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ON THE WANDERING PROPERTY IN DIRICHLET SPACES

EVA A. GALLARDO-GUTIÉRREZ, JONATHAN R. PARTINGTON, AND DANIEL SECO

Abstract. We show that in a scale of weighted Dirichlet spaces Dα, includ-
ing the Bergman space, given any finite Blaschke product B there exists an

equivalent norm in Dα such that B satisfies the wandering subspace property

with respect to such norm. This extends, in some sense, previous results by

Carswell, Duren and Stessin [3]. As a particular instance, when B(z) = z
k

and |α| ≤
log(2)

log(k+1)
, the chosen norm is the usual one in Dα.

1. Introduction

For isometries T acting on complex, separable, infinite dimensional Hilbert spaces
H, the classical Wold Decomposition Theorem asserts that whenever T is pure
(
⋂

∞

n=0 T
nH = {0}), the closed subspace K = H⊖ TH has the wandering subspace

property in H: H coincides with the smallest closed invariant subspace under T gen-
erated by K, denoted by [K]T . This is a consequence of the fact that H decomposes
as the orthogonal direct sum of closed subspaces

H = K ⊕ TK ⊕ T 2K ⊕ . . .

More generally, a subspace of a Hilbert space is called a wandering subspace of a
given operator if it is orthogonal to its images under positive powers of the oper-
ator. In this regards, the Wold Decomposition Theorem says that every invariant
subspace of a pure isometry is indeed, generated by a wandering subspace.

Well known examples arise when considering multiplication operators induced
by inner functions in the classical Hardy space H2. Recall that an inner function
θ is an analytic function in the unit disc D with contractive values (|θ(z)| ≤ 1 for
z ∈ D) such that the boundary values

θ(eit) := lim
r→1−

θ(reit)

have modulus 1 for almost all t (they exist for almost every t with respect to
Lebesgue measure on the unit circle). In such cases, every closed subspace M in
H2 invariant under multiplication by θ is wandering and

[M⊖ θM]θ = M.
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Accordingly, θ is said to have the wandering subspace property (WSP).

Nevertheless, it is not completely understood yet which functions ϕ in H∞ (the
space of bounded analytic functions on D) enjoy the WSP in H2, that is, for which
functions the corresponding multiplication operators Mϕ on H2 satisfy

[M⊖ ϕM]Mϕ
= M

for every closed invariant subspace M. In [11], it was shown that a necessary
condition is that ϕ be writable as the composition G ◦ h, where h is an inner
function and G is univalent in D. Moreover, they also proved a sufficient condition,
namely, ϕ = G◦h with G a weak-star generator of H∞. Whether this last condition
is in fact a necessary one is left open.

The question turns out to be drastically difficult to handle whenever the un-
derlying Hilbert space is the Bergman space A2. In a remarkable paper, Aleman,
Richter and Sundberg [1] proved that ϕ(z) = z possesses the WSP in A2. How-
ever, Carswell in [4] showed the existence of bounded univalent functions ϕ in D,
vanishing at the origin and failing to have the WSP both in H2 and A2. Indeed,
previously in [3], the authors had provided necessary conditions for H∞ functions
to have the WSP in A2. They showed, in particular, that not every inner function
has this property in the Bergman space and moreover, exhibited infinite Blaschke
products not enjoying the WSP in A2. For finite Blaschke products, the question
in the Bergman space remains open (see [5]).

The main goal of this work is showing that not only in the Bergman space but
also in a scale of weighted Dirichlet spacesDα including A2, for every finite Blaschke
product B, it is possible to renorm the space (with an equivalent norm) such that B
enjoys the wandering subspace property. This seems to go in the opposite direction
to a recent work by our third author [15], in which renormings were found of the
same spaces allowing one to disprove the corresponding WSP for multiplication
by some monomials. Accordingly, the present work shows, in particular, that the
geometry of the space plays a significant role in order to deal with this question,
since its answer depends strongly on the norm expression.

The rest of the manuscript is organized as follows. In Section 2 we recall some
preliminaries, introducing the family of weighted Dirichlet spaces Dα, where our
work takes place. We will recall Shimorin’s Theorem [17], which provides a unified
proof of the theorems of Beurling [2] and Aleman, Richter and Sundberg [1] and
shows, for instance, that ϕ(z) = z possesses the WSP in the scale of Dα spaces
considered. In addition, we introduce some basic results illustrating the nature of
the multiplication by a Blaschke product. This justifies the direction of the proof of
our main results, which will be proved in Section 3. Moreover, some consequences
are derived, including the observation that for a range of α the WSP holds for
ϕ(z) = zk (k ≥ 1) even with the original norm. Finally, we establish the WSP for
zk acting on finite codimensional subspaces of Dα (with the norm inherited from
Dα).
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2. The setting

2.1. Dirichlet-type spaces. Let α be a real number. The Dirichlet-type space
Dα consists of analytic functions f(z) =

∑
∞

k=0 akz
k in D such that its norm

‖f‖α :=

(
∞∑

k=0

|ak|
2(k + 1)α

)1/2

is finite. Observe that particular instances of α yield well-known Hilbert spaces
of analytic functions in D. More precisely, when α = −1 we have the classical
Bergman space A2, α = 0 corresponds to the Hardy space H2, and α = 1 to the
Dirichlet space D. Note that the continuous inclusion Dβ ( Dγ holds for all γ < β,
i.e., ‖f‖γ ≤ ‖f‖β for all f ∈ Dβ and γ < β. Moreover, when β > 1 the spaces Dβ

are continuously embedded in the disc algebra A.
Dirichlet-type spaces are particular instances of general weighted Hardy spaces,

introduced by Shields [16] to study weighted shifts in ℓ2. There is an extensive
literature on these spaces, and we refer the reader to [7, Chapter 2], for instance.

Recall that an analytic function u in D is a multiplier of Dα, if the analytic
Toeplitz operator Tu : f 7→ uf is defined everywhere on Dα (and hence bounded,
by the Closed Graph Theorem). A well known fact about the Dirichlet space is that
the algebra M(D) of all the multipliers of D is not easy to describe. In particular,
the strict inclusion M(D) ⊂ D ∩ H∞ holds. Indeed, the elements of M(D) were
characterized by Stegenga [18] in a notable paper, in terms of a condition involving
the logarithmic capacity of their boundary values. We refer to [19] for multipliers
and Carleson measures in Dirichlet spaces and to [8] for more on the subject of
multipliers of Dα.

In any case, it is not difficult to prove that every finite Blaschke product is a
multiplier of Dα for all α ∈ R. Recall that a finite Blaschke product is given by

B(z) = eiθ
N∏

i=1

z − αi

1− αiz
, (z ∈ D)

where αi ∈ D, counted according to its (prescribed) multiplicity. Finite Blaschke
products play an important role in mathematics and connect areas such as complex
geometry, linear algebra, operator theory and systems. We refer to the recent
monograph [9] for a detailed account of these results.

In order to analyze whether any finite Blaschke product B satisfies the WSP
in Dα, we begin by considering the concrete example B(z) = z2 acting on the
Bergman space A2 (an open problem specifically posed in [5]).

2.2. Vector valued shifts. The following approach is based on some ideas de-
scribed in [12, 14]. Our aim at this regard is shed some light on the behavior of the
multiplication by a finite Blaschke product by means of considering multiplication
by z2. We may consider the space A2 as a direct (orthogonal) sum of two copies of
itself, A2

1 and A2
2, where a function f ∈ A2 is decomposed as

f(z) = f1(z
2) + zf2(z

2).

It is clear that f ∈ A2 if and only if f1, f2 ∈ A2, but we are imposing different
equivalent norms on each copy of A2. We may think either A2

1 and A2
2 equipped

with their usual norms and their sum A2 equipped with the norm arising from such
sum, or on the contrary, A2 with usual norm decomposed as sum of two subspaces
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which inherit some comparable norm. We consider here the first of those choices.
By doing so, we may view the operator Mz2 as a diagonal matrix shift sending
(f1, f2) ∈ A2 ⊕A2 to (Sf1, Sf2). In this sense, Mz2 may be expressed as

(
S 0
0 S

)
. (1)

The techniques developed by Nordgren when trying to solve Problem 151 in [10]
suggest a particular direction to study the problem we have in mind. If B(z) = zk

does not satisfy the WSP, some closed invariant subspace M such that

M 6= [M⊖ zkM]zk (2)

could, perhaps, be described through a finite number of linear conditions. For
instance, a finite number of generators h1, ..., hr ∈ H∞ multiplied by functions
f1, ..., fr ∈ A2, which, in addition, satisfy some finite number of restrictions on
their Taylor coefficients. It seems difficult to come up with restrictions on the
Taylor coefficients involving coefficients of degree higher than k, and still generate
a non trivial closed invariant subspace of A2. However, it appears plausible that a
counterexample may be found for Mz2 looking at how the matrix operator (1) acts
on the product space.

This is the idea behind the proofs of the following preliminary results, in which
it is possible to guarantee that a closed invariant subspace M for Mz2 , that is,
M ∈ Lat(Mz2), is generated by M ⊖ z2M whenever either M is also invariant
for the shift, or decomposable as direct sum of closed subspaces in each of the two
copies of A2, say M1 ⊂ A2

1 and M2 ⊂ A2
2.

Proposition 2.1. Let M ∈ Lat(Mz), then M = [M⊖ z2M]z2 .

Proof. Since M ⊃ zM ⊃ z2M, we have the decomposition

M⊖ z2M = (M⊖ zM)⊕ (zM⊖ z2M). (3)

Since M ∈ Lat(Mz), Aleman, Richter and Sundberg’s Theorem [1] yields M =
[M⊖ zM]z, or equivalently

M = {pf : p ∈ P, f ∈ M⊖ zM},

where P denotes the space of all polynomials.

We decompose P as the span of P̃0 := {p : p(z) = q(z2), q ∈ P} and P̃1 := {p :
p(z) = zq(z2), q ∈ P}. Choosing the induced norm in each copy of A2, we have
that

M ⊂ [M⊖ zM]z2 ⊕ [zM⊖ z2M]z2 ⊂ [M⊖ z2M]z2 ,

where the last property follows from (3). The opposite inclusion ([M⊖ z2M]z2 ⊂
M) is always satisfied if M is z2-invariant, since the left-hand side is a closed
invariant subspace generated by a subset of M. �

Proposition 2.2. Let M = M1 ⊕ M2 with M1 ⊂ A2
1, M2 ⊂ A2

2. Then M =
[M⊖ z2M]z2 .

Proof. Since M1, M2 are shift invariant, it will be a direct consequence of the main
theorem in [1]:

M = M1 ⊕M2 = [M1 ⊖ zM1]z ⊕ [M2 ⊖ zM2]z.

Recall now that we are playing with the identification of A2 with the product
A2

1⊕A2
2. Notice that M1⊖zM1 generates the same space under multiplication by z
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as a subspace of A2
1 that its copy in the orthogonal decomposition of A2 above does

for z2. Since M⊖ z2M contains the direct sums M1 ⊖ zM1 and M2 ⊖ zM2, then
M is generated by M⊖ z2M. As in the previous proposition, the other inclusion
([M⊖ z2M]z2 ⊂ M) is always satisfied. �

If we call M1 = M∩A2
1 and M2 = M∩A2

2, it is necessarily true that M1 ⊥ M2,
M1 and M2 are shift invariant, and M1 ⊕M2 ⊃ M but M may be defined, for
instance, through restrictions between the M1 and M2 components.

On the other hand, it is possible to provide invariant subspaces M ∈ Lat(Mz2)
not satisfying the hypotheses of Propositions 2.1 and 2.2, but such that M =
[M⊖ z2M]z2 :

Example 2.3. Let a ∈ C\{0}, h(z) = 1 + az, and M = [h]z2 . Then M =
[M⊖ z2M]z2 since h is orthogonal to z2M and generates M.

Notice that in this case, if we denote Mi = M∩ A2
i , we have M1 = M2 = A2

but 1 ∈ A2\M, and M ∈ Lat(Mz2)\Lat(Mz). It can be shown that any space
generated by a finite collection of elements without any relations also provides
similar examples (where the norm on A2 is the one arising from k copies of subspaces
with the corresponding inherited norms).

2.3. Shimorin’s Theorem. The main contribution regarding the wandering sub-
space property in a variety of spaces was carried out by Shimorin in [17]. In
particular, he showed that ϕ(z) = z satisfies the WSP in Dα for α ∈ [0, 1]
since the operators of multiplication by z are concave, i.e., for every x ∈ Dα,
‖T 2x‖2 − 2‖Tx‖2 + ‖x‖2 ≤ 0. For α ∈ [−1, 0), the WSP follows as a consequence
of the following result:

Theorem 1 (Shimorin). Let T be a bounded operator in a Hilbert space H such
that the following hold:

(i)
⋂

n∈N
TnH = {0}

(ii) For x, y ∈ H, we have

‖x+ Ty‖2 ≤ 2(‖Tx‖2 + ‖y‖2).

Then T has the wandering subspace property in H.

Observe that Shimorin’s approach only applies to the usual norms in Dα (those
described above). In the recent paper [15], Seco has shown for each α ∈ R and
each positive integer k ≥ 6, the existence of an equivalent norm ‖ · ‖ in Dα and
M ∈ Lat(Mzk) that fails to have the wandering property with respect to the norm
‖ · ‖, that is,

M 6= [M⊖ zkM]zk respect to ‖ · ‖.

In particular, this is shown in some cases to be the usual norm for Dα: for instance
when k ≥ 10 and α < −(5k+ 700

(k−9)2 ), or when α ∈ (−16−ε,−16+ε) and k = 6, but

numerical results hint that for α < −4.2 there might be k large enough providing
counterexamples (see also [13] for related results in this direction). The results
in the next Section will establish, nevertheless, that by means of renormings it is
possible to have the WSP for any finite Blaschke product.
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3. The wandering subspace property and renormings

In this section, we show that in any Dα with α ∈ [−1, 1] (where ϕ(z) = z meets
the WSP), given any finite Blaschke B product, it is possible to renorm the space
(with an equivalent norm) such that B also has the WSP.

Before that, observe that Example 2.3 may be generalized to the case where
instead of z2 we make use of any finite Blaschke product. For a function f ∈ H2,
given any finite Blaschke product, B, it is clear from the Wold decomposition that
we can express f as

f(z) =

∞∑

k=0

Bk(z)hk(z),

where hk are functions in the model space KB := H2 ⊖ BH2, and the norm of f
may be found from those of hk. Indeed,

‖f‖20 =

∞∑

k=0

‖hk‖
2
0,

where, recall that ‖ · ‖0 corresponds to the H2-norm.
In [6], the authors find an analogous expansion for the Dα spaces:

Theorem 3.1 (Chalendar, Gallardo-Gutiérrez, Partington). Let α ∈ [−1, 1] and
B any finite Blaschke product. Then f ∈ Dα if and only if f =

∑
∞

k=0 hkB
k

(convergence in Dα norm) with hk ∈ KB and
∞∑

k=0

(k + 1)α‖hk‖
2
0 < ∞.

Remark 3.2. The previous theorem was stated in [6] for α ∈ {−1, 0, 1} and B(0) =
0, but the same scheme of proof works bearing in mind two key facts about finite
Blaschke products:

(i) Multiplication by any function in the model space H2 ⊖BH2 is a bounded
operator.

(ii) Composition with a finite Blaschke product is a bounded operator in Dα.

These are both easy to check and the only parts of the proof that generalize in
a non-obvious way. The assumption B(0) = 0 is not really necessary since the
spaces BnKB are still mutually orthogonal in H2, and hence, linearly independent
finite-dimensional spaces. Moreover, note that the representation in Theorem 3.1
is unique, i.e. the corresponding norm is indeed induced by a scalar product.

We are now in a position to state the following:

Theorem 3.3. Let α ∈ [−1, 1] and B a finite Blaschke product. Then there exists
a norm ‖ · ‖B under which B has the wandering subspace property in Dα, that is,
for any M ∈ Lat(MB) we have

[M⊖BM]B = M with respect to ‖ · ‖B .

Moreover, for B(z) = zk and |α| ∈ [0, log(2)/ log(k+ 1)], the norm ‖ · ‖B coincides
with the usual Dα norm ‖ · ‖α.

Proof. Given B a finite Blaschke product, let ‖ · ‖B denote the norm defined by
the corresponding expression arising from Theorem 3.1. Then, the multiplication
operator induced by B is unitarily equivalent to the shift on the spaceDα(KB) (that
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is, the KB-valued functions in Dα (roughly speaking, the multiplication operator
induced by B acts exactly as the shift operator Mz acts on Dα with respect to
‖ · ‖B). Hence, it satisfies property (ii) in Shimorin’s Theorem. Consequently, MB

has the WSP.
The property (ii) for the shift in such spaces holds because of the following two

properties:
ω1 ≥ 1/2,

ωn(ωn−1 + ωn+1) ≤ 2ωn−1ωn+1, n ≥ 1,

where ωn = (n+ 1)α.
Finally, assume B(z) = zk and consider the usual norm ‖ · ‖α. Let α ∈

[− log(2)
log(k+1) , 0) and notice that in this case, the proof of the second inequality above

works in the same way as for Mz with ωn−1 substituted by ωn−k and ωn+1 sub-
stituted by ωn+k. The first inequality is satisfied substituting ω1 by ωk precisely

because |α| ≤ log(2)
log(k+1) . If α ≥ 0 apply the same reasoning to 1/ωk to see that the

operator is concave. �

It seems worth mentioning that if we take B(z) = z2 in Theorem 3.3, the
range of values of α for which the result holds without renorming can actually
be improved by moving the lower bound from α ≥ − log(2)/ log(3) ≈ −0.6309 to
α ≥ log(2/3)/ log(5/3) ≈ −0.7937:

Proposition 3.4. Let α ∈ [log(2/3)/ log(5/3), 0]. Then the wandering subspace
property holds for the operator of multiplication by z2 in Dα equipped with its usual
norm ‖ · ‖α.

Proof. First note that it is possible to define a norm in Dα given by a weight ω
that makes multiplication by z2 on Dα space satisfying Shimorin conditions just by
changing the weights on the first coordinate (ω0 = ‖1‖2): Indeed, define the weight
ω by ωk = (k + 1)α for k ≥ 1 and ω0 will be determined later. Condition (i) in
Shimorin’s Theorem is trivially satisfied and condition (ii) is equivalent to meet all
of the following:

(a) ω0 ≤ 2ω2.
(b) ω1 ≤ 2ω3.
(c) (1/ωn−2 + 1/ωn+2 − 2/ωn) ≤ 0 for all n ≥ 2.

Property (b) is equivalent to 2α ≤ 22α+1, which is immediately checked since
α ≥ −1. Standard calculus techniques show the validity of (c), for n ≥ 3 and we
are left with finding ω0 such that

1

2 · 3−α − 5−α
≤ ω0 ≤ 2 · 3α.

Therefore, if we assume

1 ≤ (2 · 3−α − 5−α)(2 · 3α),

there is a valid choice of ω0 such that ω defines a norm in Dα for which the WSP
holds. The latter equation is equivalent to

α ≥
log(2/3)

log(5/3)
.

Now we know that for any z2-invariant M, the space M⊖z2M is exactly the same
under the original norm and the new norm, and so even if the norm is different,
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whether or not the WSP holds does not change. So we get the desired result under
the original norm. �

Proposition 3.5. Let k ∈ N, α ∈ [−1, 1] and M = zkDα. Then zk has the
wandering subspace property in M.

Proof. First, observe that for α > 0, the result follows since multiplying by zk in
Dα is a concave operator. Then, without loss of generality, we may assume that
α < 0.

For s ∈ N denote by ωs = (s + 1)α. The condition (ii) of Shimorin’s Theorem
becomes equivalent to

(a) ωs ≤ 2ωk+s, for all s = k, ..., 2k − 1, and
(b) (1/ωs + 1/ωs+2k − 2/ωs+k) ≤ 0 for all s ≥ k.

To see (a), notice that the minimum of (s + 1)/(k + s + 1) for s = k, ..., 2k − 1
is achieved at s = k, that such minimum is therefore bigger than 1/2 and that
α ≥ −1. In order to check (b), it suffices to see that the quantity

g(s) = (s+ 1)−α − (s+ k + 1)−α

is negative and increasing on s. Negativity is clear since the exponent −α is positive
and (s + k + 1) ≥ (s + 1). Moreover g′(s) = |α|((s + 1)−α−1 − (s + k + 1)−α−1),
which is positive since α ≥ −1. �

Remark 3.6. Proposition 3.5 may be interpreted as a property of the subspace zkDα

or as a property of the equivalent norm on Dα given by ‖f‖ := ‖Skf‖α, that is, as
a property of Dα with this particular choice of equivalent norm. In this sense, it
yields a different proof of Theorem 3.3 for the case when B is a monomial.

One could be inclined to think that the WSP for zk on A2 follows from that
on zkA2, shown in the previous proposition, based on its finite codimension as a
subspace of A2. In this regard, we stress the following remark:

Remark 3.7. Seco has shown in [15] that C22 ⊕ z6A2 fails to have the z6 WSP if
we equip C22 with the weight ωt = (t + 1)−16 for t = 0, ..., 21. Nevertheless, this
space still contains z6A2 as a finite codimension subspace.

We conclude with the following result, which provides generators for zk-invariant
subspaces:

Corollary 3.8. Let k ≥ 1, α ∈ [−1, 1], and M be a zk-invariant subspace of Dα.
Then

M = [M⊖ z2kM]zk .

Proof. Denote T := Mzk acting on Dα. Let M be a closed T -invariant subspace of
Dα. Then N := TM is a T -invariant subspace. Moreover, N ⊂ TDα and hence,
by Proposition 3.5 we have

N = [N ⊖ TN ]T .

Now we can see that

M⊖ T 2M = (M⊖ TM)⊕ (TM⊖ T 2M).

So the smallest closed T -invariant subspace containing M ⊖ T 2M contains both
M⊖N and N , and so, it is M. �
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