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Abstract: The use of the multiscale generalized radial basis function (MSRBF) neural networks for image feature extraction and
medical image analysis and classification is proposed for the first time in this work. The MSRBF networks hold a simple and flexible
architecture that has been successfully used in forecasting and model structure detection of input-output nonlinear systems. In this work
instead, MSRBF networks are part of an integrated Computer-Aided Diagnosis (CAD) framework for breast cancer detection, which
holds three stages: an input-output model is obtained from the image, followed by a high-level image feature extraction from the model
and a classification module aimed at predicting breast cancer. The first stage renders the image data into a multiple-input-single-output
system. In order to improve the characterisation, the Nonlinear AutoRegressive with eXogenous inputs (NARX) model is introduced to
rearrange the available input-output data in a nonlinear way. The Forward Regression Orthogonal Least Squares (FROLS) algorithm
is then used to take advantage of the previous arrangement by solving the system as a model structure detection problem and finding
the output layer weights of the NARX-MSRBF network. Once the network model is available, the feature extraction takes place
by stimulating the input to produce output signals to be compressed by the Discrete Cosine Transform (DCT). Based on the new
methodology, a CAD system for X-ray mammograms was integrated. To test the method performance, three different and well-known
public image repositories were used: the mini-MIAS and the MMSD for mammography, and the BreaKHis for histopathology images.
A comparison exercise was also made between different database partitions to understand the mammogram breast density effect in the
performance since there are few remarks in the literature on this factor. Classification results show that the new CAD method reached
an accuracy of 93.5% in mini-MIAS, 93.99% in DDSM and 86.7% in the BreaKHis. We found that the MSRBF networks are able to
build tailored and precise image models and, combined with the DCT, to extract high-quality features from both black and white and
coloured images.

Keywords: Nonlinear system Identification, Image Processing, Discrete Cosine Transform, Radial Basis Functions, Computer-Aided
Diagnosis, Neural Networks.

1 Introduction elling capacity. Moreover, many experts in CAD systems
rely more frequently on the use of multi-layered ANN with
the intent of obtaining even better approximations. How-
ever, the more the hidden layers are included in the network,
the slower and more complex the model mapping becomes.
Conversely, single hidden-layer networks, as radial basis

functions, are known to be sufficient to estimate any contin-

Digital image processing and computer vision techniques
encompass an increasing variety of approaches to real-life
problems. When it comes to image classification, image pro-
cessing methods aim at recognising both visible and hidden
patterns to enable a subsequent statistical inference pro-
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cess, oriented in the first place to extract feature values to
feed such analytic process o, Among the last ones, there
is increasing acceptance in the literature on system iden-
tification approaches, which are mainly focused on build-
ing models only based on the historical record of the sys-
tem’s inputs and outputs > ). These models are also ca-
pable of recognising and reproducing behavioural patterns
from a system’s behaviour without prior knowledge of its
inner structure. Such pattern recognition capability is what
makes system identification models highly appealing in im-
age processing. Computer-aided diagnosis is another field
of intense development that bridges image processing and
computer vision disciplines to the medical field, especially
in visualisation and diagnostic tasks. CAD has made the
most of the current advances in intelligent systems. Ex-
amples are software supporting platforms for radiologists
in decision-making [ °1. One of the most popular system
identification approaches in CAD systems is represented by
artificial neural networks (ANN) given their excellent mod-
Research Article

Manuscript received date; revised date
Recommended by Associate Editor xxxx

uous function, independently of the lincarity degree 2 % 71
Radial Basis Functions Networks (RBF) are popular kernel-
based networks which represent a particular class of ANN.
Kernels are mathematical functions contributing together
to simulate a higher dimensional space from another one of
a lower dimension to ease the setting up of relationships be-
tween the data by expressing it in a new way. RBF networks
are efficient at solving nonlinear system identification prob-
lems in spite they hold a linearly weighted structure that
eases the training and discards complex nonlinear proce-
dures in the solution algorithm [” 1. Concerning nonlinear
analysis, it is increasingly important for the study of real-
life systems. As for digital image processing, its relevance
has increased thanks to the proliferation of image usage in
several application fields, the improvement of storage ca-
pacities and faster data transference speeds. An example
of nonlinear analysis in image processing is that exclusively
linear procedures in images may lead to poor operational
results regarding edges, non-Gaussian noise and other ran-
dom distortions, factors that can be especially ineffective
when a high accuracy analysis is usually required. [ % 19,

http://www.ijac.net emailiijac@ia.ac.cn
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Notwithstanding that RBF networks sound like a good
choice due to their power of modelling and solving simplic-
ity, the approximations they produce may lack the flexi-
bility to model highly dynamic or rapid changing systems.
An alternative to overcome such a limitation is the multi-
scale version of RBF, termed as generalized multiscale RBF
networks, that provide a balance between the simplicity of
modelling of RBIF networks and the advantages provided
by more complex networks ' 1% 1]

Until the presentation of this work, MSRBF networks
have not been used in image processing techniques nor in
CAD systems. In this work, MSRBF networks are adopted
and combined with the DCT to extract high-quality infor-
mation from images with classification purposes. A basic
outline of the proposed CAD system within the context of
machine learning is shown in Fig. 1, where as detailed fur-
ther in Section 3, training, and testing phases converge into
classification to produce a computer-aided diagnosis using
a clustering algorithm named k-means++. Also, a NARX-
based input-output mapping of digital images is presented
with the aim of making the digital image information con-
sistent with nonlinear system identification problems. Tests
results show that the new method is highly consistent as a
CAD system in breast cancer image detection, an impor-
tant and challenging public health problem, both in X-ray
mammography and microscopy instances.

In terms of application, RBF networks have been used in
a wide number of different real-world applications such as
the modelling of complex systems [ prediction of near-
earth geomagnetic field ['”), face recognition ' ', mod-
elling and identification of dynamical systems ['*), three-
dimensional object recognition I'“!, and motor systems con-
trol *l, and in CAD systems involving pathological brain
detection “? and breast cancer detection 2% 2% 2% 26 271,

This work puts forward a novel image processing frame-
work for feature extraction based on an improved version of
RBF networks. We add to this framework the advantages
of the DCT to compress information. Finally, we success-
fully adapt the MSRBF methodology to CAD systems for
breast cancer detection.

The rest of this paper is organised as follows: section
2 provides preliminaries while section 3 describes the pro-

Image modelling |
& feature
extraction

—

MSREBF modelling
Feature extraction

Classifier
training

Classification

Data Labelling

MSEBF modelling
Feature extraction

Figure 1 Role of the MSRBF-DCT into a classification-based
CAD system.
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Figure 2 The shape of the Gaussian function contained in the
RBF kernel.

posed methodology for the classification and detection of
breast cancer. In section 4, experiments and results are pre-
sented, where section 5 discusses the performance produced
by the proposed methodology. Finally, section 6 draws con-
clusions.

2 Preliminaries

In this section a review of background material is briefly
reviewed.

2.1 Traditional RBF and 2D MSRBF neu-
ral networks

Traditional RBF networks are known to be straightfor-
wardly structured, but with a considerable power to iden-
tify a whole range of systems, including those with irregular
data I’ **1. However, single-scale RBF networks may have
modest generalisation qualities ('] MSRBF networks pro-
vide a favourable trade-off between easy to solve traditional
RBF networks and the modelling advantages of multi-layer
networks, which more than often include various hidden lay-
ers and involve nonlinear optimisation steps in the solution
process 'l MSRBF nctworks are multiscale because on
the one hand, the kernel function included is Gaussian, and
on the other, such Gaussian function has several widths or
scales.

As mentioned, the present work includes the Gaussian
kernel, for it allows to easily use centres and widths for
an added modelling flexibility, as it enables the structure
detection algorithm to choose from more options for a bet-
ter representation. Fig. 2 exemplifies how the Gaussian
neuron-function processes the z input data according to
the u and o parameters (mean or kernel centres and stan-
dard deviations, widths or scales, respectively) generating
a bell-shaped distribution curve in the output .

The Gaussian kernel is known to be a multidimensional
universal approximator of functions converting a dimen-
sional space into another corresponding one, but with dif-
ferent dimension (usually longer) that helps to linearly sep-
arate any type of input data with non-linear dependen-
cies (like most of the real-life problems) to make features
or information easier to extract and interpret by machine
learning algorithms. RBF networks base their effectiveness
on such advantage and approximate the unknown nonlin-
ear function f utilising a weighted sum of Gaussian radial
functions. Fig. 3 shows the typical architecture of RBF
networks.

The RBF structure consists of three layers, where the
first one represents the input data linked to the indepen-

http://www.ijac.net emailiijac@ia.ac.cn



oONOYUT A WN =

International Journal of Automation and Computing

Beltran-Perez, Wei and Rubio-Solis / Preparation of Papers for International Journal of Automation and Computing 3
. . Extended
dent variables x1,- -+, x,,. The first layer is fully connected Inputlayer  piiion layer  OUtPUtlaver
to the second intermediate layer, formed by the Gaussian —i— ,—J—. —i
neurons ¢i,--- ,¢n. The second intermediate layer is in o
turn fully connected to the third layer or output layer, em- o A J L
ploying the kernel weights w1, - - - , wy,, which are part of the - f Wi

result of the network training. Note that In the context of
the neural network, the Gaussian functions parameters c;
for the centres and p;, for the widths are not given in the
problem and thus must be computed automatically from
data. For this reason, RBF networks are nonparametric
methods. The general formulation of the standard RBF for
a one-dimensional system is the following:

M
= 0::(%(t); 61, ) (1)

=1

where ¢; is the i*® neuron or Gaussian kernel, subindex
i denotes the neuron number, M is the total number of
neurons or kernels, Z(t) is the vector of independent vari-
ables (which in the NARX model are rather regressors),
G; = o1, ,0n] is the vector of parameters of the scales
(or widths) and ¢&; = [c1, - - -, ¢n] is the vector of parameters
of the kernel centres. In such a way, the Gaussian kernel
function for a one-dimensional system is stated as follows:

6i(E(t); 34, 6) = exp{zd: (M)ZJ @

o
b=1 ¢

where d = ny + ny, being n,, ny the maximum lags for
the system input and output and b is an auxiliary value for
indexing the regressive variables contained in Z(t).

2.1.1 2D MSRBF neural networks

The MSRBF network implemented in this framework
adopts the multiscale approach as a primal contribution
along with the 2D perspective to attack the image process-
ing problem. The multiscale extension to RBF, as the name
suggests, multiplies the scales or widths of each kernel func-
tion with the aim of expanding the flexibility of the single
hidden-layer neural network and better approach the non-
linear function f .

Fig. 4 describes the structure of MSRBF neural net-
works, where the vectors of the input layer are fully
connnected to the Gaussian kernel functions ¢, ¢,m (defined
originally in trditional RBF networks as ¢;). The number of
functions represents the number of kernel centres c¢,,,. The

Radial Basis
Hidden layer

Input layer Output layer

Figure 3 The multiple-input single-output architecture of a Gaus-
sian RBFNN.

Regular RBF

Y l . Weaw,

5 P, ik

Figure 4 Increase in the number of RBF neurons produced by
the multiscale approach.

hidden-layer neurons are fully connected to the output layer
by means of a series of weights wp,4,m corresponding to the
model parameters 0p q,m stated below in (Eq. 3). The 2D
MSRBF version replaces the vector of regressors Z(t) (Eq.
2) by the two-dimensional vector Z(4, j) (Eq. 4).

The 2D MSRBF network implemented in this work
presents the following mathematical structure, which is an
adaptation of a definition presented in [''].

Ne

P @
ZZ Op,q.mPp,q.m (T(3,); 0 Gy q)»cm) (3)

i=0 j=0m~—1

where y(i, §) is defined as f(Z(i, j)) as is the system output,
Z(i, 7) is the vector of bidimensional regressors composed of
lagged inputs and outputs, o oD are the scales, ¢, are the
candidate centres with N, repr esenting their quantity in the
network, ¢ 4,m are the basis functions and 0, 4,.m are the
model weights to be estimated during training. In that way,
the basis functions previously defined in traditional RBF's
(Eq. 2), are defined in the 2D MSRBF network as:

d
o a(p 26(2,7) — Cmyb
Gp,q.m(Z(4,5); 0 (p 9 .Cm) = GXP{ Z ( (p,Q) - ) }

b=1 m,

(4)
where in the same fashion, ¢, 4 is the general Gaussian
kernel, o'P"? are the Gaussian multiscales, ¢, are the Gaus-
sian centres, b is an auxiliary value indexing the variables
contained in vector Z(¢,7) and d = ny + Nu1 + Nu2 + Nus,
being nyi,nu2,mu3 and ny the regressive variables of the
multiple-input-single-output network design suggested in
this paper. However, special attention must be paid in the
determination of the Gaussian parameters.

2.1.2 The discrete cosine transform

The discrete cosine transform P is a function that com-
putes a sequence of discrete values out of a first sequence.
The resulting coefficients are calculated by summing co-
sine functions valued at various frequencies, producing an
oscillating effect in the resulting numbers. A relevant con-
tribution of the DCT is the data compression capability for

http://www.ijac.net emailiijac@ia.ac.cn
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audio and image processing applications, including pattern
recognition .

A simple way to explain the DCT is to imagine a vector of
a certain length and the DCT as a transformation matrix so
that the product of the first two results in a second vector of
the same length but with the energy concentrated in fewer
coefficients. Because of this quality, it is easy to reorder
and leave out the less important values. More formally, the
DCT for a data sequence X (i),s =0,1,---,(N — 1) is:

P P IS X0, u=0
‘ 2 5N X (i) cos @EDUT g — 10 (N — 1)

(3)
where F(u) is the ith DCT coefficient and w is a vector of
values to be compressed.

3 Methodology

In this section the proposed Generalized Multiscales RBF
Network using a Discrete Cosine (MSRBF-DC'T') Transform
for the classification of breast cancer images is described.

3.1 The MSRBF-DCT methodology

The MSRBF-DCT feature value extraction method bases
its logic on four main algorithms: conversion of the im-
age data into the NARX format, the multiscale version of
RBEF networks, the FROLS algorithm and the discrete co-
sine transform. Fig. 5 shows the MSRBF network informa-
tion flow within the new methodology.

The adaptation of the proposed methodology into the
CAD point of view involved the image partition into subim-
ages or regions of interest (ROIs) in the first place. In this
work, ROIs are regarded here as the standard processing
units, where a 64 x 64 pixel-size was assigned to better
enclose the ROIs such as tumours and microcalcifications
including the surrounding regions. Besides, a splitting pro-
cess was included to deepen the analysis scope of this work
as for the objects’ position detection in the ROI area and
to produce a two-fold and parallel characterisation, where a
complete subimage is observed on the left side, followed by
its dual partition on the right. The functional objective of
this conversion is to diversify the features contained within

~~ ROl image

Mask scanning |

Input-output system data transformation |

Centres |--bl Multiscales |

v
| MSRBF candidate terms |

| FROLS model structure detection

| Model weights estimation |
2 |

(__ MSRBF model of ROI

Figure 5 MSRBF model approximation flowchart.
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...........................

-
7 Model stimulation

Fixed mput siguad A

Fixed input signal 1

Fixed mput signal N
'

Response signal A
Response signal 1

Response signal N

I
1
1
i
I
1
i
I
1
i
1
1

Figure 6 MSRBF model stimulation procedure.

the resulting vector, especially when the objects are out of
the image centre. Please note that after the feature extrac-
tion of individual partitions, the values must form a single
vector representing the original ROL.

As for the subject of the image processing, each ROI split
is read and stored according to the input-output system for-
mat at first. Then, such data must be processed to derive
a convenient number of data centres. The referred centres
represent artificial neurons or functions contained in the
singleton hidden network layer. In this paper, the mathe-
matical structure of each neuron-function is the standard
Gaussian function, defined alongside the complete process-
ing in the following section.

At the end of the image modelling process, the struc-
ture selection algorithm FROLS comes into play to assess
the candidate neurons and include the most representative
terms into the model.

Once the model is available, a set of input signals is used
to excite the model and generate a corresponding output
signal series, whose values are processed via the DCT and
assembled to obtain a set of feature vectors. As illustrated
in Fig. 6, this process of feature extraction is repeated over
all the mammogram’s ROIs to compare the final vectors
to pre-tagged samples corresponding to healthy, benign or
malignant class utilising a distant-based classification algo-
rithm.

3.2 Discrete-time system structuring

At this stage, the new method aims to scan the image
data similarly to a time series, where instead of discrete time
periods, adjacent pixel neighbourhoods without overlap lay
distributed along the image (Fig. 7).

From the input-output systems perspective, the way of
representing such data must be congruent with the following
equation:

Time period t-1 ~ Time period t
1 |

U 1T 1

Uy Uy

Us

Figure 7 2D pixel-level equivalence of time domain input-output
variables in the new framework.
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y(t) = F(x(®) +e(t) (6)

in which the output y(¢) is explained by a nonlinear func-
tion f and an error sequence e(t). In the case of the RBF,
the nonlinear function can be conveniently represented as
linear-in-the-parameters as follows:

F@) =" 0:0:((t); 65, ¢) (7)

i=1

where ¢; is the Gaussian function (defined later in Sec-
tion 3.3.2), Z(¢) is the vector of independent variables (also
known as regressors), &; = [o1, - ,0n] is the vector of
parameters of the scales or widths and & = [c1,- - ,¢y]
is the vector of parameters of the kernel centres. Based
on the 2D-NARX model describing a single-input-single-
output (SISO) system, the nonlinear function is compound
together by a list of input-output regressors as follows %> Z;

y() =fly(t —1),y(t —2), -, y(t —ny), ®)
u(t —d),u(t —d—1), - ,u(t —d—mny)] + e(t)

where f is an unknown nonlinear function, y(t) is the se-
quence of the system output, u(t) is the sequence of the
system input, n, and ny are the maximum lags for the sys-
tem inputs and output (in this work fixed at 1), and d is
a time delay auxiliary value, set here to d = 1. Based on
more complex NARX representations for a multiple-input-
single-output (MISO) system that aim at producing a richer
feature extraction, the vector Z(t) = [x1(t),--- ,24(t)]” is
defined as a set of regressors in the following ways:

.’fb(t) — {y(t b)) 1 S b S Ny (9)

u(t—(b—ny)), ny+1<b<ny+n,
where n, and ny are the maximum lags for the input u
and the output y respectively and b is an auxiliary value.
Taking into account the previous description, the vector
of basic cross-coupled regressors to be combined in the 2D
case within the function expansion and defined as (3, ).
The last representation shift aimed at addressing the bi-
dimensional image processing problem usually present in
the field of medical image processing, compared to the sim-
pler time series problem that depends on a single variable.
Please note that Section 3.2.2 details the 2D modelling of
this process. With this in mind, Eq. (10) defines the set of
regressors of as follows:

y(27]_2b)7 1§b_1
S o <
wlig) =4I 20D BEE2 )
uz(i— 1,7 — 2(b — 2)), 3<bh<3
us(i,j—1—2(b—3)), 4<b<4

where the maximum lags ny, nu1, Nu2,nu3 were fixed in 1
and b is an auxiliary value, following the actual model set
up to be seen in Section 4.1.

Estimate Initial Kernel Centres]

Using Sum of Squares
and K-means++

]

Multi-scales estimation:

Expand the number of RBF units

by determining multiple widths
using Eq. (14)-(19)

0

Output Weight estimation
using the FROLS algorithm

b0

Model reduction and ]

Figure 8 Flowchart for the MSRBF parameter identification.

3.3 Parameter Estimation for the MSRBF
networks

As described in Fig. 8, the new framework takes advan-
tage of the MSRBF networks efficiency to build image mod-
els from which functional feature vectors are extracted with
the help of the DCT. The vectors are then included in the
training matrix of the CAD system. It is noted here that the
training of the MSRBF networks and the CAD system are
separate but consecutive processes. While the kind of learn-
ing of the former is unsupervised, the latter is supervised.
Unlike multilayer networks, where habitually all parameters
are simultaneously optimised via backpropagation (which is
slow and can get stuck in local minima), RBF networks can
take in many other training schemes [*% 21 In this work, the
parameter estimation of the MSRBI' networks consists of
three separate steps, (a) centres estimation, (b) widths esti-
mation and (c) output layer weights estimation. In the last
step, we used a popular OLS-based training strategy (de-
tailed in Section 3.4) that uses a linear-in-the-parameters
representation of the network that makes it easy to solve

2

3.3.1 Kernel centres estimation

The proposed method includes the implementation of an
adaptive algorithm to determine the number of centres N,
(and therefore, the number of Gaussian functions in the hid-
den layer), taken from the work of 'l and "', In the first
place, the sum-of-squares clustering algorithm acts as a cri-
terion for estimating the number of centres. The algorithm
includes the following steps:

1. The input data, composed of N rows and p columns,
is divided into an arbitrary number of k initial groups
G, Gk.

2. The geometry centre (centroid) ¢; of each group Gj is
obtained.

3. The variability d; per group is estimated by summing
all distances of 2Z; with respect to the centroid cj:

=23 |z -gl (11)

i€l

where the vector Z; is the ith row of input data be-
longing to the group Gj.

http://www.ijac.net emailiijac@ia.ac.cn
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4. The variability function of k, Wy, is estimated by sum-
ming the d; of all groups.

5. The process is repeated from step 1 to 4 using different
k values to estimate their variability function Wj,.

6. The difference in the variability function of k values
involves the following formula:

prrr(k) = (k — D*Wi_1 — k**Wy  (12)

7. The following equation helps to compute the effective-
ness of each k by comparing the values obtained in
step 6:

E(k) = |prrr(k)/pirr(k + 1)| (13)

8. Finally, the recommended k value, or number of cen-
tres N, is that one maximising the function E(k).

After the estimation of the number of kernel centres, the
k-means++ algorithm 121 is used to compute a correspond-
ing number of centroids from the N X p size input data
matrix.

3.3.2 Multi-scales estimation

As for the scales or kernel widths, a two stage process
was carried out according to the strategy recommended in
'] The idea behind aims at estimating a single scale by
basis function ¢; in the first place followed in turn by the
computation of the quantiles (points taken at regular in-
tervals) resulting from the first scale. Thus, the equations
below define the first single scales.

oy = maz{y(i, j)} — min{y(i, j)} (14)

ow, = max{ur(i,j)} — min{u,(i,5)} (15)

where oy is the initial scale for the output and o, are the

initial scales for the inputs u, = [u1,--- ,ug] of the MISO

system. For the calculation of the multiple final scales, the
following formula is used to expand oy, and oy,.:

A'Erzz’q) - dL(lg [ (Ugg?gn 27 Tty (O’;l(;},?n)zv (U'iz‘),m)zv Tty (O-ﬁ(zq) m)2 ]

output y

(16)

where m connotes the kernel centre, Aﬁ,’;"” are the covari-
ance matrices for the valuesp=10,--- ,Pand ¢=0,---,Q,
u, are the system inputs and Ug(f ,)n = 2"Pgy and afffn),m =
27 %g,,. are the quantiles linked to the output and input ini-
tial scales. In this work, the values of P and Q) were fixed in
1 and the number of system inputs, R, in 3. Therefore the

scales contained in (16) can be disaggregated as follows:

Uz(fv)n = [(UyQO)z»(Uy2_1)2] = [(Uy)Qa(Uy/2)2]v v'm

(17)
O'Si)nn - I:(O'urzu)‘z’ (O'ur271)2:| - [(Jur)27 (UuT/Q)z]’ vm
(18)

where u, = [u1, u2, us] corresponds to the system inputs, oy
and oy, are the initial scales obtained in (14) and (15) and
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m indicates the kernel centre. With the above definitions,
a more explicit representation of the multiscale radial basis
functions expressed in Eq. (7) is:

ny (wb(i,j) - Cm,b)2

¢p,q,m(5(i7j)§5‘fr€’q)76m) :eXp[_ @

b=1 Oy,m
d R .
p(%,J) — Cm,b\ 2
- > > @ (19)
b=ny+1r=1 Ouyym

where d = ny +nu1 +nu2 + 143 and R = 3 is the number of
system inputs. After the kernels’ definition and estimation,
a matrix of resulting values is built to allow the FROLS
algorithm to detect the model structure and ease the output
weights estimation.
3.3.3 Output-layer weights estimation

After the calculation of the Gaussian functions, the as-
sociated firing strengths are taken as candidates during the
parameter estimation of the weights connecting the hidden
and the output layers. The estimation starts with the selec-
tion of the candidate neurons contributing most to explain
the system output y(t) by means of the FROLS algorithm
(Section 3.4) so that a much smaller subset of candidate
neurons remains available. Thanks to the linear-in-the-
parameters representation of the RBF defined in (Eq. 7),
the vector of weights is easily obtained by solving the prob-
lem as a system of linear equations for 6:

ho =y (20)

where h, 8 and y are the vectors of firing strengths, weights
and system output observations respectively.

3.4 Model structure detection

Following up the definitions in Section 3.3.2, the number
of scales or RBF widths for a MISO system is Ny = (P +
1)(Q + 1E. The proposed model was set up at P =Q =1
and R = 3, so the initial number of Gaussian centres k
was scaled up N, = (2)(2)® = 16 times in the MSRBF
network, in a similar fashion to the architecture expansion
shown earlier in Fig. 4. The final number of M candidate
neurons of the MSRBF network is M = N.Ns, where N,
is equal to the number of initial centres k recommended by
the sum-of-squares algorithm (Section 3.3.1).

The listing of the candidate neurons M gains importance
in the structure detection algorithm since it makes use of a
D dictionary containing M candidate functions, from which
the selection process is carried out. The D dictionary enlists
the basis functions in the following manner:

D={¢m()ym=1,--- , M} (21)
where ¢ € Gpam( W En)ip = 0,---,Piq =

0,---,Q;m=1,---,N,. The FROLS algorithm "I is de-
signed to build, term by term, the best and most concise
models from D, the pool of candidate terms. It bases ini-
tially on the original OLS estimator "1, which iteratively
looks for the candidate terms that best minimise the error
respecting the model output y(t) by using the ERR estima-
tor. The orthogonalisation algorithm helps to exclude from
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the selection the candidate terms which content is redun-
dant to that already included in the model.

However, the ERR estimator in the OLS is biased to-
wards the inclusion of terms sorted first in the model equa-
tion ). The FROLS algorithm contributes to removing
that shortcoming by adding a reordering of the candidate
terms within the equation, leaving out biases of any kind
in the inclusion of the most significant candidates. The
stop-criterion of the FROLS algorithm changed to an IF
function to limit the number of terms. Thus, the model
detection ends up when the error tolerance is satisfied or
when the model is long enough.

3.5 Feature extraction and the DCT

The feature extraction module of this framework works
out from the image models estimated by the MSRBF net-
work. In this work a finite number of fixed signals are used
to obtain responses from the MSRBF model. However,
unlike the 2D NARX model, the featuring process of the
model’s response signal includes the discrete cosine trans-
form (DCT) to improve the representativeness of the image
values concerning the quality and the quantity. This im-
provement is because the featuring of the model’s output
response signal takes place through a direct data transfor-
mation instead of external measures based on statistical
measures, which can be useful but can ignore information
when measuring from the outside. Section 2.1.6 and the fol-
lowing subsection explain the basics of the DCT algorithm.

Fig. 9 shows a scheme of the MSRBF-based image pro-
cessing method, where the stimulus of the image model and
the DCT play essential roles to produce feature values. An-
other advantage behind using the DCT is the ease to obtain
even-sized feature vectors given that it allows the choice of
an identical number of coefficients per image.

3.6 Classification and detection

The classification module is the connection between the
feature extraction process and CAD systems. It links the
feature vectors from the supervised, pre-labelling task with
the unlabelled feature vectors of the image to classify ac-
cording to the case study’s classes. Fig. 1, shown in the
first section, aims to ease the information flow visualisation

Mammogram
I Image rearientation

| Mammogram partition into ROIs |

| Roisplitting Preprocessing
| MSRBFModelA | | MSRBFModelB |
v .
! Excitation of Model A | | Excitation of Model B
DCTofoutputA | | DCTofoutputB |

Processing

Feature vector

Figure 9 Flowchart of MSRBF-based image processing for feature
extraction.

of the proposed framework, where we observe two sepa-
rate parallel processes of image data extraction converging
into the detection/diagnosis module, based on classification.
The difference between classification and diagnosis is that
the first one associates the input vector with a class. The
diagnosis module uses the classification results to interpret
the patient’s condition and displays a message easy to un-
derstand.

For classification, the distance-based k-means++ algo-
rithm was selected [*?. The standard algorithm k-means
inspired this technique. However, k-means++ holds the
advantage of using an improved seeding method to choose

centres, producing an efficient classification up to 70% faster
[32]

4 Experiments and Results

In this section we evaluated the proposed MSRBF-DCT
framework performance through three popular medical im-
age data sets: two consisting of X-ray mammograms (mini-
MIAS and DDSM) and one made up from histopathologi-
cal (microscopy-level) samples (BreaKHis). The reason for
choosing the first two case studies follows that both mini-
MIAS and DDSM are high quality benchmarks that are also
public and have been widely used, which facilitated com-
parison with previous work. The foregoing is also relevant
because there are quite a few methods in the literature for
breast cancer detection that claim interesting results but
use databases that are not publicly available. Despite the
advantages, we note that mini-MIAS and DDSM are not re-
cent, so we included a recently published database related
to breast cancer which could allow us to test our method
both with non-mammographic and non-grayscale images at
once to broaden the experimental scope. Thus, we incor-
porated the BreakHis database to our tests. As for the
experimental conditions, all programs were coded in MAT-
LAB R2014b 64-bit and executed in a computer running in
Windows 7 Professional operating system with an Intel (R)
Core (TM) i5-4590 processor at 3.30GHz speed, running
MATLAB 2014b.

4.1 The mini-MIAS Database

The assessment of the MSRBF-DCT method started
with the mini-MIAS database of mammograms ["'r’], a public
repository including 322 high-quality grayscale X-ray films
of 1024 x 1024 pixels of the medio-lateral oblique view of
the breast in PGM format. In spite of the high-quality
database, numerous artefacts and scanning imperfections
within images were present, as unknown breast position and
orientation (leftnor right), duct tapes, orientation tags, low-
intensity labels and scanning artefacts. The evaluation goal
was to assess the quality of the feature extraction method
by evaluating its classification quality for a defined set of
mammograms with information attached to them regarding
the medical condition class and the background tissue type.

The database distribution regarding the breast tissue
type is detailed in Table 1. A randomised data-splitting
of the 322 breast scans of the database was made, following
a 65% to 35% ratio for training and testing with the aim of
reducing the chance of attaining biased performance met-
rics. Furthermore, to counteract the high image variability
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Figure 10 T'wo pairs of fit-to-data curves and ERR values. ROI
from [*°1,

regarding the breast tissue type, n = 4 different training
and testing scenarios with different tissue background com-
position were carried out aimed at, on the one hand leaving
in evidence potential differences in the classification results
and on the other to get a set of final performance measures
with minimal bias. In that way, the global accuracy for
a n number of training and testing scenarios is defined by
Accuracyn, = average(Accuracy(i)), where ¢ = [1,---,n]
symbolises the ith test.

Given the high image resolution and the reduced dimen-
sion of several ROIs, we decided to make the processing
at the subimage (namely ROI) level. During training, we
assembled a matrix of 21,637 feature vectors, which data
labelling produced 95.5% of these belonging to normal and
4.5% to abnormal, from which 2.29% belonged to benign
and 2.21% to malign. The error tolerance of the ERR stop-
criterion was 0.15%, and the maximum number of terms
was 2.

After the partitioning of mammograms (divide and con-
quer strategy), the ROI feature extraction and the labelling
of the complete database by following the database docu-
mentation, the construction of a training matrix for a spe-
cific training-testing partition made only necessary to gen-
erate a subset of the full training matrix by removing from
it the mammogram-related vectors selected for testing. The
initial evaluation aimed at judging the ability of the model
to fit the observational data. Figure 10 shows the example
of a dense tissue-type sub-image or ROI, its subdivisions
(for a two-fold characterisation) and the error reduction ra-
tio (ERR) of the models concerning the data of each case.
The table also includes a plot overlying the fit of both mod-
els versus the original data. It is possible to observe from

Table 1 mini-MIAS database breast-type distribution [*°],
Fatty Fatty-Glandular Dense Total

Cases 106 104 112 322
% 32.92 32.3 34.78 100
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the chart that the model adjustment is reliable in both cases
since the curves of the predicted output and the original
data overlap each other in both pairs of curves.
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Tigure 11 Accuracy as a function of the presence of dense mam-
mograms in the test set.
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Figure 12 Sensitivity and lesion distinction accuracy as functions
of the presence of fatty mammograms in the test.
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Figure 13 Specificity and NPV as functions of the presence of
glandular mammograms in testing.

Table 2 Classification results in mini-MIAS database [*”]

Statistical Measure Average result (%)

Accuracy 93.57
Sensitivity 87.05
Specificity 96.97
PPV 93.79

NPV 93.50

Lesion Distinctinon 78.35
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Table 3 MSRBF-DCT performance results by breast-tissue-type ratio (mini-MIAS Database [“71).
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Test 1 Test 1 Test 1 Test 4

o Fatty (%) 31.86 31.86 38.05 34.51
E Dense (%) 29.20 31.86 28.32 23.89
= Glandular (%) 38.94 36.28 33.63 41.59
Accuracy (%) 93.81 91.96 93.81 94.69

o Sensitivity (%) 85.00 87.50 87.80 87.88
§ Specificity (%) 98.63 94.52 97.22 97.50
g PPV (%) 97.14 89.74 94.74 93.55
E NPV (%) 92.31 93.24 93.33 95.12
Pathology Identification (%) 81.97 80.88 74.55 76.00

After this point, the assessment of the feature extraction
included the consistency tracking regarding the distance be-
tween the feature vectors. This relationship was directly
proportional to the visual image similarity.

The overall performance numbers of this study are pre-
sented in Table 2. It is noticeable that values of sensi-
tivity, PPV and lesion distinction are not as high as ex-
pected, possibly because of the high similitude of dense-
healthy and glandular-healthy tissue with many abnormal
tumours. Among all the values, it stands out that the tu-
mour distinction was the lowest value of all the registered
ones. This difference is due on the one hand to the relative
scarcity of abnormal samples, which represented only 4.5%
of the total of the labelled samples and on the other to the
fact that machine learning methods are generally more effi-
cient to a more significant number of samples available for
training 5]

The experimental performance results of the four tests
from different partitions of the database are described in
Table 6. In the first place, the percentages by mammogram-
type included in each one of the tests are displayed. The
overall results are quite encouraging in the four tests, espe-
cially regarding accuracy, specificity and NPV.

As assumed, it is possible to note that the composition
of the elements in the test impacts in a visible manner the
classification results. The latter is an interesting point to
take into account as this factor may well lead various breast
cancer classification studies to confusing results. To ease
the analysis of the resulting variations of the classification
concerning the mammogram-type composition in the test-
ing set, exciting trends in the results were found and plot-
ted. Fig. 11 shows a negative relationship found between
the presence of dense mammograms in the test set and the
classification accuracy. Such divergence can be the result of
that dense-healthy images are visually similar to tumours
of high density, producing false detections.

On the other hand, Fig. 12 suggests that there was a less-
ening ability to distinguish the abnormality class with the
increase of fatty mammograms presence in the test, which
was opposite to the expected result, given that fatty tissue
tends to have translucence, which would make the classifi-
cation procedures easier.

However, and in favour of the latter hypothesis, the
change of the sensitivity values in the different set composi-
tions suggested a positive trend between fatty tests sets and
the effective detection of any abnormalities (benign or ma-

lign). The last point, together with the accuracy decrease
in denser compositions, led to finding a positive relationship
between the MSREB DCT classification accuracy with fatty
mammograms and a negative relationship with dense mam-
mograms. Although these results may seem intuitive, it is
necessary to carry out more discriminative studies of this
type in the future, especially with other methods of featur-
ing and classification to draw more generalised conclusions
regarding the breast cancer detection.

As for the variation of the presence of glandular mammo-
grams in the testing set, Fig. 13 shows a very light direct
relation of specificity and NPV with the presence of glan-
dular tissue. Although the trend was not significant enough
to be taken into account, it was expected, however, that the
presence of glandular tissue, on the contrary, would actively
impede the quality of the classification results.

4.2 The DDSM Database

The second database used for evaluation is the Digital
Database for Screening Mammography, DDSM ““! which
together with mini-MIAS, is one of the best-known sources
of images in the development of breast cancer detection
methods. This repository of the University of Florida con-
tains 2,620 clinical cases, where each one presents two medi-
olateral oblique views (MLO) and two caudal cranial to to-
tal 10,480 mammograms. The collection provides more pre-
cisely the density of the breast tissue, defined in BI-RADS
categories of density ranging from one to four. To improve
the comparison with previous databases, we decided to con-
sider only images with the MLO view. We also used the
CBIS-DDSM E™ collection, which is a curated version of
DDSM and verified by medical experts, containing only be-
nign and malignant cases of masses and calcifications.

In the CBIS-DDSM data, images are split into training
and testing sets and by type of abnormality, where images of
the ROIs are included to help the user to locate tumours. As
for the healthy images, we used the utility provided in [*'l to
convert images from the DDSM native format (LJPEG) to
a format readable by MATLAB. With the above conditions
we obtained a set of 1783 mammograms randomly divided
into 65% training and 35% testing, where 38,776 ROIs and
feature vectors were extracted. Note that the original distri-
bution of DDSM regarding breast-type is displayed in Table
7. All ROIs with some pathology obtained during training
were increased in number through image rotations, flips and
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shift positioning around the ROI. Similarly to the previous
study, we chose to split the set of tests into four equal seg-
ments, although with a different BI-RADS distribution of
breast density. Although the increase in the dimension of
the images of DDSM contributed to obtaining more ROIs
for training, this factor played against the processing time
per mammogram, which extended 30% on average. In the
case of microcalcifications, an exhaustive training was re-
quired, since their detection during early stages of training
is very limited, especially when the tissue is dense and the
appearance of microcalcifications seems to be higher. The
average results for all tests are reflected in Table 8, while
the results by test also including pathology identification
are shown in Table 9. Similarly to the mini-MIAS study
case, the diagnosis accuracy in DDSM was inversely pro-
portional to the presence of dense samples in the testing
partition (see Fig. 14), confirming the importance of tissue-
type distribution in mammogram classification problems.

Likewise, there was a notable increase in sensitivity and
specificity regarding the absence of dense images in the test
partition (Fig. 15). For this reason, the MSRBF-DCT-
based CAD system, which has shown to be quite credible
with all kind of samples, is highly reliable when fewer dense
mammograms are present in the test set.

We also noticed that although DDSM provides a higher
number of samples for training, there was no notable im-
provement in the statistical measures concerning the mini-
MIAS experiment. It is possible that this is due to a much
more significant presence of calcifications in the DDSM
repository. A comparison of the new method with previ-
ous work is presented in Table 10. In general, the new
method is competitive but did not reach such a high sensi-
tivity as some other approaches. The authors believe that
this imperfection is the product of the training strategy car-
ried out, since to avoid a high occurrence of false positives
caused by the resemblance between healthy dense tissue
and some types of a tumour, it was necessary to increase
the number of dense samples in the training database.

Table 4 DDSM breast-type distribution of converted images.

Dens.1 Dens.2 Dens.3 Dens.4 Total

Cases 429 511 420 423 1,783
% 24.05 28.64 23.58 23.73 100
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Table 5 Classification results in the DDSM database [7°].

Statistical Measure Average Result %

Accuracy 93.99%
Sensitivity 92.65%
Specificity 94.35%
PPV 81.97%

NPV 97.90%
Pathology Identif 85.72%

97 4

g

934

Diagnosis Accuracy (%)
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Figure 14 Accuracy as a function of the presence of high-density
mammograms in the test (DDSM database [*“)).
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Figure 15 Sensitivity and Specificity as a function of the presence
of low-density mammograms in the test (DDSM database [*°]).

4.3 The BreaKHis Dataset

The last image set for assessment of the new CAD system
is the BreakHis dataset ['”), a more recent public repository
(2015) for breast cancer image classification, which unlike
the collections previously utilised in the manuscript, im-
ages are available at the cellular (histopathological) level
(4 Unlike X-ray mammography, BreaKHis images are in
colour and only benign and malignant images are presented,
so the tests in this study case are centred in the ability of
the framework to do an adequate binary classification.
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Test 1 Test 1 Test 1 Test 4

Density 1 (%) 29.11 21.52 23.42 21.52

2 Density 2 (%) 27.85 35.44 27.22 24.05
= Density 3 (%) 22.78 20.89 25.95 24.68
Density 4 (%) 20.25 21.52 23.42 29.75

Accuracy (%) 96.84 94.94 93.04 91.14

° Sensitivity (%) 97.06 94.12 91.18 88.24
§ Specificity (%) 96.77 95.16 93.55 91.94
§ PPV (%) 89.19 84.21 79.49 75.00
= NPV (%) 99.17 98.33 97.48 96.61
Pathology Identification (%) 87.88 81.25 87.10 86.67
Table 7 Comparison of MSRBF-DCT with previous work in mammography databases.

Model Image Set Accuracy % Specificity % Sensitivity %

2D-NARX!] mini-MIAS 91.00 93.00 89.50
ELM[?7] mini-MIAS 91.00 90.00 98.00
GLCM[? mini-MIAS 93.90 97.20 91.50
ICA-RBF[*7 mini-MIAS 88.20 N/A N/A
LDA-ANNI2YI mini-MIAS 93.10 99.00 83.00
GpPzM!”7 mini-MIAS 89.30 83.50 93.40
GpzMmPT DDSM 87.27 82.51 90.33
MSRBF-DCT mini-MIAS 93.50 87.00 96.90
MSRBF-DCT DDSM 93.99 92.65 94.35
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The images were acquired from samples (histology slides)
obtained by the P&D Lab, Brazil, using open surgical
biopsy. The final diagnoses were made by expert pathol-
ogists. The samples were shot with an Olympus BX-50 mi-
croscope and a Samsung SCC-131AN digital colour camera
to obtain 3-channel RGB images in TrueColor (image com-
posed by pixels defined by three values) [£6, 451 The samples
are distributed into four magnification factors: 40x, 100X,
200x and 400x, summing 7,909 items. The BreaKHis im-
age distribution is shown in Table 8.

As for image feature extraction, a first challenge was
to make the MSRBF to extract features from a 3-channel
RGB colour space, so we chose to preprocess colour images
by dividing them into three channels (R,G,B) to make the
MSRBF-based feature extraction work at the channel level
(Fig. 16).

3-channel RGB subimage

G Channel

R Channel B Channel

[ Separate MSRBF feature extraction ]
v

Concatenated vector

Figure 16 Colour image decomposition into 3 channels. ROI from
[46]

Table 8 BreaKHis database distribution by magnification factor
and class.

Magnification Ben. Mal. Total
40x 625 1370 1995
100x 644 1437 2081
200x 623 1390 2013
400x 588 1232 1820
Total 2480 5429 7909

Table 9 Comparison of depicting features with methods described
in 1'% that use the BreaKHis database

Method No. of features
CLBP 1352
GLCM 13

LBP 10

LPQ 256

ORB 32
PFTAS 162
MSRBF-DCT-3-channels 150
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Table 10 MSRBF-DCT accuracy results by test and magnification factor (BreaKHis database [*])

Class 40% 100x 200 x 400x
Test 1 M s o 08 s
Test 2 ﬁ 0% ose 05 050
Test 3 " 038 0ss 085 083
Test 4 M 0% o 08 08
Test 5 M 088 o7 082 b5

Table 11 MSRBF-DC'T average accuracy and standard deviations per magnification factor

Class Magnification Factor
40 x 100 x 200 x
Benign 84.6+25 859+24 835+26 81.1+18
Malign 86.3+1.0 87.0+1.0 834+1.1 821+1.3

Table 12 Comparison of the MSRBF-DCT method with previous work using the BreaKHis databasel*“l.

Method Magnification Factor
40x 100x 200x 400 x

PEFTAS-QDAMY 83.8+4.1 821+£49 84.2+41 82.0£59
PFTAS-SVM!Y 81.6+30 T799+54 85.1+3.1 82.3+38
PFTAS-RF 81.84+20 81.3+28 835+23 81.0+38
GLCM-1-NN[ 7T47+10 768421 834+33 81.7+33
AlexNet!*”] 85.6+4.8 835+39 831+1.9 80.8+3.0
DeCAFH] 84.6+29 848+42 842417 81.6+3.7
CSDCNN[ 958+3.1 969+19 96.7+20 94.9+28
MSRBF-DCT-3-Channels 85.8+2.0 86.7+1.8 83.4+1.9 81.8+1.6

Hence, the features extracted per channel were joined
back to derive an expanded feature vector representing the
colour space image. We found that such a shift did not
affect considerably the computational time in any of the
method stages. With the adjustment from one to to three
channels, the number of features describing the image was
increased in the same relation from 50 to 150 features. Ta-
ble 9 represents this attribute and compares it with other
methods presented in '“) also using the study case of this
section. The training in the BreaKHis database aimed at
reducing the effect of the high image resolution and the
great number of samples. into the computational burden
and training time. At the same time, we followed a strategy
similar to that of previous work for favouring the compa-
rability of results. Similarly to the work presented in ‘!
and [*1 and to the evaluations of MSRBF-DCT with mam-
mography databases, we followed a 70% and 30% ratio to
break apart at random the samples into training and testing
respectively into each of the two classes and four magnifica-
tion factors. In that way, four different random partitions
were made, from which the average accuracy accuracy by

class and magnification factor was estimated.

e S "t Sl

(b)

Figure 17 Example of a benign tumour (a) which wrongly fell
into the malign class by cause of malign samples belonging to
(b). Images from BreaKHis [*“.

In favour of reducing the computational load, we chose to
reduce the dimension of the original images by 50%, with-
out this significantly affecting the fitting capacity of the
model, as has been reported in [ and 1. In our case, the
image reduction went from 700 x 400 to 350 x 200 pixels
by using bicubic interpolation as a resizing procedure, for it

http://www.ijac.net emailiijac@ia.ac.cn



oONOYULT A WN =

International Journal of Automation and Computing

Beltran-Perez, Wei and Rubio-Solis / Preparation of Papers for International Journal of Automation and Computing 13

gives a good balance of output quality and execution time.
As with the X-ray images, the divide and conquer scheme
produced per image 15 subimages, without overlap, of 64 x
64 pixels. To determine what class an image belongs to, it
suffices that 8 of 15 subimages fall into the same class.

Taking into account the number of divisions per image
(15), the learning-testing partition ratio (0.7 and 0.3) and
the total number of mutually exclusive images per benign
and malignant class in Table 8 (2,480 and 5,429), we ob-
tained 26,040 and 57,000 images for training and 11,116
and 24,435 images for testing throughout each random par-
tition.

Concerning the performance evaluation after the five ran-
dom database partitions, the training data was presented
to the CAD system, so that it could gather the features
related to images from each class. Table 13 summarizes the
classification results of the CAD framework of 5 tests using
different random partitions.

Table 11 reflects the average results of the five tests per-
formed with different partitions. It is noteworthy that the
magnification factor that obtained the highest accuracy was
100x, while the most difficult to predict was that of 40x.
This trend is also reflected in the previous work shown in
Table 12. The comparison shows that our CAD system sep-
arated remarkably well benign and malignant samples, com-
pared to most existing methods, including convolutional
neural networks like DeCAI' and AlexNet. Ilowever, our
method, along with the rest, was clearly surpassed by a
more recent convolutional network called CSDCNN. De-
spite this, we noticed that the MSRBF-DCT networks are
generally speaking a reliable method. According to our ob-
servations, the above is due to the fact that the histology
slides of the samples with the smaller zoom (40x ) have more
distinctive features such as nuance, texture and colour be-
tween classes, while those of greater zoom (200x and 400x )
show more defined morphological features like shapes and
dark patterns, but these are quite similar between the two
classes in many instances. An example of the visual par-
allelism between high magnification samples is that of Fig.
17, in which a benign image of a phyllodes tumor (a) fell
wrongly into the malignant class thanks to samples belong-
ing to a mucinosis carcinoma malign image (b) stored in
the training set. It is visible that, although the hue is dif-
ferent, the morphological similarity between (a) and (b) is
relevant.

5 Conclusions

The proposed methodology presents a convenient neural
network-based modelling framework, originally designed to
approximate nonlinear observational input-output series, as
a novel contribution to digital image feature extraction and
CAD system. Furthermore, the Discrete Cosine Transform
algorithm was successfully incorporated to make the most
of the MSRBF networks.

The experiments aimed at appraising the tumour detec-
tion in X-ray mammograms and histopathological images
for three different public databases showed up that the
method is competitive compared to well-known previous
CAD systems for breast cancer based on system identifi-
cation and artificial neural networks. Among other perfor-

mance values, the proposed method reached a classification
accuracy above 93% in the two mammography databases
and 86.7% in BreaKHis. While the MSRBF-DCT method
is not perfect, some below-average metrics results may be
also explained by an imperfect data labelling strategy. The
improvement in the training strategy from the first database
to the second can be appreciated in more balanced statisti-
cal measures. On the other hand, a null incidence of identi-
cal feature vectors for a multitude of visually similar images
(except from the totally black or white samples) in the three
databases lead us to think that the two-fold ROI character-
ization coupled with the DCT increased the model ability
to extract both size and object position features from the
image effectively, information which otherwise could be lost.

As regards the comparative performance between the two
mammography databases, more similarities than differences
were found. Although the DDSM includes more data for a
proper training, the increase in accuracy was not significant
(less than 1%) compared to mini-MIAS, perhaps because
DDSM also presents a higher proportion of microcalcifica-
tions, which are difficult to diagnose. As for the statistical
measures, there were notable improvements from the first
to the second study, especially in sensitivity (5%), PPV
(11%) and pathology-type identification (7%). These dif-
ferences may be due to several factors, such as a better
documentation on the pathology localization, thanks to the
CBIS-DDSM repository.

Regarding the breast density in mammograms, several
machine learning studies for breast cancer detection do not
report the proportion of dense samples in their experiments,
which is to the best of our knowledge a central factor that
is capable of producing changes in the global performance.
In relation to comparisons with previous work, the CAD
system performance showed to rise to the challenge in most
cases.

Concerning the BreaKHis, subimage level analysis al-
lowed high-resolution images to be processed by dividing
the computational load into smaller processes as with mam-
mograms repositories. Regarding colour images, we noticed
that 150 feature vectors, derived through MSRBF-DCT, are
efficient to represent 3-channel images. We realized that
higher magnification factors like 200x and 400x produced
more classification errors. We attributed this trend to the
fact that numerous samples between classes are morpho-
logically similar at that level. We also observed that the
benign class produced more errors, possibly because it had
fewer samples to train compared to the malignant class and
because certain types of tumours were easier to be misclas-
sified. For instance, we found that phyllodes tumours, from
benign, were mistaken several times because of their strong
similitude to specific malignant subclasses such as mucinosis
carcinoma.

In databases two and three (DDSM and BreaKHis), the
comparison of the model performing with different training-
testing compositions led the writers to infer that getting
results with a single partition in heterogeneous databases is
undesirable as it may generate unwanted trends in depen-
dence on the percentage of challenging elements.

Future work includes the use of a receiver operating
characteristic (ROC) curve to determine the best decision
threshold regarding the training strategy to best balance
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sensitivity and specificity. The transfer of the recommended
methodology to other medical study areas such as brain dis-
eases and lung cancer detection is desirable. Also, the suc-
cessful expansion of the characterization method to colour
images enables the use of the MSRBF-DCT approach to
case studies involving real-world object detection or skin
and face recognition. Finally, we could couple the present
feature extraction procedure with more advanced classifiers
in order to enhance the integration of MSRBF networks
with CAD systems.
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