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Abstract: The low-power wide area network (LPWAN) is designed for low-power, wide
area, light load, high latency applications. In many use-case applications of traffic being
usually less than 1k of bytes transmitted data per day, it is desirable for a user equipment
(UE) to work for 10 years, powered by a primary battery. There is neither real test
data nor mathematical models to validate a 10 years battery lifetime. Furthermore, the
energy consumption is affected by many factors and is very different in diverse networks.
In this paper, we consider two types of LPWAN: LoRa wide area network (LoRaWAN)
and narrow-band Internet of Things (NBIoT) network. We first propose a framework
to calculate the average number of retransmissions in LoRaWAN networks and NBIoT
networks based on stochastic geometry. Combining the average number of retransmissions,
we give an approximate method to calculate both networks’ energy efficiency. Utilizing the
energy efficiency we can estimate the battery lifetime in LoRaWAN networks and NBIoT
networks. The numerical results show that the battery lifetime is mainly influenced by the
number of active UEs and the spreading factor in LoRaWAN networks and sleeping mode
in NBIoT networks, when the data size transmitted each day is fixed. In NBIoT networks,
the UEs can work for much longer with power saving mode (PSM) than with extended
idle-mode discontinuous reception cycle (eDRX), even exceeding LoRaWAN networks in
some cases though the transmitting power is higher and protocol is more complex in
NBIoT networks. Finally, in LoRaWAN networks, smaller spreading factors can achieve
longer battery lifetime, and increasing the number of base stations also extends the
battery lifetime, which is not the case for NBIoT networks.
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1 Introduction

1.1 Motivation

The Internet of Things (IoT) era is now. A growing
number of devices which involve various fields, are being
connected to the Internet. Many reports forecast that the
number of IoT devices will explosively grow in the next
few years. In Gantz J. and Reinsel D. (2012); Taylor,
S. (2013); Al-Fuqaha, A. et al. (2015), the authors
predict that the IoT smart objects are expected to
reach 212 billion entities deployed globally by the end
of 2020. By 2022, machine-to-machine traffic flows are
expected to constitute up to 45% of the whole Internet
traffic. Economic growth of IoT-based services is also
considerable for businesses. The whole annual economic
impact caused by the IoT is estimated to be in range of
2.7 trillion to 6.2 trillion by 2025.

With the fast growth, IoT networks extend in
two directions in the view of communication range.
One is local area network: these networks mainly
apply to healthcare, smart home, industrial automation,
etc. by exploiting some short distance communication
protocol such as radio frequency identification (RFID),
Bluetooth, ZigBee and so on. These protocols support
devices frequently accessing networks with low speed
over a short distance area. The communication range is
mostly from several metres to tens of metres and low
mobility is permitted; the other is wide area networks,
i.e. LPWAN. LoRaWAN networks and NBIoT networks
are two typical but different LPWAN networks which
are designed by LoRa alliance and the 3rd Generation
Partnership Project (3GPP), respectively. LoRaWAN
devices work with LoRa spread spectrum modulation,
in the industrial scientific medical (ISM) band, and
organized by pure Aloha protocol. In contrast, as a part
of Release 13, NBIoT has been specified as a new radio
interface by 3GPP. It is tightly connected with Long
Term Evolution (LTE) but kept as simple as possible
in order to reduce device costs and to minimize battery
consumption by3GPP (2016).

In some applications, such as meter reading,
environmental monitoring, smart agriculture and so
on, the devices are deployed far away from their
tagged base stations (or access points, gateways). The
communication range is mostly from several hundred
metres to tens of kilometres. The maximum area traffic
capacity is more than 50k devices per cell Sinha, R. S. et
al. (2017); Mekki, K. et al. (2018). The devices are often
stationary, and only a small amount of data is transferred
per day, which is not delay sensitive. Furthermore,
devices are often installed at places without a power
supply and work completely on batteries. The cost of
changing batteries may be very expensive because huge
numbers of devices are randomly deployed in a wide area,
even then devices may only be accessed by trained staff.
So, battery lifetime is a very important factor which
must be firstly considered at the network design phase.

Both the LoRa alliance and 3GPP pushed the
objective that devices should work more than 10 years
with a battery supply for most applications because the
cost of frequently changing batteries is unacceptable. It
is proposed that a device just sends several hundred
bytes per day, so the device can sleep most of the time
to reduce the energy consumption. But, many factors
decide the battery lifetime beside the transmitting load
per day, such as the capacity of battery, bit rate, delay
sensitive, interference and so on. Moreover, there is
neither numerical models nor real measured data to
support this goal.

In recent years, stochastic geometry as a tractable
tool has been widely used to model and analyse the
cellular networks. Most of these literatures focused
on downlink (DL) and rapidly extend different
hot spot fields, such as further enhanced inter-cell
interference coordination (FeICIC) Hu, H.N. et al.
(2016), coordinated multi-point transmission (CoMP)
Nigam, G. et al. (2014), mm-Wave communication
Andrews, J. G. et al. (2017), multi-input multi-output
(MIMO) cellular networks George, G. et al. (2017),
device-to-device (D2D) communication Salehi, M. et al.
(2017) and so on.

For IoT devices, the data traffic mainly occurs in
uplink (UL), i.e. from devices to base stations (or
access points, gateways etc.), which is different from
conventional cellular user equipments that mostly receive
data from base stations. In fact, the stochastic geometry
is more suitable for modelling and analysis of the IoT
networks than cellular networks because the deployment
of IoT devices is more random than the deployment of
base stations in cellular networks.

1.2 Related work

In Kroll, H. et al. (2017), the authors proposed a
maximum-likelihood detection to reduce the energy
consumption in NBIoT networks. A wireless energy
harvesting method was proposed to enhance the battery
lifetime for IoT devices in Kamalinejad, P. et al. (2015).
The authors predict the battery lifetime based on the
power of the devices. In Lauridsen M. et al. (2015), the
battery lifetime of LTE-M and NB-IoT was analysed in
a rural area. The methods were too simple to accurately
estimate the battery lifetime.

In Elsawy, H. and Hossain, E. (2014); Novlan,
T.D. et al. (2013); Haenggi, M. (2016), the authors
modelled and analysed the coverage probability of uplink
cellular networks based on the Poission point process
(PPP). Most of results in PPP uplink cellular networks
can be directly used for NB-IoT networks because of
their compatibility with cellular networks, but are not
suitable for LoRaWAN networks. In Gharbieh, M. et
al. (2016), the authors proposed a traffic-aware spatio-
temporal mathematical model for IoT devices supported
by cellular uplink connectivity. For LoRaWAB networks,
a “card tossing” model was proposed to analyse the
interference in 2 dimensional (time-frequency) plane
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based on PPP Li, Z.C. et al. (2017). A special Aloha
network, the bipolar model, was studied in Baccelli, F. et
al. (2009). The authors derived the coverage probability
and throughput exploiting a PPP model. The results
of Aloha bipolar networks can not be directly used
in LoRaWAN networks because the frame of Aloha
bipolar networks is totally different from the LoRaWAN
networks.

1.3 Contributions

In this paper, we aim at investigating the coverage
probability, analysing the energy efficiency and
estimating the battery lifetime in LPWAN networks
based on PPP. The main contributions of this paper are
summarized in the following:

(a) We propose a novel analysis framework for UL in
LoRaWAN networks. Based on this model, we derive the
coverage probability of UL in LoRaWAN networks.

(b) We propose a simple, but more accurate,
homogeneous Poisson point process to model the
interferers in the UL of the NBIoT networks, then
deriving the coverage probability of UL in NBIoT
networks.

(c) We calculate the average number of
retransmissions based on coverage probability, leading
to our energy efficiency model. Our energy efficiency
models represent the key characteristics of LoRaWAN
networks and NBIoT networks.

(d) We estimate the battery lifetime utilizing our
energy efficiency model. The numerical results show an
example of the battery lifetime according to a LoRaWAN
hardware module and a NBIoT hardware module.

The remainder of the paper is organized as follows:
In Section II we propose our system model for LPWAN
networks, then discuss this model for LoRaWAN
networks and NBIoT networks, respectively. We derive
the coverage probability and the average number of
retransmissions in UL for LoRaWAN networks and
NBIoT networks in Section III. The energy efficiency
model is proposed in Section IV. Then, the energy
efficiency model is tailored for LoRaWAN networks
and NBIoT networks. Based on our energy efficiency
model, we present the approach to estimate the battery
lifetime. In Section V, we validate our numerical
coverage probability results with Monte Carlo simulation
results. Furthermore, we compare the energy efficiency
and battery lifetime between LoRaWAN networks and
NBIoT networks. The conclusions are given in Section
VI.

2 System Model

In this paper, we only consider the class A devices in
LoRaWAN networks. We uniformly denote the device
in LoRaWAN networks and NBIoT networks as UE,
denote the gateway (or access point) in LoRaWAN
networks and eNB in NBIoT networks as base station

(BS). We consider all UEs working with two modes:
sleep mode and active mode. In sleep mode, UEs turn
off most of their functional modules, especially those of
the radio module to reduce the energy consumption. In
active mode, UEs turn on all of their functions so that
they can communicate with the networks. In NBIoT
networks, a UE can select from two types of sleep modes
and the active mode includes two states, all of which
will be described later. In our use-case, we consider a
single-tier uplink LPWAN network model in a given
area of R

2 for both LoRaWAN networks and NBIoT
networks, where BSs and UEs are randomly deployed
according to some homogeneous Poisson point process
Φb and Φu with density of λs and λu, respectively, i.e.
Φs ∼ P.P.P. (λs) and Φu ∼ P.P.P. (λu). Furthermore,
all UEs are located at fixed positions at deployment
and choose their closest BSs (the nearest BSs in Euclid
distance) to communicate, which means handover is
not need. In UL, all UEs access their tagged BSs
with fixed transmit power Ptx. The number of UEs is
much more than the number of BSs, the LPWAN is
a fully loaded network, i.e. at least one UE in each
cell is served in a fixed time-frequency resource. For
notational convenience, we denote BSs and UEs by
their locations. Without loss of generality, we consider a
typical BS located at the origin and denoted by so. Let
V (so)=

{

x ∈ R
2 : ‖so − x‖ ≤ ‖z − x‖ , ∀z ∈ Φs\ {so}

}

denote the Voronoi Cell (VC) of so. For the typical BS
so, the signal to interference plus noise (SINR) from a
UE located at xj is defined as

SINRj =
Ptxhxj

‖xj‖−α

∑

xi∈ΦI

Ptxhxi‖xi‖−α
+ σ2

, xj ∈ V (so) . (1)

Where ‖·‖ denotes the Euclid distance in R
2, α > 2 is

the path loss exponent, hx is the small scale fading
loss. In this paper, we assume that BSs and UEs only
experiences Rayleigh fading with unit mean, and all hx

are exponential independent and identically distributed
(i.i.d.), i.e. hx ∼ exp (1). ΦI is the set of all interfering
UEs in the network. We treat xj as the typical UE for
any a given j. ΦI and the typical UE will be separately
discussed for LoRaWAN networks and NBIoT networks
later.

For LPWAN networks, UEs must turn off most of
their functional modules, especially the RF module, and
enter into sleep mode to reduce energy consumption
when there is no data to be sent. Simply, let pa denote
the composite UE activity probability, i.e. there are pa ·
Nu UEs sending messages to their tagged BSs at the
same time, where Nu is the total number of UEs in the
network. According to the Thinning theorem François
B. et al. (2009), the set of active users Φa is still a PPP
with density of paλu, i.e. Φa ∼ P.P.P. (paλu).
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2.1 The set of interferers and the typical UE of
LoRaWAN networks

In LoRaWAN networks, UEs access their tagged BSs
obeying pure Aloha protocol with duty cycle< 1%, LoRa
Alliance (2016). Any of the active UEs send messages
to their tagged BSs on a randomly chosen channel
from Nc channels and Nf spreading factors (SFs), Nc

and Nf are the number of total RF channels and the
number of total SFs, respectively, which are used by
LoRaWAN networks. As mentioned above, we treat xj ,
which belongs to the V (so), as the typical UE for a given
j in Eq. (1). All other active UEs using the same channel
with the same SF act as interferers. The probability
of the active UEs simultaneously transmitting data in
the same channel with the same SF is 1/ (Nc ·Nf ). Let
Φsc denote the set of all active UEs that simultaneously
transmit data in a same channel with a same SF. Based
on the thinning theory, Φsc is still a PPP with density
of λa, which can be expressed as

λa =
pa ·Nu

Nc ·Nf
. (2)

For the typical user xj , the interfering set is ΦI =
Φsc\{xj}. Considering the UL of LoRaWAN networks,
on the one hand, there is both intra-cell interference
and inter-cell interference. On the other hand, some
interfering UEs may be much closer to the typical BS so
than the desired UE xj . According to the reduced Palm
distribution, Martin H. (2012), adding xj into Φsc does
not change the original distribution of the Φsc. So, we
can redefine the ΦI = Φsc but with density of λi = 2 · λa

because the collision time is twice the sending cycle in a
pure Aloha system (LoRaWAN network), i.e. the λi cen
be expressed as

λi = 2 · λa =
2 · pa ·Nu

Nc ·Nf
. (3)

2.2 The set of interferers and the typical UE of
NBIoT networks

In NBIoT networks, at the initial stage, a UE camps
on a BS (the closest BS and with no handover) by
searching a cell on an appropriate frequency, reading the
associated system information block (SIB), then starting
a random access channel (RACH) procedure to register
with the network. After camping on a BS, the UE leaves
sleep mode and enters into active mode if it has some
data to send. Since handover is not supported when the
UE is in active mode and connected with a BS, the
state model of the radio resource control (RRC) becomes
simple, with only two states: RRC CONNECTED and
RRC IDLE 3GPP (2016). In RRC CONNECTED
state, UEs start connection request and communication
with BSs. In RRC IDLE state, UEs receive paging
information from BSs.

NBIoT networks are different from LoRaWAN
networks (where UEs send message directly to the

networks); in NBIoT networks, UEs must transmit data
under the schedule of the network. There is only one UE
permitted to send its message to its tagged BS using a
particular time-frequency Resource Unit (RU is a smaller
resource for NBIoT devices than a Resource Block) in
each cell. This means there is no intra-cell interference
but there may be inter-cell interference, with only one
interferer in each other cell. Let Φcc denote the set of
all UEs which simultaneously transmit data in the same
RU in each VC (1 UE per VC). Hence Φcc is still a PPP
with the same density of BS, i.e. Φcc ∼ P.P.P. (λs). For
the typical user xj , the interfering set ΦI = Φcc\{xj}. In
this case, it is worth mentioning that when a typical UE
was chosen, the interferers surely belong to other VCs.
This means that the reduced Palm distribution can not
be applied to this situation as was used in LoRaWAN
networks.

Many works have been done to model and analyse the
distribution of active UEs in UL of cellular networks. In
ElSawy, H. and Hossain, E. (2014), the authors modelled
the interfering UEs as a homogeneous PPP. However
the typical user is not an interferer, in this case, the
interfering UEs process is not a homogeneous PPP but a
soft-core process whose density depends on the distance
from the origin Lee H. Y. et al. (2017); Singh, S. et
al. (2015). In Haenggi, M. (2017), the author modelled
this soft-core process with an approximation to a density
function, which is given as

λI (x) = λs(1− exp(λsπ‖x‖2)). (4)

Furthermore, in Wang, Y.J. et al. (2017), the authors
proposed a more accurate approximation of a density
function based on Haenggi, M. (2017) to model the
interfering UEs as a non-homogeneous PPP, and the
density function was expressed as

λI (x) = λs(1− exp((−12/5)λsπ‖x‖2)). (5)

Modelling the interfering UEs as a non-homogeneous
PPP is an accurate method, but it will lead to much
more computation complexity. To compensate the error
in the model of homogeneous PPP with the same
density of BS. In Bai, T., and Heath, R.W. (2016), the
authors approximated interfering UEs as a homogeneous
PPP excluding the ball centred at the typical BS with
the radius Re = 1/

√
λsπ. This is a simple but more

precise model than the standard homogeneous PPP.
Due to the set of BSs being a homogeneous PPP
and UEs being randomly deployed in the network,
the average distance from UEs to their closest BSs
is 1/

(

2
√
λs

)

. So we can assume the average distance
between interfering UEs and the typical BS is farther
than 1/

(

2
√
λs

)

. In this paper, we model the interfering
UEs by a homogeneous PPP excluding the ball centred
at the typical BS with the radius 1/

(

2
√
λs

)

, i.e. ΦI =

Φs|
(

‖xi‖ ≥ 1/
(

2
√
λs

)

, ∀xi ∈ ΦI

)

.
We normalized λs = 1 BSs/km2 as λ = 1, then verify

these approximation methods by inspecting Ripley’s K
function Martin H. (2012) in Fig. 1, clearly showing
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Figure 1: Ripley’s K function. K1(r) = πr2 + 5/12e−12/5λπr2 − 5/12 and K2(r) = πr2 + e−λπr2 − 1 corresponding
to Eq. (4) and (5), respectively. PPP1 and PPP2 are K functions of homogeneous PPP excluding the ball with radius

1/
(

2
√
λ
)

and 1/
(√

λπ
)

. All K functions are compared with the simulation of interfering UEs.

that the precision of four approximate approaches relates
to the density of BSs. As shown in Fig. 1, the two
approaches of non-homogeneous PPP overestimate the
number of interferers when λ is small, and underestimate
the number of interferers when λ is large. Furthermore,
the two approaches of homogeneous PPP with an
excluding ball centred at the analysed BS is more close to
the simulation result when λ is large. Our approximate
model is the best trade-off of the four approaches.

3 Coverage Probability

For notational convenience, we omitted the subscript
in Eq. (1), hence let random variable (r.v.) R denote
the distance between the typical UE xj and the typical
BS bo. The distance between interfering UE xi and
the typical BS bo is denoted by r.v. Rx, i.e. R = ‖xj‖
and Rx = ‖xi‖, respectively. Conventionally, cellular
networks have been considered as thermal noise limited
networks, Andrews, J.G. et al. (2011). The transmit
power of LPWAN UEs is less than that of connventional
cellular UEs, but the transmit power spectral density of
LPWAN UEs is much larger than that of conventional
cellular UEs because the LPWAN UEs use very narrow
bandwidth in both DL and UL. Thus, neglecting the
noise, we rewrite Eq. (1) as follows:

SIR =
hR−α

∑

x∈ΦI

hxR
−α
x

. (6)

We define the coverage probability as the probability
P (SIR > T ), this means that a randomly chosen BS can
demodulate the received signal if and only if the SIR
exceeds a predefined threshold T .

Theorem 1: Assume in LPWAN networks the BSs
are deployed according to a homogeneous PPP with
density of λs and UEs are uniformly located in the
network with density of λu. The probability of active UEs
is pa, All UEs transmit data to their closest BSs with

a fixed power Ptx. When neglecting thermal noise, the
coverage probability of the LoRaWAN networks is

Pc(T ) =
αNcNfλs

paλuT 2/α · 4π · csc
(

2π
α

)

+ αNcNfλs

. (7)

The coverage probability of NBIoT networks is

Pd (T ) =

∫ ∞

0

e−(1+T 2/α·F (x))xdx. (8)

Where

F (x) =

∫ ∞

π

4xT2/α

1

1 + uα/2
du. (9)

P: for proof please see Appendix A. �

For LoRaWAN networks, the coverage probability
of the UL is different to that in DL where coverage
probability is influenced by neither the density of BSs
nor UEs. In UL, Eq. (7) shows the coverage probability
is affected by both the density of BSs and density of
UEs and probability of UE activity. In UL, increasing the
number of UEs (or more UE activity) will lead to more
interference but the average distance from UEs to their
closest BSs remains unchanged when the density of BSs
is fixed. Thus, the coverage probability is a decreasing
function of both the density of UEs and the probability of
active UEs. In contrast, increasing the density of BSs will
reduce the average distance from UEs to their closet BSs
but the interference remains, since the density of UEs
and the probability of active UEs is fixed. The coverage
probability is an increasing function of the density of
BSs.

For NBIoT networks, the coverage probability is
influenced by neither the density of BSs nor UEs as show
in Eq. (8). This is because the UEs are scheduled by the
network, and there is no intra-cell interference and only
one random interferer from each other cell.
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4 Energy efficiency

In LoRaWAN networks and NBIoT networks, all UEs
transmit data with frequency division (FD) half-duplex
mode. The energy consumption of a UE mainly includes
three parts: the energy consumption of the processor, the
energy consumption of RF circuit in transmission, and
the energy consumption of RF circuit in reception. In
LPWAN networks, most communications occur in UL.
Hence, in this paper, we focus on the energy efficiency
of transmission in UL.

In section 2, we assume that all UEs transmit data
to their tagged BSs with the fixed power Ptx. In the
real LPWAN networks, especially in NBIoT networks,
the transmitting power depends on a combination
of cell-specific parameters, the selected RU and UE
measured parameters, 3GPP (2016). It is complicated
to model and calculate the energy consumption based
on dynamic power control. Furthermore, the radio
frequency integrated circuit (RFIC) used in LPWAN
networks can only provide a few transmitting power
levels. So, we maximize the energy consumption by
considering the worst case where all UEs transmit data
with the fixed maximum power Ptx for all transmissions.
The resulting energy efficiency from this paper can hence
be considered an approximation of the energy efficiency,
which provides a guide for designing the real networks.

Before studying energy efficiency, we must predict the
average number of retransmissions that a typical UE will
use in successfully sending a message to its tagged BS.
In UL, if the set of active UEs which simultaneously
transmit data is the same each time, it will lead some
UEs unable to send messages to their tagged BSs if
the required SIR threshold for demodulation is more
than 0dB. This is because there are some interfering
UEs much closer to these UEs’ tagged BSs. In this
case, the number of retransmissions of these UEs is
infinite. Furthermore, all the UEs send messages driven
by events, so the transmission process can be considered
a stationary process where every UE will be randomly
chosen to send a message with probability of λa. This
means different sets of UEs transmit data simultaneously
at different times, which avoids the case that some UEs
can never send messages to their tagged BSs.

Let r.v. Nscf denote the number of retransmissions,
p denotes the successful probability of each transmission
and q = 1− p denotes the failed probability of
each transmission, hence the average number of
retransmissions is given as

Nav = E [Nscf ] =

∞
∑

i=1

i · qi−1 · p = p−1. (10)

In section 3, the coverage probability is the spatial
average successful probability of the UEs accessing their
tagged BSs. Let p = Pc for LoRaWAN networks; and
let p = Pd for NBIoT networks. We can define the
energy efficiency as the number of bits which successfully

transmit in UL with unit energy consumption expressed
as

EE =
Nu ·M ·Dtx

Nu ·Nav ·M · Etx (1 + β) +Nu · Eother

=
1

Nav
· Rtx

Ptx · (1 + β) + Rtx·Eother

Nav·M ·Dtx

= p · Rtx

Ptx · (1 + β) + p·Rtx

M ·Dtx
· Eother

= p ·Npbj .

(11)

Where, M denotes the average number of transmissions
in UL each day, and Dtx is the length (in bits) of
data. We assume that each UE transmits the same
size data each time in UL. Etx denotes the energy
consumption for transmitting the data Dtx once. β
is the energy coefficient which is used to represent
the energy consumption of signaling transmission,
acknowledgement (ACK) reception and is influenced by
the length of transmitting data. Eother denotes some
other energy consumption which will be discussed later.
Rtx is the physical bit rate (in bits/s) in UL. Nbpj

is the number of bits that can be transmitted with
a unit energy consumption without considering the
retransmission. To get the energy efficiency based on
Eq. (11), we only need to derive the Nbpj . This is very
different for LoRaWAN networks and NBIoT networks
because the difference of their media access control
(MAC) protocol and RFIC.

4.1 LoRaWAN networks

In this paper, we only consider basic UEs in LoRaWAN
networks, i.e. end-devices of Class A, which allow for
bidirectional communications whereby each end-device’s
uplink transmission is followed by two short receive
windows as shown in Fig. 2. In LoRaWAN networks, all
end-devices must implement Class A features.

Figure 2: Class A device receive slot timing in
LoRaWAN networks.

In LoRaWAN networks, UEs directly send messages
to their tagged BSs. If the transmission fails, they
will retransmit the messages again after a period
defined by the duty cycle, until reaching the maximum
number of retransmissions, which is not in the scope
of this paper. For power saving, LoRaWAN UEs
asynchronously communicate with the BSs. There is
no other excess energy consumption, so we can let
Eother = 0. Furthermore, since LoRaWAN is a simple
communication protocol, little energy is consumed for
signaling transmission and ACK reception, so we can
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set β as a positive number close or equal to zero,
which minimizes influence on the results. So, Nbpj for
LoRaWAN can be simplified to

Nbpj =
Rtx

Ptx · (1 + β)
. (12)

Where Rtx for different spreading factor can be
obtained from LoRa Alliance (2016). In the datasheet
of SX127x Semtech Co. (2015), an accurate method
is provided for obtaining Ttx. SX127x is widely used
for LoRaWAN networks and is produced by Semtech
Ltd. x equals either 6,7,8,9-relevant to different countries
with different frequency bands. These RFICs support
both LoRa, FSK, and OOK modulation. In this paper,
we focus on the investigation of energy consumption
when the IC transmits data with LoRa spread spectrum
modulation. In LoRaWAN networks, the UL messages
always start with a programmed preamble. For LoRa
spread spectrum modulation, the duration of a symbol
is

Ts =
2SF

BW
. (13)

Where SF is the spreading factor and BW is the
programmed Tx bandwidth. The LoRaWAN packet
duration is the sum of the duration of the preamble and
the data packet. The preamble length is calculated as
follows:

Tpreamble = (npreamble + 4.25) · Ts. (14)

Where npreamble is the programmed preamble length.
The following formula gives the number of payload
symbols.

npayload

= 8 +max
(

ceil
[

(8PL−4SF+28+16CRC−20IH)
4(SF−2DE)

]

(CR+ 4) , 0
)

.
(15)

PL is the number of payload bytes (1 to 255), SF is
the spreading factor (6 to 12), IH is the enable flag of
header,DE is the enable flag of LowDataRateOptimize,
CR is the coding rate (1 corresponding 4/5, 4 to 4/8),
CRC is the enable flag of cycle redundancy check. For
more details refer to Semtech Co. (2015).

The payload duration is then the symbol period
multiplied by the number of payload symbols

Tpayload = npayload · Ts. (16)

The time on air is simply the sum of the preamble
and payload duration (in second).

Tpacket = Tpreamble + Tpayload. (17)

Based on the Eq. (17) and (11), we can obtain the
Nbpj in LoRaWAN networks as

Nbpj =
8PL

U · Itx · Tpacket · (1 + β)
. (18)

Where U is the power supply voltage (in Volts) of
the IC, and Itx is the transmitting mode current (in
Amperes) of the IC. Comparing with Eq. (12), (18)

provides a more precise realization of energy efficiency
measurement. Furthermore, using U · Itx instead of the
RF transmitting power incorporates the effects of RF
amplifier and processing energy consumption in the
model.

4.2 NBIoT networks

NBIoT Networks utilize two sleep methods to conserve
battery power: power saving mode (PSM) and extended
idle-mode discontinuous reception cycle (eDRX) as
shown in Fig. 3 and Fig. 4, respectively. PSM provides
more power saving but higher latency, eDRX provides
less power saving but low latency. PSM was proposed
in 3GPP Release 12 and is specified in 3GPP TS24.301
3GPP (2017) and TS23.682 3GPP (2017). In Fig. 3,
the maximum tracking area updating period (T3412) is
decided by the network. The maximum time a device
may be reachable is 186 minutes (equivalent to the
maximum value of the active timer T3324). For more
details about T3412 and T3324 refer to 3GPP (2017,
TS23.682, TS24.008, TS24.301).

Figure 3: The power profile of a NBIoT UE in PSM
mode.

Figure 4: The power profile of a NBIoT UE in eRDX
mode.

In PSM, UEs turn off their RF modules and enter into
dormant state to reduce the energy consumption. This
mode is similar to power-off, but UEs remain registered
with the network and there is no need to re-attach or
re-establish PDN connections 3GPP (2017). When a UE
wakes up from PSM, it uses its stored access statum (AS)
context (which was obtained from the network at the last
paging), to transmit data. Afterwards, the UE returns
to the RRC IDLE state, from where it may either use
the RACH procedure if it has mobile originated data to
send, or waits until it gets paged 3GPP (2016). The UE
will leave RRC IDLE state and enter into PSM if the
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UE does not operate or not receive any data from the
BS in a period which is defined by the network.

In the above case, the Eother in Eq. (11) denotes
the energy consumption of paging which occurs at
the RRC IDLE state and its duration is defined by
T3324. As shown in Fig. 3, paging always occurs after
RRC CONNECTED. The Nbpj for NBIoT UEs which
exploit PSM to reduce energy consumption is given as

Npbj =
Rtx

Ptx · (1 + β) + p·Rtx

M ·Dtx
(M · Prx · Tp)

=
Rtx

U · Itx · (1 + β) + p·Rtx

Dtx
· (U · Irx · Tp)

.

(19)

Where Prx = U · Irx denotes the UEs consumed power
when in RF receive mode, Irx is the average DC current
when the UE is in receive mode. Tp is the duration of
the paging window.

LTE networks exploit discontinuous reception (DRX)
cycle to save paging power. The eDRX is an extension
of an existing LTE feature which can be used by NBIoT
UEs to reduce power consumption. A normal LTE paging
cycle is 1.28s 3GPP (2017), the not-yet-implemented
LTE DRX improvement to LTE will allow UEs to sleep
for 10.24s between paging cycle. As shown in Fig 4, the
eDRX innovation allows the UEs to tell the network
how many ”hyper frames” (HFs) of 10.24s it would
like to sleep before resuming paging 3GPP (2017). The
maximum number of HFs a UE can sleep is defined
by the mobile network operator. In this case, the Nbpj

for NBIoT UEs which exploit eDRX to reduce energy
consumption is given as

Npbj =
Rtx

Ptx · (1 + β) + p·Rtx

M ·Dtx
(M · Prx · Tp +Np · Prx · Tp)

=
Rtx

U · Itx · (1 + β) + p·Rtx

Dtx
· ((1 +Np/M) · U · Irx · Tp)

.

(20)

where Np is the number of paging events each day,
which can be expressed as

Np = floor

(

24× 60× 60

N × 10.24

)

. (21)

where N is the number of hyper frames, i.e. the interval
between two adjoined paging events.

At the RRC CONNECTED state, a UE must
request connection before sending messages. In some
environments, it may enter into RRC IDLE to start
RACH procedure, for more details refer to 3GPP (2016).
This means there is an energy cost in exchanging
signaling between UEs and their tagged BSs. Hence, we
can not get a precise model of Npjb in a similar way to
the LoRaWAN networks and the value of β in Eq. (19)
and (20) must be set larger than that in Eq. (12) or
(18) to compensate the energy consumption of signaling
exchange and RACH procedure.

With the energy efficiency, we can estimate the
battery lifetime by

Blife =
3600 · Udr · Cbat · η

365 · (Esl +M · Edc +M ·Dtx/EE)
, (22)

Table 1 Parameters for coverage probability

Parameter Description Value

λs Density of BSs 1BSs/km2

λu Density of UEs 10kUEs/km2

α Path loss Exponent 4

Nc Number of sub-channels 8

Nf Number of spreading factors 6

Ptx Transmitting Power of UEs 20 dBm

S Area of network for simulation 5km× 5km

where Udr is the valid voltage range of battery, i.e.
the voltage drop from the highest voltage to the lowest
voltage ensuring the device working, Cbat is the capacity
of battery (in Amp-hours), η is the transfer efficiency
of the power supply unit (PSU); Esl is the energy
consumption of a device in sleep mode per day, M · Edc

is the energy consumption of a device collecting data
per day (before sending), M ·Dtx/Eeff is the energy
consumption of a device sending data per day. The Esl

is defined as

Esl = 24 · 3600 · U · Isl, (23)

and the Edc is defined as

Edc = U · Iact · Tact, (24)

where U is the device typical supply voltage in units of
Volt, Isl is the average current in units of Ampere that
the device uses in the sleep mode, Iact is the average
current in units of Ampere that the device uses in the
active mode, Tact is the data collecting time in unites
of seconds. Then from the Eq. (22), we can obtain an
approximation of the battery lifetime (in years) ignoring
the self-discharge of battery (typically about 1% per year
for primary cellsBurdett A. (2015)).

5 Numerical Results

In this section, we validate our numerical results of the
coverage probability with Monte Carlo simulations. In
the simulation, the BSs and UEs are randomly deployed
in a 5km× 5km area of R2. The transmitting power of
the UEs does not influence the coverage probabilities
because we neglect the effect of thermal noise. The main
parameters are given in table 1.

Fig. 5 shows how the coverage probabilities vary
with the demodulator SIR threshold. Solid lines denote
the numerical results and dotted lines denote the
Monte Carlo simulation results. As shown in Fig. 5,
the coverage probabilities of LoRaWAN networks will
descend when the number of active UEs increases. For
NBIoT networks, the coverage probabilities of NBIoT
networks is not influenced by the number of active
UEs due to the scheduler. When the density of BSs
is larger, the numerical result is closer to the Monte
Carlo simulation results. This is consistence with Fig
1. Furthermore, the density of BSs slightly influences
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Table 2 Parameters for modulations

Modulation Demodulator SIR Data length

QPSK 10 dB 125 Bytes

SF7 −7.5 dB 125 Bytes

SF8 −10 dB 125 Bytes

SF10 −15 dB 50 Bytes

SF12 −20 dB 50 Bytes

the coverage probability, though it is always neglected
in both the homogeneous PPP model and the non-
homogeneous PPP.
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Figure 5: The coverage probability of LoRaWAN will
reduce with increasing numbers of active UEs. The
coverage probability of NBIoT networks is not influenced
by the number of active UEs. Average 10k UEs/cell.

As discussed in section 4, we need the average number
of retransmissions (which is the inverse of the coverage
probability), to calculate the energy efficiency and hence
estimate the battery lifetime. Obviously, it is unfair
to calculate the coverage probability using the same
demodulator SIR threshold for different modulations.
Furthermore, the maximum size of payload varies
with system. Based on 3GPP (2016); LoRa Alliance
(2016); Semtech Co. (2015), we focus on SF7, SF8,
SF10, SF12 spread spectrum modulations in LoRaWAN
networks and only consider data transmission with
QPSK modulation in NBIoT networks (in UL of NBIoT
networks, BPSK and QPSK are supported: control
data is transmitted with BPSK modulation and user
data mostly transmitted with QPSK modulation). The
parameters for demodulator SIR thresholds and payload
size are set up as shown in the table 2.

Fig. 6 illustrates the coverage probabilities in
LoRaWAN networks due to changing the density of
BSs, when the density of UEs and the probability of
active UEs is fixed. Solid lines denote the numerical
results and dotted lines with squares denote the Monte
Carlo simulation results. The figure shows that when the
spreading factor is larger, the probability is higher, but
increases only slowly as a function of BSs density.
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Figure 6: The coverage probability of LoRaWAN
networks will increase with the increasing of BSs density
for a fixed number of active UEs. Average 10k UEs/cell.

Table 3 Parameters for LoRa networks

Parameter Description value

U Typical power supply 3.3 V

Itx Average current @ Ps = 20 dBm 120 mA

Isl Average current @ active mode 5.8 mA
Iact Average current @ sleep mode 1.5 uA

BW Bandwidth 125 kHz

IH Header enable 1

DE Low data rate optimize 1

CR Code rate 4/5

CRC Cyclic redundancy check enable 1

npreamble Number of preamble 8

Table 4 Parameters for NBIoT networks

Parameter Description value

U Typical power supply 3.6 V
Itx Average current @ Ps = 23 dBm 220 mA

Irx Average current @ receive mode 46 mA

Isl Average current @ active mode 6 mA

Iact Average current @ sleep mode 3 uA

Rtx maximum bit rate in UL 62.5 kbps

M Transmissions per day 2

N Number of HFs 500

To observing the energy efficiency, we set the
parameters in Eq. (18) based on Semtech Co. (2015) as
show in table 3, and set the parameters in Eq. (19) and
Eq. (20) based on Ublox Ltd. (2017) as show in table 4.
We assume that both UE types work with the maximum
RF output power, and the NBIoT UEs transmit with
the maximum bit rate in UL (due to lack of interference
in the licensed spectrum and only one interferer in each
other cell).

The duration of the paging window (Tp in (19)) is
5.12 seconds (4 paging occasions with 1.28s cycle) if
UEs utilize PSM to save power. The duration of the
paging window (Tp in (20)) is 3.84 seconds (3 paging
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occasions with 1.28s cycle) if NBIoT UEs utilize eDRX
to save power. The number of HFs is 500, which overall
means that the interval of paging is 500× 10.24 seconds,
approximates 1.42 hours. The value of data collecting
time (Tdc) varies depending on application. We set the
Tdc = 1 second as a reference value because it is sufficient
for most data collecting. The energy consumption for
data collecting is much less than the energy consumption
for data sending in wireless systems.

Fig. 7 shows how the energy efficiency varies with
the payload size. The energy efficiency of LoRaWAN
networks is almost constant when the payload size
is larger than 30 bytes. But the energy efficiency of
NBIoT networks varies rapidly with the payload size,
especially for PSM. This is because UEs consume a
lot of energy transmitting signaling, paging or RACH
scheduling. Increasing payload size increases the ratio
of energy consumption. Meanwhile, transmitting smaller
data block will cost more energy in NBIoT networks than
in LoRaWAN networks.
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Figure 7: How the energy efficiencies vary with UEs’
payload size for various SF in LoRaWAN and NB-IoT
networks.

Fig. 8 shows how the energy efficiency varies with
the energy coefficient β. As discussed in Section 4.1,
LoRaWAN is a simple communication protocol, and the
end-devices of Class A rarely exchange signaling with the
network after joining with a BSs. In this case, the β must
be set close to zero. For example, the energy efficiencies
are reduced by about 10.7% when β varies from 0 to 0.1.

In NBIoT networks, the impact of β on energy
efficiency is much smaller, the energy efficiencies of PSM
is reduced by about 5.2% and the energy efficiency of
eDRX is reduced by about 0.61% when β is from 0 to 1
in NBIoT networks. This is because NBIoT UEs spend
significant energy paging in addition to transmitting
data and signaling. The energy efficiency of PSM is much
higher than that of eDRX, this is because UEs spend
more energy paging to reduce the latency in eDRX.

Fig. 9 illustrates the energy efficiency of different
SFs in LoRaWAN networks and different sleep modes

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 (

b
it
s
/j
)

u
 = 10k UEs/km

2
, 

s
 = 1 BS/km

2
, p

a
 = 0.03

SF7

SF8

SF10

SF12

PSM

eDRX

Figure 8: The energy efficiencies vary with the energy
coefficient β.

in NBIoT networks. For LoRaWAN networks, we set
β = 0.1: the blue bars denote that the probability of
active UEs pa is 0.01 and yellow bars denote pa = 0.03.
As shown in the Fig. 9, when the spreading factor is
smaller, the energy efficiency is larger. This is because
smaller SF means higher bit rate, with reduced time
for data transmitting and attendant reduced energy
consumption. This observation is consistent with the Eq.
(11).

For NBIoT networks, the probability of active UEs
does not influence the average number of retransmission.
UEs must request connection before sending messages,
so the energy coefficient β must be set much larger
than that in LoRaWAN networks, though it only slightly
influences the energy efficiency as shown in Fig. 8. The
blue bars in Fig 9 denote β = 0.5 and the yellow bars
denote β = 1. As shown in Fig. 9, β = 1 means that
energy consumed for signaling and reception equals the
energy consumed for transmitting data. Finally, the
energy efficiency of PSM is larger than that of SF10 and
SF12, this is because the payload bit rate of NBIoT is
much larger than that of LoRaWAN. But, the energy
efficiency of SF7 is higher than that of PSM though
the bit rate of SF7 (about 5.47 kbps) is much smaller
than that of NBIoT UEs. This is because LoRaWAN is
a simple efficient protocol for networks and UEs can use
almost all their energy on transmitting data.

We now consider an example Li-ion battery (typical
supply voltage is 3.6 V) with capacity of 1000 mA-hour.
The valid voltage range is 1.2 V, i.e. from 4.2 V to 3.0
V for Li-ion batteries. The transfer efficiency of modern
power supply circuits is often more than 90% (common
for switch-mode PSUs if the input power supply is stable
and the difference in voltage between input and output is
small). To be cautions, we set the PSU average transfer
efficiency to 80% with a fixed output voltage. Each UE
transmits 2 packets of 125 bytes per day. Based on Eq.
(22), the battery lifetime is estimated in the Fig. 10.

In Fig. 10, the blue bars denote that the probability
of active UEs pa is 0.01 and yellow bars denote pa =
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Figure 9: Energy efficiency for LoRaWAN UEs with
different SF and for NBIoT UEs with different sleep
modes.
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Figure 10: Battery lifetime for LoRaWAN UEs with
different SF and for NBIoT UEs with different sleep
modes.

0.03 for LoRaWAN and the blue bars denote β = 0.5 and
the yellow bars denote β = 1 for NBIoT. We see that
the most useful modes for long-life IoT applications in
interference limited scenarios are NBIoT PSM mode and
LoRa modes SF7 and SF8 (10k UEs/cell and average
100 active UEs/cell).

The coverage probability is another factor which
influence the energy efficiency. For LoRaWAN networks,
from the Eq. (7) and Fig. 6, the coverage probability can
be increased by increasing the density of BSs when the
density of UEs and the probability of active UEs is fixed.
As shown in Fig. 11, the battery lifetime increases with
the increasing of density of BSs in LoRaWAN networks,
this is because increasing the density of BSs will increase
the coverage probabilities, i.e. reduce the average number
of retransmissions. The coverage probability of SF12 is
highest in Fig. 6 but increases most slowly as function
of BSs density as shown in Fig. 11. It also has the
lowest energy efficiency as shown in Fig. 7 and Fig. 9.
The battery lifetime of SF12 is the shortest and hardly

influenced by the density of BSs. This is because SF12
spread spectrum communications improve the coverage
probability at the expense of bit rate and energy but
using longer codes.
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Figure 11: How battery lifetime varies with the density
of BSs (range from 1 BS to 10 BS per km2) in LoRaWAN
networks. If the SF is larger, the battery lifetime is
shorter and increases more slowly with the increasing of
λs.

We did not compare the numerical results of
energy efficiency and battery lifetime with Monte
Carlo simulation because we can not simulate the
full processes of LoRaWAN networks and NBIoT
networks. Furthermore, there are no such large scale
real networks to measure the data. As mentioned in
section 4, the energy efficiencies in this paper are not
the real networks’ energy efficiency but an approximate
estimation facilitating comparison (In fact, such energy
predictions can not be obtained by mathematical model
analysis or from measuring real networks since it depends
on large numbers of parameters and changes with diverse
networks at different times). Our purpose here is to
provide some valuable guides to the design of real
networks.

6 Conclusions

In this paper, we first proposed a framework and a
conditional homogeneous PPP to calculate the coverage
probabilities in UL of LoRaWAN networks and NBIoT
networks. We give the energy efficiency models, then
estimate the battery lifetime based on our mathematical
results. The numerical results show that the battery
lifetime can not reach 10 years even if less than 250
bytes are transmitted by each UE with the maximum
transmit power per day both in LoRaWAN networks
and NBIoT networks. In NBIoT networks, there is no
intra-cell interference so the UEs can transmit data with
the maximum bit rate to improve the energy efficiency.
Using the PSM in NBIoT networks, a UE approaches
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about half energy efficiency of a LoRaWAN UE with SF7
modulation. NBIoT networks use licensed bands, leading
to extra cost compared to LoRaWAN networks. But due
to this spectrum, NBIoT can provide better QoS, a high
bit rate, low latency.

LoRaWAN networks can provide fast network
deployment for low cost, so may be suitable for areas
not in the coverage of macro NBIoT BSs, or for the
scenarios with many interferers. SF12 modulation can
be demodulated at -20dB SIR, which ensures LoRaWAN
networks can work in poor link budget circumstance
or with severe interference (as may be experienced in
unlicensed shared spectrum). Furthermore, increasing
the density of BSs in LoRaWAN networks, to reduce
the UE energy consumption is a simple and economic
method due to their lower cost. Finally, both LoRaWAN
UEs and NBIoT UEs must transmit data at as high bit
rate as possible to reduce the energy consumption.

The energy efficiency and battery lifetime models
are affected by many factors. Our models are limited
due to mainly considering the energy consumption of
sending and receiving, the energy consumption of devices
in sleep mode and in active model for data sensing
and processing. Moreover, we only consider the devices
sending data with fixed transmit power. In our future
works, we will model and analysis the LPWAN where
devices send data with power control according some
factors, for example, the distance from devices to their
BSs (or Gateways).

Appendix A.

Proof of Theorem 1

Let Ic =
∑

x∈ΦI

hxR
−α
x , based on the definition, the

coverage probability is expressed as

Pc(T ) = Er [(SIR > T |r )]

=

∫ ∞

0

P

[

hr−α

Ic
> T |r

]

fR (r) dr

=

∫ ∞

0

P [h > TrαIc |r ]fR (r) dr.

(25)

The P [h > TrαIc |r ] in Eq. (25) can be expressed as

P [h > TrαIc |r ] = Er [P (h > TrαIc |r , Ic)]

(a)Er [exp (−TrαIc |r )]

(b)LIc (Tr
α) ,

(26)

where (a) follows from h ∼ exp (1) and (b) follows from
the definition of Laplace transform of PPP. Based on the
distribution of interfering UEs in LoRaWAN networks

(which is discussed in section 2.1), the Laplace transform
LIc is express as

LIc (Tr
α)

= EIc

[

e−TrαIc
]

= EΦI,hx

[

−Trα
∑

x∈ΦI

hxR
−α
x

]

= EΦI

[

∏

x∈ΦI

Eh

[

exp
(

−TrαhR−α
x

)]

]

(c)
= exp

(

−2π
2paλu

NcNf

∫ ∞

0

(

1− Eh

[

exp
(

−Trαhv−α
)])

vdv

)

= exp

(

−2paλu

NcNf
πr2 ·

∫ ∞

0

T 2/α

1 + xα/2
dx

)

= exp

(

−2paλu

NcNf
πr2 · T 2/α · 2π · csc (2π/α)

α

)

,

(27)

where (c) follows from the Probability Generating
Functional (PGFL).

All UEs choose their closest BSs with which to
communicate, and based on Andrews, J.G. et al. (2011),
the PDF of the distance from UE to its closest BS is

fR (r) = 2λsπe
−λsπr

2

. (28)

Combining Eq. (27) and (28) into (25) yields (7).
The coverage probability of NBIoT is similar to the

above proof, we can directly find the coverage probability
as

Pd (T ) =

∫ ∞

0

LId (Tr
α) fR(r)dr. (29)

Based on the distribution of interfering UEs in NBIoT
networks (which is discussed in section 2.2), the LId is
derived as follows:

LId (Tr
α)

= exp



−2λsπ

∫ ∞

1

2

√
λs

(

1− 1

1 + Trαv−α

)

vdv





= exp



−λsπr
2T 2/α

∫ ∞

b

1

1 +
(

v2

r2 T
−2/α

)α/2
d(

v2

r2
T−2/α)



 ,

(30)

where b = π
4λsπr2T 2/α , combining Eq. (30) and (28) into

(29) and let u = T−2/α · v2/r2 and x = λsπr
2 yields (8)

and (9).
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