

This is a repository copy of Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue through the XOR Catalyzed Nitric Oxide Pathway.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/157597/

Version: Accepted Version

Article:

McNally, BD, Moran, A, Watt, NT et al. (8 more authors) (2020) Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue through the XOR Catalyzed Nitric Oxide Pathway. Diabetes. db190892. ISSN 0012-1797

https://doi.org/10.2337/db19-0892

© 2020 by the American Diabetes Association. This is an author produced version of a journal article published in Diabetes. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue through the XOR Catalyzed Nitric Oxide Pathway

Running Title: Nitrate Enhances Adipose Tissue Glucose Metabolism

Ben D McNally^{1,2†}, Amy Moran^{3†}, Nicole T Watt³, Tom Ashmore^{2,4}, Anna Whitehead³,

Steven A Murfitt², Mark T Kearney³, Richard M Cubbon³, Andrew J Murray⁴, Julian L

Griffin^{1,2,5}, Lee D Roberts^{3*}

- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB2 9NL, UK.
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke's Site, Cambridge, CB2 1GA, UK.
 - Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
- 5. Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, UK.

Supplementary Figure 1 Immunoprecipitation blots of cell surface biotinylated Glut4 from primary mouse adipocytes treated with 500 μ M nitrate with and without 100 nM insulin showing 50 kDa molecular weight marker. C = control, I = 100 nM insulin, N = 500 μ M nitrate, N+I = 500 μ M nitrate + 100 nM insulin, M = 50 kDa molecular weight marker.

Supplementary Figure 2 Resazurin cell viability assay in primary adipocytes treated with 500 μ M nitrate, 100 nM insulin, or 500 μ M nitrate and 100 nM insulin (n \ge 22). Data is displayed as Mean \pm SEM.

Supplementary Figure 3 Resazurin cell viability assay in primary adipocytes treated with 500 μ M nitrate, 50 μ M PTIO, or 500 μ M nitrate and 50 μ M PTIO (n = 8). Data is displayed as Mean \pm SEM.

Supplementary Figure 4 Xanthine Oxidoreductase (XOR) expression in primary adipocytes treated with scrambled control siRNA or siRNA against XOR with and without 500 μ M nitrate (n = 3). Data is displayed as Mean ± SEM. ***, P ≤ 0.001.

Supplementary Figure 5 Resazurin cell viability assay in primary adipocytes treated with negative control siRNA or siRNA against XOR with and without 500 μ M NaNO₃ (n = 6). Data is displayed as Mean ± SEM.

Supplementary Data

Supplementary Table 1. Table of morphological parameters of rats treated with 0.7 mM NaCl or 0.7 mM NaNO₃ in drinking water for 18 days. Table detailing start and final weights, food and water intakes, daily nitrate intake, and plasma insulin concentration. Data were analysed by Student's t-test and are Mean \pm SEM. *** P \leq 0.0001.

	0.7 mM NaCl (n = 6)	0.7 mM NaNO ₃ (n = 6)
Start weight (g)	265 ± 5	270 ± 4
End weight (g)	406 ± 8	415 ± 9
Food intake (g/day)	30 ± 1	30 ± 1
Water intake (mL/day)	30 ± 3	36 ± 3
Nitrate intake (mg/kg/day)	1 ± 1	8 ± 2 ***
Plasma Insulin (µg / L)	1.18 ± 0.2	1.16 ± 0.3