provide a link between the calibration and optimisation

stages described here. Starting with the optimisation problem

in (17), if we now consider θ, ψ and δ as uncertain, the

objective function is now uncertain for any x. To recover a

deterministic optimisation function with a known objective

function, we re-express the optimisation problem as

minimise
x∈X

I(f(x, θ, ψ) + δ(x, ψ)), (19)

For some appropriate functional I . Writing Ω = (θ, ψ, δ),
with a corresponding sample space Ωs, common choices for

I are as follows.

• Worst-case scenario - determine the worst case that can

be produced from within a bounded domain [8].

Iwc(x,Ω) = max
Ω∈Ωs

f(x, θ, ψ) + δ(x, ψ) (20)

• Aggregated Value - a combination of possible values

gained from the uncertain values determined by an

integral measure of robustness [9]. This method uses

the expectation, variance or a combination of the two

as the indicator.

Iexp(x,Ω) = E[f(x, θ, ψ) + δ(x, ψ)]

Ivar(x,Ω) = var[f(x, θ, ψ) + δ(x, ψ)]
(21)

where the bi-objective problem is,

min
x∈X

[Iexp , Ivar] (22)

• Threshold probability - determine how probable it is

for the objective function to be better than a reference

threshold [10]. The indicator determines the confidence

level where q is the threshold.

Icon(f(x, θ, ψ) + δ(x, ψ)), q) =p(f(x, θ, ψ)

+ δ(x, ψ) ≤ q)
(23)

Once one of these indicator methods has been chosen, the

results of the indicator replace the random objective func-

tion which would have been used within the optimisation.

Depending on the representation of the parameter, there are

two methods that can be implemented [11],

• Probabilistic - a method which works with distributions.

• Possibilistic - works based on possible realizations of

the parameter, often expressed as “scenarios”, either

– a set of scenarios is used within the indicator (e.g.

worst case across all scenarios), or

– performance against the objectives under different

scenarios are represented by additional objectives

and/or constraints.



In a probabilistic approach, the calibration phase could

supply the probability distribution for both θ and δ.

The use of robust methods can present additional issues for

problems with expensive evaluations, since typically multiple

evaluations for each choice of control inputs are needed

in order to understand the variability in the outputs (e.g.

via Monte Carlo methods). However methods are becoming

available that attempt to estimate the variability without the

necessity for repeated evaluations [12].

D. Toy Formula - The problem

Working with the same problem as before, if the ball is

thrown at a particular velocity, a noisy measurement may be

obtained as

y = s(vh, vv, a) + ǫ. (24)

In this case the observation error ǫ would be the difference

between the measured distance the ball is from the target and

the actual distance between the ball and target. The model

output is expressed as,

zm = f(vh, vv, Dta, Hi, g). (25)

If, for example, we wanted a point estimate of the cali-

bration inputs θ = (Dta, Hi, g), we would need to obtain

θ̂ = argmax
θ

p(y|θ), (26)

whilst also inferring the model discrepancy δ(vh, vv, a).
We could then use θ̂ = (D̂ta, Ĥi, ĝ) in an optimisation,

minimize
x∈X

f(x, θ̂) + δ(x, a), (27)

for a given a, with x = (vh, vv).

III. POSSIBLE SOLUTIONS

There are three logical routes that solutions to this problem

could take. The first would be to use a robust optimisation

approach, without performing any calibration. This could

save budget in terms of physical experiments, and poten-

tially computer model runs, but may result in an overly-

conservative result as a consequence of greater parameter

uncertainty. A second option is to perform calibration before

beginning the optimisation process. This may reduce the risk

of a conservative solution, but at a greater cost in terms of the

computation budget. A third option is to alternate between

performing optimisation and model calibration based upon a

chosen criteria. This may be beneficial if model discrepancy

is a concern: as the non-dominated set of control inputs is

reduced, further calibration experiments can be performed,

which may improve estimates of model discrepancy precisely

in the regions of interest within the control input space.

Figure 2 provides a sketch of how such a third option could

be realised. The processes of calibration and optimization are

alternated, with the transition between the two determined by

switching conditions. These conditions could be based on

number of evaluations (or proportion of the budget), or use

convergence criteria that are relevant to either calibration or

optimization (e.g. respectively, robustness of optimal output
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Fig. 2. Flow diagram for the proposed joint problem of model calibration
and optimisation

to parameter uncertainty or negligible improvement in a

hypervolume indicator [13]).

A further area to consider is the use of low-complexity

surrogate models (also known as emulators or meta-models)

to replace expensive evaluations within either the calibration

process, optimization process, or both processes [2], [5]. Any

of the above approaches can incorporate surrogates. Surro-

gates have the further benefit that they can use information

from both the calibration and optimization runs, allowing for

greater information sharing between the two activities.

IV. REAL WORLD EXAMPLE, SET WITHIN THE NEW

COMBINED PROBLEM FRAMEWORK

This section sets out an example problem within the

combined problem framework for optimisation and model

calibration. The real world example presented here is work

done by Villarreal-Marroquı́n and colleagues on injection

moulding [4], which, to the best of our knowledge, is notable

in being the only known example that has considered the two

problems together.

A. Injection moulding

The physical system s has the following control inputs x:

melting temperature (◦C), packing time (seconds), packing

pressure (MPa), Cooling time (seconds). The computer

model f has the same control inputs, and three calibration

inputs θ (referred to as heat transfer coefficients).

The outputs of both the physical system and the computer

model are: relative shrinkage of the length, relative shrinkage

of the thickness and relative shrinkage of the width. The



objective is to choose control inputs that will minimise all

three outputs. There are no aleatory inputs in this example.

Their methodology proceeds in a series of stages. We give

a condensed list here, skipping those stages that are not

directly relevant to our framework.

1) Stage 1 - design of experiment: The methodology

starts by acquiring two sets of data. The first set consists

of physical observed values at 19 different settings of the

control inputs, each replicated four times. The second set

comes from running the computer model at 35 settings of

the control and calibration inputs.

2) Stage 2 - fit calibrated predictor: The computer model

is computationally expensive, and so the authors do not

use it ‘directly’ for either calibration or optimisation. They

also recognise the presence of model discrepancy, which

they account for in their optimisation. This is done through

the construction of a ‘calibrated predictor’. Using the two

datasets (physical experiments and computer model runs),

they

• construct a meta-model of the computer model, based

on Gaussian process regression;

• construct an estimate δ̂(x) of the model discrepancy;

• derive a posterior distribution p(θ|Y ) of the calibration

inputs θ given the two datasets.

The calibrated predictor takes the form

ŝ(x) = Eθ[f̂(x, θ)] + δ̂(x), (28)

where f̂ is an estimate of the computer model obtained from

the meta-model, and the expectation is taken with respect to

the posterior distribution of the calibration inputs θ.

3) Stage 3 - first attempt to optimise the physical system:

The authors perform optimisation by constructing a grid of

equally spaced points spanning each of the control inputs.

Once the grid is constructed, the next step is to evaluate (28)

at each grid point (producing three outputs per grid point).

In their case study, the authors used a grid of 360 points.

4) Stage 4 - obtain Pareto front: A Pareto front is obtained

by inspection of the grid. Given the averaging with respect

to θ, this corresponds to the robust optimisation procedure

with the functional I chosen to be the expectation operator.

5) Stage 5 - refine Pareto front: Having identified (ap-

proximately) the Pareto front, a second grid of control inputs

is chosen in the location of the front, and (28) is again

evaluated at each grid point. A refined Pareto front is then

identified by inspection. The authors used 560 grid points in

their case study.

6) Stage 6 - validate final front: The estimated Pareto

front has been obtained from a ’calibrated predictor’, eval-

uated at 920 settings of the control inputs. The calibrated

predictor is only an estimate of the physical system, based

on 19 (replicated) physical experiments, and 35 computer

model runs. Consequently, there is a need to validate the

estimated Pareto front. This is done by selecting five control

input settings from the front, and then performing physical

experiments at these settings. The system outputs are then

compared with those from the initial 19 physical experi-

ments.

B. Discussion

The case-study has illustrated the combined process of

calibration and optimisation, but there are clearly further

issues to consider, suggesting several directions for further

research, specifically with regard to how available budgets

for both physical experiments and computer model runs

should be used.

Physical experiments can be used to calibrate the computer

model, and learn about the model discrepancy. How should

such experiments be designed? Ideally, we would like to run

experiments at or close to optimal settings of the control

inputs, so that the model discrepancy can be best understood

in the most relevant part of the control input space. However,

to identify this region of input space, we first need to

optimise the computer model, suggesting the need for an

iterated/sequential procedure. A further consideration is that

the budget for physical experiments may be severely limited.

Computer model runs are needed both for calibration and

optimisation, and the strategy used in [4] was to construct

a meta-model, to be used in both, based on a single set of

model runs. We may not need the meta-model to have the

same level of precision over the entire control input space, if

particular regions of input space are dominated. Sequential

approaches for model runs have been suggested for optimi-

sation [3], but we are not aware of the extra requirement of

model calibration being simultaneously addressed.

Currently, laying out a problem within the joint problem

framework has the possibility of providing benefits such as

helping with identifying the overall structure of the workflow.

A unified framework will also make it easier to track and

asses the impact of both epistemic uncertainty as well as

control inputs which may have otherwise been lost between

stages. When choosing how to solving a problem, knowledge

of what components need to be considered at each stage can

aid in the selection of appropriate methods.

V. CONCLUSION

This paper has laid out a joint problem framework for

the separate steps of optimisation and model calibration.

A real world cases study has been presented showing the

feasibility and advantages of setting such problems within

the new framework, and directions for further research have

been suggested.

The utility of the framework for further real world VEW

problems should be assessed. The framework then pro-

vides a coherent platform for the development of combined

calibration-optimisation activities.
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