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Abstract 

The accuracy of the Strain Energy Density (SED) approach in assessing fatigue strength of 

corroded metallic wires was checked against a large number of literatue data generated by 

testing pitted/cracked high-strength steel cables. These experimental results were re-analysed 

by determining the averaged SED ranges both analytically and numerically. A value of the SED 

critical radius of 0.06mm was used to determine a reference scatter band suitable for assessing 

fatigue damage in pitted/cracked wires. The SED approach was seen to result in a level of 

accuracy higher than the one obtained by applying the classic nominal stress based approach. 

 

Keywords: fatigue strength; high-strength steel wires; Notch Stress Intensity Factor; Strain 
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Nomenclature 

a, b depth and half-width of semi-elliptical cracks 

d, l, w depth, length and width of corrosion pits 

D wire diameter 

e1, e2 shape functions 

k negative inverse slope 

K1, K2 Mode I and Mode II N-SIFs 

Nf experimental number of cycles to failure 

Nf,e estimated number of cycles to failure 

NA reference number of cycles to failure 

PS probability of survival 

r,  local polar coordinates 

r0  distance between notch tip and centre of the reference volume 

R load ratio 

R0 radius of the control volume 

T, TΔK, T∆W̅̅̅ scatter ratio of the endurance limit for 90% and 10% 
probabilities of survival 

V total control volume  

W strain energy density W̅ averaged strain energy density 

,  rr, r stress components 

1, 2 Williams’ eigenvalues depending on the notch opening angle  

2 notch opening angle 

1, 2 auxiliary parameters depending on the notch opening angle 

11, 22, 33, 12 stress components 

 Poisson’s ratio 

K1 Mode I N-SIF range 

K1,A reference value of Mode I N-SIF range at NA cycles to failure 

Kth range of the threshold value of the stress intensity factor ∆W̅ averaged SED range ∆W̅Fi strain energy density rane for the i-th finite element ∆W̅notch SED range for notched material ∆W̅plain SED range for plain material 

A plain material endurance limit range at NA cycles to failure 

nom gross nominal stress range ω̃1, F, H, I1 functions of 2,  and R0 Ω area of control volume 

 notch root radius 

max maximum principal stress 
  



1. Introduction 

Thanks to their excellent tensile properties, high-strength steel wires are widely used in cable-

stayed bridges as main load-carrying components. Unfortunately, during in-service 

operations and, in particular, under cyclic loading due to traffic, metallic wires can break due 

to fatigue. In this context, the long-term durability issue is complicated by the fact that the 

environment as well plays a role of primary importance. In particular, the presence of 

aggressive ambient conditions leads, over time, to uniform and localised corrosion, with the 

resulting superficial discontinuities (e.g. pits and cracks) markedly shortening the fatigue life 

of steel wires due to localised stress concentration phenomena [1]. 

As far as corrosion pits are concerned, in-service metallic cables are seen to be weakened by 

superficial cavities with different shapes [2]. Accordingly, when it comes to modelling pits 

explicitly, they are usually schematised either as hemispherical notches [3, 4], as semi-

ellipsoidal notches [5, 6], or as cavities with bullet shape [7, 8]. These different assumptions 

about the pit profile allow the resulting local stress concentration phenomena to be quantified 

accurately, with this holding true provided that the relevant dimensions of the pits under 

investigation are determined with an adequate level of accuracy [9]. 

Turning to the stress concentration effect in fatigue, the problem of assessing the strength of 

notched components under cyclic loading has been investigated widely since the beginning of 

the last century. However, in spite of the large amount of both theoretical and experimental 

work that has been done since the initial pioneering studies in the field, this research topic is 

still very popular due to its impact on mechanical applications of practical interest. 

As far as notches are concerned, examination of the state of the art shows that several 

approaches have been developed during the years to assess the fatigue strength of structural 

members. Amongst those design methodologies that have been devised and validated 

experimentally, certainly the Theory of Critical Distances (TCD) [10, 11], the Notch-Stress 

Intensity Factor (N-SIF) approach [12, 13], the Strain Energy Density (SED) method [14, 15], 

and the Peak Stress Method [16, 17] deserve to be mentioned explicitly. 



If attention is specifically focussed on the SED approach, certainly its most remarkable feature 

is that this notch fatigue assessment technique can be applied by directly post-processing the 

results from conventional linear-elastic Finite Element (FE) models, with these models being 

made using a coarse mesh in the highly-stressed regions [18, 19] which gives substantial 

advantages in 3D complex models. 

While in recent years the SED method has been used successfully to address a variety of 

static/fatigue assessment problems involving stress concentrators of different kind, so far it 

has never been attempted to be applied to model and quantify fatigue damage in 

pitted/cracked high-strength steel wires which is still an open challenging issue worth to be 

deeply investigated. Therefore, extending the use of the SED approach to the fatigue 

assessment of corroded steel cables represents the ultimate goal of the research work 

discussed in the following sections. 

 

2. Fundamentals of the Strain Energy Density approach 

The SED approach takes as a starting point the assumption that failure takes place as soon as 

the SED averaged in a control volume reaches a critical value, with such a critical value being 

treated as a material property. 

In the presence of a sharp notch (Fig. 1), the stress components in the stress concentration 

region can be used to determine the Mode I and Mode II N-SIFs according to the following 

standard definitions [12, 13]: 

 K1 = √2π limr→0+ r1−λ1 σθθ(r, θ = 0)          (1) 

K2 = √2π limr→0+ r1−λ2 τrθ(r, θ = 0)         (2) 

 

In Eqs (1) and (2) r and  are the local polar coordinate,  and r are the stress components, 

1 and 2 are Williams’ eigenvalues depending on the notch opening angle 2 (see Tab. 1), and 

K1 and K2 are the Mode I and Mode II N-SIFs, respectively. 



The stress distribution for a sharp V-notch under Mode I loading can be written as [20]: 

 

{σθθσrrτrθ } = 1√2π  rλ1−1 K1(1+λ1)+χ1(1−λ1) [{(1 + λ1)cos(1 − λ1)θ(3 − λ1)cos(1 − λ1)θ(1 − λ1)sin(1 − λ1)θ} + χ1(1 − λ1) { cos(1 + λ1)θ−cos(1 + λ1)θsin(1 + λ1)θ }]   (3) 

 

and the stress distribution under Mode II as: 

{σθθσrrτrθ } = 1√2π  rλ2−1 K2(1−λ2)+χ2(1+λ2) [{−(1 + λ2)sin(1 − λ2)θ−(3 − λ2)sin(1 − λ2)θ(1 − λ2)cos(1 − λ2)θ } + χ2(1 + λ2) {−sin(1 + λ2)θsin(1 + λ2)θcos(1 + λ2)θ }]  (4) 

 

where auxiliary parameters 1 and 2 depend on the notch opening angle (refer to Ref. [13] for 

the analytical determination of these parameters). 

The total elastic SED for an isotropic material can be expressed in the following form [21]: 

 W = 12E [σ112 + σ222 + σ332 − 2ν(σ11σ22 + σ11σ33 + σ22σ33) − 2(1 + ν)σ122 ]    (5) 

 

where 11, 22, 33 and 12 are the relevant stress components at the point of interest and W is 

the total SED calculated by including both the deviatoric and volumetric contributions. Thus, 

by taking full advantage of the N-SIFs as defined above, the averaged SED in a control volume 

in the vicinity of the tip of a sharp notch can be calculated as follows (Fig. 2) [22]: 

 

W̅ = 1E [e1 ∙ K12R02(1−λ1) +e2 ∙ K22R02(1−λ2)]         (6) 

 

where R0 is the radius of the control volume, whereas e1 and e2 are two shape functions that 

depend on the notch opening angle, 2, as well as on Poisson’s ratio, . In particular, for 

=0.3, functions e1 and e2 take on the following form [22]: 

 



e1 = −5.373 ∙ 10−6(2α)2 + 6.151 ∙ 10−4(2α) + 0.1330       (7) 

 e2 = 4.809 ∙ 10−6(2α)2 − 2.346 ∙ 10−4(2α) + 0.3400       (8) 

 

Under pure Mode I fatigue loading, the control radius R0 needed to apply the SED approach 

can directly be obtained by using the following expression [19]: 

 

R0 = (√2e1∙∆K1A∆σA ) 11−λ1
           (9) 

 

where K1A is the reference value of the N-SIF range of the severely notched material and A 

is the plain material endurance limit, with these two fatigue design quantities being usually 

extrapolated at a reference number of cycles to failure, NA, either equal to 2∙106 or to 5∙106. In 

those circumstances where K1A is not directly available, given the material, control radius R0 

can also be defined via the SED determined by testing a series of specimens containing a 

known sharp geometrical feature, i.e. [23]: 

 ∆W̅plain = ∆W̅notch(R0)                     (10) 

 

where ∆W̅plain and ∆W̅notch(R0) are the SED ranges at NA cycles to failure from the plain and 

the notched samples, respectively. In Eq. (10) the un-known variable is the control radius, R0, 

and it can easily be determined by using a standard recursive optimisation method. 

Turning to blunt notches (Fig. 3), the averaged SED, W̅, in the vicinity of the tip of a notch 

having a root radius larger than zero can directly be determined according to the following 

relationship [24]: 

 

W̅ = ( I12Ω) r02(1−λ1) [ √2π1+ω̃1]2 σmax2E = F(2α)H (2α, R0ρ ) σmax2E       (11) 



 

where 

 

F(2α) = (q−1q )2(1−λ1) [ √2π1+ω̃1]2
         (12) 

 

In Eqs (11) and (12) the meaning of the symbols being used is as follows [24]: parameters ω̃1 

and F(2) depend on the notch opening angle (see Tab. 2); H varies with the notch opening 

angle and Poisson’s ratio; Ω is the area of control volume; max is the maximum principal 

stress; r0 is the distance between the notch tip and the centre of the control volume (Fig. 3), I1 

is a function of the notch opening angle, Poisson’s ratio, and the control radius and, finally,  

is the notch radius. Eq. (11) can be used also under in-plane mixed Mode I/II loading by using 

the local Mode I concept [22]. 

Since the different geometrical parameters used in Eqs (11) and (12) depend on the geometry 

of the stress raiser being assessed [24], it is worth concluding the present section by recalling 

that, according to Ref. [25], the opening angle for elliptical notches can be determined using 

the following equation: 

 

2α = 192.64 (1 + 4 dl )−0.916
         (13) 

 

where d is the depth, and l is the width of the notch. 

 

3. Experimental results and Finite Element modelling 

In order to investigate the accuracy of the SED approach in estimating the fatigue strength of 

metallic wires containing geometrical defects, a large number of experimental results were 



taken from the technical literature. The test data being collected by performing this systematic 

data-mining exercise are listed in Tables 3 to 5 [26-33]. 

According to Fig. 4, the defects characterising the wire specimens used to generate the results 

reported in the above tables were modelled by considering two types of finite radius stress 

concentrators, i.e. (i) hemispherical and semi-elliptical corrosion pits and (ii) semi-elliptical 

cracks [26-33]. In the present study, as far corrosion pits are concerned (Figs 4a and 4b), depth 

is denoted as d, length as l and width as w. Pit length l and width w are assumed to be parallel 

and perpendicular to the loading direction, respectively. Turning to the semi-elliptical cracks, 

according to Fig. 4c, the depth is denoted as a and the half-width as b. 

The linear-elastic stress distribution in the vicinity of the geometrical stress concentrators 

being schematised as shown in Figs 4a to 4b was determined numerically by modelling steel 

wires having length equal to 100 mm (Fig. 4d). As reported in Ref. [26, 31], the most common 

chemical composition of the high-strength steels used to make wires is as follows: 

C(0.85~0.90%), Si(0.12~0.32%), Mn(0.60~0.90%), Cr(0.10~0.25%), S, and Cu. Accordingly, 

Young’s Modulus, E, and Poisson’s ratio, , were taken equal to 210 GPa and to 0.3, 

respectively [9]. 

Three-dimensional Finite Element (FE) analyses of steel wires containing pits and cracks were 

performed using commercial software ANSYS®, where the axially loaded cables were 

modelled by employing 10-node tetrahedral solid elements (SOLID92). For all the types of 

stress concentrators being considered, the mesh density in the critical regions was increased 

gradually until convergence occurred. As an example, Fig. 4d shows a typical FE model 

employed in this work to determine the relevant stress distributions in a steel wire containing 

a hemispherical pit. 

As to the results from the numerical stress analysis exercise, it is important to point out here 

that in the hemispherical pits the maximum stress was seen to be on the wire surface at the 

edge of the pit mouth (Fig. 4b). In contrast, in the presence of semi-ellipsoidal pits, the 

maximum stress was calculated to be invariably at the bottom of the cavities (Fig. 4a). 



The final aspect that is important to quantify in the present section is the scatter index 

characterising the population of experimental results summarised in Tables 3, 4 and 5. To this 

end, the fatigue data being collected from the technical literature were post-processed in terms 

of nominal gross stress range, nom, under the hypothesis of a log-normal distribution of the 

number of cycles to failure for each stress range level and assuming a confidence value equal 

to 95% [34, 35]. The results from this statistical re-analysis are summarised in the SN log-log 

diagram plotted in Fig. 5a. This chart shows the range of the nominal gross stress, nom, 

against the number of cycles to failure, Nf, with the reported scatter band being delimited by 

two straight lines corresponding to a probability of survival, PS, equal to 90% and 10%, 

respectively. In Fig. 5a T is used to denote the scatter ratio of the endurance limit (in terms of 

nom) for 90% and 10% probabilities of survival. The experimental, Nf, vs. estimated, Nf,e, 

number of cycles to failure diagram of Fig. 5b shows the accuracy of the PS=50% curve as 

estimated in Fig. 5a in predicting the fatigue lifetime of the population of experimental data 

being considered (Tabs 3 to 5). This diagram makes it evident that the data points fall within 

an error band of 4. Accordingly, in the next section an error band of 3 will be adopted to 

quantify the accuracy of both the N-SIF method and the SED approach in estimating the 

fatigue strength of metallic wires containing corrosion pits and cracks. 

 

4. Results and discussions 

The SED method was devised by our colleague Paolo Lazzarin at the beginning of the 2000s 

to overcome some intrinsic shortcomings characterising the N-SIF approach [19]. In 

particular, the trickiest aspect associated with the in-field usage of this design methodology is 

that, according to definitions (1) and (2), N-SIFs are measured in units that vary as the notch 

opening angle, 2, varies. As far as the notch fatigue problem is concerned, this implies that, 

given the material, the results obtained for a specific value of 2 cannot be used to quantify 

the detrimental effect of stress concentrators having a different value of the notch opening 



angle. In addition, the N-SIF approach requires very refined mesh for its application and this 

is also a drawback for complex structures. 

In spite of these intrinsic limitations, the N-SIF approach is well-known for being highly 

accurate [13], so that, initially, the results summarised in Tables 3 to 5 were attempted to be 

re-analysed according to this powerful design methodology. To this end, the N-SIFs for pitted 

and cracked steel wires were determined both by running numerical simulations and by using 

analytical solutions. The values for r0, , 2 and 1 being used to implement this hybrid 

strategy are listed in Tab. 6. 

The experimental results selected from the technical literature and generated by testing both 

hemispherical and semi-elliptical notch-like pits were re-analysed under the hypothesis of a 

log-normal distribution of the number of cycles to failure for each N-SIF range level, with this 

being done by setting the confidence level invariably equal to 95% [34, 35]. The results from 

the statistical re-analyses are summarised in the log-log chart of Figs 6a and 6b. The scatter 

bands seen in these diagrams were calculated for a probability of survival, PS, equal to 10% 

and 90%, with their width being quantified by using index TΔK. This index was determined by 

calculating the scatter ratio of the endurance limit (in terms of N-SIF range) for 90% and 10% 

probabilities of survival. As to the semi-elliptical pits being considered in Fig. 6b, since they 

were characterised by different values not only of the radius, but also of the depth, the 

associated opening angles were then different. This explains the reason why the experimental 

results generated by testing semi-elliptical pits were re-analysed in terms of the ratio ∆K1 r01−λ1⁄  and not just in terms of the N-SIF range as done for the hemispherical pits (Fig. 

6a). 

Turning to wires containing superficial cracks, the associated N-SIF range, K1, was estimated 

by taking full advantage of Murakami’s formula [36]: 

 ∆K1 = 0.65 ∙ ∆σnom ∙ √π√area         (14) 

 



where nom is the nominal gross stress range, and √area is the square root of the area of the 

crack perpendicular to the loading direction. 

The statistical re-analysis of the considered fatigue results was performed again by taking the 

confidence level equal to 95% and by assuming, for each N-SIF range level, a log-normal 

distribution of the number of cycles to failure [34, 35]. As far as cracked wires are concerned, 

Fig. 6c plots, together with the resulting scatter index TΔK, the relationship between N-SIF 

range and number of cycles to failure, Nf. 

The diagrams reported in Fig. 6 make it evident that, when re-analysed in terms of N-SIF 

range, the fatigue data falls within relatively narrow scatter bands, with this holding true 

independently of the type of geometrical defect being considered. In particular, the scatter 

indices for steel wires with hemispherical pits, semi-elliptical pits, and semi-elliptical cracks 

were calculated to be equal to 1.541, 2.578, and 1.494, respectively. 

As done with other types of stress concentrators [37], also for corroded metallic wires 

containing geometrical defects it is possible to establish, in a log-log schematisation, a linear 

relationship between N-SIF range and fatigue lifetime, Nf. Therefore, by using the standard 

least-squares regression method, it was straightforward to obtain for PS=50% the following 

relationships (where NA was set invariably equal to 2·106 cycles to failure): 

 ∆K1k ∙ Nf = ∆K1,Ak ∙ NA       with k=2.6 and K1,A=336 MPa·mm0.477    (15) 

 

for hemispherical pits, 

 

( ∆K1λ01−λ1)k ∙ Nf = (∆K1,Aλ01−λ1)k ∙ NA       with k=2.9 and 
∆K1,Aλ01−λ1 =708 MPa    (16) 

 

for semi-elliptical pits and 

 ∆K1k ∙ Nf = ∆K1,Ak ∙ NA    with k=2.1 and K1,A=99 MPa·mm0.5(17) 



 

for semi-elliptical cracks. 

Since the units of the stress quantities used in the three charts of Fig. 6 are different, the 

obtained estimates were plotted together in the experimental, Nf, vs. estimated, Nf,e, number 

of cycles to failure diagram of Fig. 7, with this being done to assess the overall accuracy of the 

N-SIF approach in estimating fatigue damage in pitted/cracked wires. This chart was built by 

predicting the fatigue lifetime of the pitted/cracked cables under investigation (Tabs 3 to 5) 

via Eqs (15) to (17) that refer to a probability of survival equal to 50%. The Nf vs. Nf,e diagram 

of Fig. 7 confirms that the use of the N-SIF approach resulted in estimates mainly falling within 

an error band of 3, i.e. in a level of accuracy higher than the one which was obtained by using 

the nominal stress approach (Fig. 5b). 

As mentioned earlier, while these relationships can directly be employed to assess fatigue 

damage in corroded/cracked metallic wires, their in-field usage is not at all straightforward. 

This is due to the fact that, according to the way they are defined, the units of the N-SIFs 

depend on the value of the notch opening angle. Even if the N-SIF approach is well-known for 

being very accurate, this aspect makes it difficult for this design methodology to be used in 

situations of practical interest. All these limitations can be overcome by using the SED 

approach which allows very coarse meshes to be employed to perform the stress/strain 

analyses being required for its in-field usage. 

Thanks to its unique features, the SED method is a simple and effective tool suitable for 

performing the fatigue assessment of notched/cracked components. The key advantage over 

the other existing methods is that the averaged SED can be estimated from standard linear-

elastic FE models by directly post-processing the nodal displacements, with the calculated 

value being independent of the mesh size. In particular, the SED range averaged in a volume, 

V, can be calculated by simply dividing by V the total energy determined by considering the 

strain energy, WFi, associated with any FE element contained in the volume itself, i.e.: 

 ∆W̅ = ∑ ∆W̅̅̅FiV V                        (18) 



 

In the SED approach, the control radius, which can directly be determined according to either 

Eq. (9) or Eq. (10), is a fatigue property which is different for different materials and different 

load ratios. In other words, given the material and the load ratio, its value does not depend on 

the profile of the geometrical feature being assessed. 

As far as metallic wires are concerned, the threshold value of the stress intensity factor range 

can be estimated for load ratios larger than zero according to the following empirical 

expression [38, 39]: 

 ∆Kth = 5.54 − 3.43 ∙ R [MPa∙m1/2]        (19) 

 

Further, by post-processing the experimental results generated by Liu, Song and Liu [40], it 

is possible to derive a fatigue curve suitable for designing against fatigue high-strength steel 

cables having, at NA=2·106 cycles to failure, endurance limit, A, equal to 256 MPa (for 

PS=50% and R>0.4). 

By observing that, in situations of practical interest, high-strength steel wires are subjected to 

axial load histories characterised by large values of the load ratio (typically, R=0.5) [1, 9], a 

reference value for the control the radius, R0, can then be estimated according to Eq. (9) as 

follows: 

 

R0 = (√2e1∙∆K1,A∆σA ) 11−λ1 = [√2∙0.133∙(5.54−3.43∙0.5)∙10000.5256 ] 11−0.5
=0.06 mm               (20) 

 

This value of the reference radius is well aligned with the values previously derived from other 

high-strength materials as discussed in Refs [22, 41]. 

Having estimated a reference value for R0, the experimental results summarised in Tables 3 to 

5 were then re-analysed to determine the corresponding ranges of the averaged SED. In 

particular, the values of ∆W̅ at the hot-spots (Figs 4a, 4b and 4c) were determined from the 



linear-elastic FE models being solved (see Section 3 and Fig. 4d) as well as by taking full 

advantage of the analytical relationships briefly summarized in Section 2 [22, 41]. The chart 

of Fig. 8 plots the error that was made by estimating the averaged SED analytically versus the 

opening angle, 2, with the error being calculated as: 

 Error = ∆W̅̅̅Analytical−∆W̅̅̅FEM∆W̅̅̅FEM ∙ 100 [%]        (21) 

 

In definition (21) ∆W̅Analytical and ∆W̅FEM are, obviously, the averaged SED ranges determined 

analytically and numerically, respectively. The chart reported in Fig. 8 makes it evident that 

the use of the analytical solutions briefly recalled in Section 2 resulted in estimates falling 

within an error interval of ±20%. This level of accuracy is certainly satisfactory especially in 

light of the fact that these relationships were derived by considering ideal notch shapes and 

not the specific stress raisers shown in Fig. 4. Fig. 8 then suggests that, while the standard 

analytical solutions can be used for a rapid estimation of the averaged SED in pitted/cracked 

wires, attention must be paid in situations of practical interest because these equations return 

estimates that tend to be slightly non-conservative. 

Turning to the fatigue strength problem, the chart of Fig. 9a summarises the experimental 

results listed in Tables 3 to 5 in terms of numerical value of the averaged SED range, ∆W̅. This 

diagram makes it evident that, as expected, the relationship between ∆W̅ and Nf can obviously 

be described (in a log-log representation) by using a simple linear relationship. Thus, a 

convenient expressions for a reference ∆W̅ vs. Nf curve suitable for designing pitted/cracked 

steel wires against fatigue were derived via the least-squares method (with NA=2·106 cycles to 

failure), obtaining: 

 ∆W̅k ∙ Nf = ∆W̅Ak ∙ NA with k=1.5 and ∆W̅Ak = 0.214  N·mm/mm3                (22) 

 

for a probability of survival, PS, equal to 50% and 



 ∆W̅k ∙ Nf = ∆W̅Ak ∙ NA with k=1.5 and ∆W̅Ak = 0.109  N·mm/mm3                (23) 

 

for PS=90%. It is worth pointing out here that, also in this case, the scatter band seen in Fig. 

9a was built by re-analysing the fatigue results under the hypothesis of a log-normal 

distribution of the number of cycles to failure for each ∆W̅ level, with this being done by setting 

the confidence level invariably equal to 95% [34, 35]. 

To quantify the accuracy of the SED approach in estimating the fatigue lifetime of 

pitted/cracked metallic wires, the predictions being made were then re-plotted in the 

experimental, Nf, vs. estimated, Nf,e, number of cycles to failure diagram reported in Fig. 9b. 

This chart was built by using Eq. (22) - that refers to PS=50% - to predict the number of cycles 

to failure for any experimental result being considered (see Tabs 3 to 5). The Nf vs. Nf,e diagram 

of Fig. 9a confirms that the use of the SED approach resulted in estimates mainly falling within 

an error band of 3. In other words, Fig. 9a makes it evident that the SED approach allowed us 

to reach the same level of accuracy as the one that was obtained by using the N-SIF method 

(Fig. 7), the advantage being that the SED approach allows fatigue damage to be estimated by 

using the same reference design curve independently of the value of the notch opening angle. 

Another computational advantage is the possibility of using coarse meshes in contrast to the 

N-SIF approach which requires very refined meshes in the vicinity of the geometrical hot-spots 

being assessed. 

 

5. Conclusions 

The present paper deals with the estimation of fatigue damage in high-strength steel wires 

weakened by corrosion pits and cracks. All the re-analyses discussed in the previous sections 

were based on a large number of experimental results that were collected from the literature 

by carrying out a systematic data-mining exercise [26-33]. 

As far as pits are concerned, according to the available technical literature [3-8], the associated 

values of the N-SIFs as well as of the averaged SED were determined numerically (using 



commercial software ANSYS®) by modelling them as semi-ellipsoidal or as hemispherical 

three-dimensional notches. Further, the values of the averaged SED were also attempted to be 

estimated by using those analytical solutions that were originally derived by considering 

standard, ideal notch shapes [22-24]. 

Turning to wires containing semi-elliptical cracks, the corresponding N-SIFs were determined 

using the well-known formula proposed by Murakami [36]. In contrast, the associated values 

of the averaged SED were determined not only analytically, but also numerically by modelling 

the idealised notch shapes shown in Figs 4a and 4b. 

The research work being summarised in the present paper allowed us to draw the conclusions 

listed in the bullet points that are reported in what follows. 

 The N-SIF approach can successfully be used also to assess fatigue damage in 

pitted/cracked high-strength metallic wires (Fig. 6). 

 The use of the N-SIF method in situations of practical interest is somehow limited by 

the fact that different reference design curves must be employed as type and shape of 

the stress concentrator being assessed change. In addition, a very fine mesh is 

necessary for the application of this approach and this is a clear limitation in case of 

3D structures or very complex geometries. 

 For rapid calculations, the averaged SED range damaging pitted/cracked metallic 

wires during in-service operations can be quantified by using those analytical solutions 

that were derived by considering standard notches. However, attention must be paid 

because the values being determined according to this simplified procedure are seen 

to be slightly non-conservative (Fig. 8). 

 As far as pitted/cracked high-strength steel wires are concerned, the SED approach 

can be applied (also with coarse meshes) in the presence of large values of the load 

ratio (i.e., R≈0.5) by setting the control radius, R0, equal to 0.06 mm, Eq. (20). 

 The SED approach is seen to be successful in modelling the fatigue strength of 

pitted/cracked high-strength metallic cables (Fig. 9). 



 The use of nominal stresses is seen to result in estimates falling within an error band 

of 4. In contrast, both the N-SIF and the SED approach allow a higher level of accuracy 

to be reached, with the obtained estimates falling mainly within an error band of 3. 
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Tables 
 

2 [deg] 1 2 

0 0.5 0.5 

15 0.5002 0.5453 

30 0.5014 0.5982 

45 0.505 0.6597 

60 0.5122 0.7309 

90 0.5445 0.9085 

120 0.6157 1.1489 

135 0.6736 1.3021 

150 0.752 1.4858 

160 0.8187 1.6305 

170 0.9 1.7989 

 
Table 1. Williams’ eigenvalues, 

 
 

2 [deg] �̃�𝟏 F(2) 

0 1 0.785 

30 1.034 0.6917 

45 1.014 0.6692 

60 0.97 0.662 

90 0.81 0.7049 

120 0.57 0.8779 

135 0.432 1.0717 

150 0.288 1.4417 

 
Table 2. Constants for the analytical calculation of the SED for blunt notches. 

 
 

  



 

Code 


R 
Nf d l w D UTS 

[MPa] [Cycles] [mm] [mm] [mm] [mm] [MPa] 

H1 290 

0.5 

348000 

0.364 0.728 0.728 4.916 1570 
H2 360 214000 

H3 500 91500 

H4 640 48300 

A-1 520 

0.4 

162711 

0.18 0.36 0.36 6.84 1835 A-2 450 220664 

A-3 360 464954 

B-1 520 

0.4 

132464 

0.26 0.52 0.52 6.7 1835 B-2 450 185447 

B-3 360 366536 

C-1 520 

0.4 

73560 

0.39 0.78 0.78 6.6 1835 
C-2 450 123274 

C-3 360 230367 

C-4 270 1E+06 

D-1 520 

0.4 

59111 

0.54 1.08 1.08 6.4 1835 
D-2 450 103675 

D-3 360 163443 

D-4 270 586464 

E-1 520 

0.4 

57457 

0.6 1.2 1.2 6.36 1835 
E-2 450 83697 

E-3 360 159810 

E-4 270 510750 

F-1 520 

0.4 

47727 

0.68 1.36 1.36 6.24 1835 
F-2 450 67622 

F-3 360 127807 

F-4 270 306577 

 
Table 3. Summary of the fatigue results generated by testing wire weakened by 

hemispherical pits [26, 27]. 
 

  



 

Code 


R 
Nf d l D UTS 

[MPa] [Cycles] [mm] [mm] [mm] [MPa] 

S1 360 

0.5 

359857 

0.246 0.89 5 1570 S2 440 168571 

S3 520 104861 

S4 360 

0.4 

472341 

0.184 4.06 7 1770 
S5 450 217172 

S6 600 85446 

S7 750 51900 

S8 360 

0.4 

263066 

0.403 9.93 7 1770 
S9 450 140634 

S10 600 73688 

S11 750 37848 

A1-1-1 312 

0.55 

141177 

0.5 8 5 1570 
A1-1-2 392 75599 

A1-1-3 500 25008 

A1-1-4 628 14247 

A1-2-1 330 

0.44 

75056 

0.5 8 5 1570 
A1-2-2 521 23780 

A1-2-3 672 17900 

A1-2-4 840 9921 

A1-3-1 520 

0.35 

385115 

0.5 8 5 1570 
A1-3-2 640 135483 

A1-3-3 840 66102 

A1-3-4 1040 26089 

A2-1 330 

0.44 

74268 

0.5 3 5 1570 
A2-2 521 38124 

A2-3 672 19518 

A2-4 840 10037 

A3-1 330 

0.44 

78318 

0.5 5 5 1570 
A3-2 521 46700 

A3-3 672 25597 

A3-4 840 11351 

A4-1 330 

0.44 

57669 

0.6 5 5 1570 
A4-2 521 25279 

A4-3 672 11815 

A4-4 840 8597 

A5-1 330 

0.44 

115798 

0.4 5 5 1570 
A5-2 521 60300 

A5-3 672 33921 

A5-4 840 24300 

 
Table 4 (Continued on the next page) 

 
 
 



 

Code 


R 
Nf d l D UTS 

[MPa] [Cycles] [mm] [mm] [mm] [MPa] 

N1 

400 0.667 

443812 0.48 3.66 

7 1670 

N2 417042 0.41 3.28 

N3 452636 0.41 2.88 

N4 451311 0.37 2.84 

N5 536748 0.36 2.86 

N6 451869 0.34 2.54 

N7 422880 0.34 2.16 

N8 513352 0.34 2.3 

N9 416224 0.33 2.18 

N10 589836 0.32 2.46 

N11 450168 0.6 6.26 

N12 

500 0.6 

206565 0.3 1.86 

7 1670 

N13 215685 0.53 4.64 

N14 245478 0.47 4.16 

N15 245928 0.46 3.76 

N16 248607 0.37 2.54 

N17 250104 0.3 1.96 

 
Table 4. Summary of the fatigue results generated by testing wire weakened by semi-

elliptical pits [28-30, 33]. 
  



 

Code 


R 
Nf a b D 

[MPa] [Cycles] [mm] [mm] [mm] 

M1 690.1 0.061 109810 

0.1 1 7 

M2 578.1 0.069 164120 

M3 387.1 0.52 334620 

M4 490.2 0.52 158590 

M5 527.1 0.18 171450 

M6 583.1 0.49 84780 

M7 346.3 0.66 343380 

M8 400.8 0.34 328080 

M9 570.4 0.49 92100 

M10 356.5 0.64 376080 

M11 441.8 0.47 253800 

M12 579.3 0.38 133550 

M13 598.4 0.52 103050 

M14 446.9 0.49 194330 

M15 357.8 0.64 270770 

 
Table 5. Summary of the fatigue results generated by testing wire weakened by semi-

elliptical cracks [31, 32]. 
 

  



 

Code r0 [mm]  [mm] 2 [deg] 1 

H1-H4 0.138 0.364 

70 

0.523 

A 0.068 0.18 0.523 

B 0.099 0.26 0.523 

C 0.148 0.39 0.523 

D 0.205 0.54 0.523 

E 0.228 0.6 0.523 

F 0.258 0.68 0.523 

S1-S3 0.254 0.805 97 0.5611 

S4-S7 1.723 22.396 165 0.8594 

S8-S11 4.12 61.169 168 0.8756 

A1 2.068 18.25 157 0.7987 

A2 0.617 2.5 121 0.6157 

A3 1.133 6.5 142 0.7102 

A4 1.102 5.508 135 0.6736 

A5 1.177 8.013 149 0.7468 

N1 1.493 6.977 131 0.6582 

N2 1.358 6.56 133 0.6659 

N3 1.15 5.058 127 0.6427 

N4 1.166 5.45 131 0.6582 

N5 1.176 5.68 133 0.6659 

N6 1.031 4.744 130 0.6543 

N7 0.825 3.431 123 0.6273 

N8 0.898 3.89 126 0.6389 

N9 0.843 3.6 125 0.635 

N10 1.012 4.728 131 0.6582 

N11 2.784 16.328 143 0.7154 

N12 0.703 2.883 122 0.6234 

N13 1.995 10.155 136 0.6788 

N14 1.775 9.205 137 0.6841 

N15 1.564 7.683 134 0.6697 

N16 0.992 4.359 127 0.6427 

N17 0.76 3.201 124 0.6311 

M1-M15 - - 0 0.5 

 
Table 6. Stress analysis parameters for pitted/cracked wires. 

 
  



Figures 

 
Figure 1. Sharp open notch: local coordinate system and stress components. 

 
 

 
Figure 2. Control volume for a sharp V-notch, a crack and a blunt V-notch. 

 
 
 

 
Figure 3. Blunt open notch: coordinate system, stress components and related geometrical 

quantities.  
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Figure 4. Shapes used to model corrosion pits (a, b), cable weakened by a semi-elliptical 

crack (c), and example of a FE model of a steel wire containing a hemispherical pit (d). 
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Figure 5. SN curve statistically determined by re-analysing, in terms of nominal stress 

range, nom, the experimental results reported in Tables 3, 4 and 5 (a) and error band of 4 
plotted in an experimental, Nf, vs. estimated, Nf,e, number of cycles to failure diagram (b). 
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Figure 6. N-SIF approach used to re-analyse the experimental results generated by testing 
wires containing hemispherical pits (a), semi-elliptical pits (b), and semi-elliptical cracks (c). 
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Figure 7. Accuracy of the N-SIF approach summarised in an experimental, Nf, vs. estimated, 
Nf,e, number of cycles to failure diagram. 
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Figure 8. Comparison between averaged SED determined numerically and averaged SED 
estimated analytically. 
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Figure 9. Fatigue curve statistically determined by re-analysing, in terms of averaged SED 
range, ∆W̅, the experimental results reported in Tables 3, 4 and 5 (a); accuracy of the SED 

approach summarised in an experimental, Nf, vs. estimated, Nf,e, number of cycles to failure 
diagram. (b). 
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