
This is a repository copy of VPP Self-Scheduling Strategy Using Multi-Horizon IGDT, 
Enhanced Normalized Normal Constraint, and Bi-Directional Decision-Making Approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/157514/

Version: Accepted Version

Article:

Yazdaninejad, M, Amjady, N and Dehghan, S orcid.org/0000-0001-9619-6471 (2020) VPP 
Self-Scheduling Strategy Using Multi-Horizon IGDT, Enhanced Normalized Normal 
Constraint, and Bi-Directional Decision-Making Approach. IEEE Transactions on Smart 
Grid, 11 (4). pp. 3632-3645. ISSN 1949-3053 

https://doi.org/10.1109/tsg.2019.2962968

© 2019, IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



  1 

Abstract1—This paper presents a new robust self-scheduling 
strategy for virtual power plants (VPPs) considering the uncer-
tainty sources of electricity prices, wind generations, and loads. 
Multi-horizon information-gap decision theory (MH-IGDT) as a 
non-deterministic and non-probabilistic uncertainty modeling 
framework is proposed here to specifically model the uncertainty 
sources considering their various uncertainty horizons. Since each 
uncertain parameter tends to optimize its uncertainty horizon 
competitively for a particular value of the uncertainty budget, the 
proposed MH-IGDT model is formulated as a multi-objective op-
timization problem. To solve this multi-objective problem, en-
hanced normalized normal constraint (ENNC) method is pre-
sented, which can obtain efficient uniformly-distributed Pareto 
optimal solutions. The proposed ENNC includes augmented nor-
malized normal constraint method and lexicographic optimiza-
tion technique to enhance the search performance in the objective 
space. To address the unsolved issue of being risk-averse or risk-
seeker for a VPP in the market, a bi-directional decision-making 
approach is presented. This decision maker comprises an ex-ante 
performance evaluation method and a forward-backward dy-
namic programming approach to hourly find the best Pareto so-
lution within the generated risk-averse and risk-seeker Pareto 
frontiers. Simulation results of the proposed self-scheduling strat-
egy are presented for a VPP including dispatchable/non-dispatch-
able units, storages, and loads.  

Index Terms—Bi-directional decision making, ENNC, Lexico-
graphic optimization, MH-IGDT, VPP self-scheduling strategy. 

NOMENCLATURE 

A. Functions ℱ(. ) Profit of VPP coalition ($).  𝐶𝑢(. ) Operation cost of unit 𝑢 ($). £(. )  Feasible part of solution space. 

B. Indices and Sets 𝑏 Index of contractual buses (buses through which 
VPP members are connected to the grid). 𝑗 Index of Pareto optimal solutions. 𝑘, 𝑘′ Index of states in FBDP. 𝑙 Index of loads. 𝑡, 𝑡′ Index of time of scheduling horizon. 𝑢 Index of dispatchable (𝐷)/wind (𝑊)/storage (𝑆) 
units of VPP coalition, i.e., 𝑢 ∈ {𝐷, 𝑊, 𝑆}. 𝜗 Index of uncertain LMP (𝜆)/wind generation (𝑤)/ 
load (𝑙), i.e., 𝜗 ∈ {𝜆, 𝑤, 𝑙}. 𝜁 Index of performance evaluation scenarios. 

 
M. Yazdaninejad and N. Amjady are with the Department of Electrical Engi-
neering, Semnan University, Semnan, Iran (e-mail: amjady@semnan.ac.ir). 
S. Dehghan is with the School of Electronic and Electrical Engineering, Uni-

versity of Leeds, Leeds, UK. 

ℛ𝜗  Envelope-bound region for uncertain parameter 𝜗. Ω𝐷/Ω𝑆/Ω𝑊 Set of dispatchable/storage/wind units of VPP. Ω𝑙𝑏/Ω𝑆𝑏 Set of VPP loads/storages connected to bus 𝑏. Ω𝐷𝑏/Ω𝑊𝑏 Set of VPP dispatchable/wind units connected to 
bus 𝑏. Ω𝑢𝑏  Ω𝑢𝑏 = Ω𝐷𝑏 ∪ Ω𝑊𝑏 ∪ Ω𝑆𝑏  

C. Parameters 𝐴𝑢 No-load cost of unit 𝑢 ($). 𝐵𝑢 Fuel-cost of unit 𝑢 ($/MWh). 𝑀 A sufficiently large number. 𝑃𝑙𝑡  Uncertain load 𝑙 at time 𝑡 (MW). 𝑅𝐷𝑢/𝑅𝑈𝑢 Ramp down/up rate limit of unit 𝑢 (MW/h). 𝑆𝐷𝑢𝑐/𝑆𝑈𝑢𝑐 Shutdown/startup cost of unit 𝑢 ($). 𝑆𝐷𝑢𝑟/𝑆𝑈𝑢𝑟 Shutdown/startup ramp rate limit of unit 𝑢 
(MW/h). 𝑈𝐵 Uncertainty budget. 𝜌𝑙𝑡 Fixed consumption price of load 𝑙 at time 𝑡 
($/MWh). 𝜆𝑏𝑡 LMP of bus 𝑏 at time 𝑡 ($/MWh). 𝜏𝑢𝑜𝑛/𝜏𝑢𝑜𝑓𝑓

 Minimum up/down time limit of unit 𝑢 (h). б𝑢 Self-discharging (leakage) rate of storage 𝑢. 𝜇𝑢𝑟 /𝜇𝑢𝑠  Discharging/charging efficiency of storage 𝑢. 

D. Variables 𝐸𝑢𝑡 Stored energy of storage 𝑢 at time 𝑡 (MWh). 𝐼𝑢𝑡 Binary commitment variable of unit 𝑢 at time 𝑡. 𝐼𝑢𝑡𝑟 /𝐼𝑢𝑡𝑠  Binary discharging/charging variable of storage 𝑢 
at time 𝑡. 𝑃𝑏𝑡𝑁  Injected power to the grid through bus 𝑏 at time 𝑡 
(negative/positive values indicate purchased/sold 
powers from/to the grid) (MW). 𝑃𝑢𝑡  Produced power of unit 𝑢 at time 𝑡 (MW). 𝑃𝑢𝑡𝑟 /𝑃𝑢𝑡𝑠  Discharging/charging power of unit 𝑢 at time 𝑡 (MW). 𝑥𝑢𝑡/𝑦𝑢𝑡 Binary startup/shutdown variable of unit 𝑢 at time 𝑡. 𝑧𝑏𝑡  Auxiliary binary modeling variable to determine 
excess/deficit injected power of bus 𝑏 to the grid at 
time 𝑡. 𝛼𝜗 Uncertainty horizon of uncertain parameter 𝜗. 

E. Vectors and Matrices 
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  2 𝛯 Vector of decision variables. 𝛩 Vector of uncertain parameters. 

In this paper, superscripts  ,̅  ̌,  ̂, 𝜁, and 𝑗 indicate forecast, risk-
averse, risk-seeker, performance evaluation scenario, and Pa-
reto solution associated variables, respectively. The other pa-
rameters and variables are defined in the paper. 

I. INTRODUCTION 

A. Background and Motivation 

NCREASING penetration of distributed energy resources 

(DERs), diminishing subsidy schemes, and increasing en-

ergy prices lead to the emergence of virtual power plants 

(VPPs) in electricity markets. VPPs, as a flexible portray of 

DERs, can facilitate wholesale market participation for the 

VPP coalition members and enhance competition in the market 

[1]. Having a suitable self-scheduling strategy to maximize the 

profit of selling aggregated generation is an essential factor for 

the economic stability of VPPs. However, this self-scheduling 

strategy encounters various uncertainty sources (such as the un-

certainty of the market prices as well as the uncertainties of 

VPP renewable generations and load demands) which can jeop-

ardize the economic stability of VPP and finally threaten the 

existence essence of the coalition. Thus, some research works 

have recently studied the VPP bidding strategy problem, which 

are briefly reviewed in the following. 

In [2], a deterministic bidding strategy for VPP market par-
ticipation has been proposed. However, this method ignores all 
uncertainty sources of the problem. Operation scheduling prob-
lem of a risk-averse VPP has been modeled by two-stage sto-
chastic programming in [3]. In [4] and [5], the bidding strategy 
of VPP in joint energy and reserve markets is constructed by 
scenario approach and two-stage stochastic programming, re-
spectively. Conditional value-at-risk is also adopted in [5] as a 
risk measure. The uncertainty of day-ahead (DA) market price 
and wind generation is modeled through point estimate method, 
and a probabilistic price-based unit commitment is used to ob-
tain the VPP bidding strategy in [6]. A stochastic bi-level opti-
mization model for participating VPP in DA and balancing 
markets has been proposed in [7]. However, scenario-based ap-
proaches may suffer from two disadvantages: 1) Requiring 
probability distribution functions (PDF) of uncertain parame-
ters which may not be easy-to-obtain. 2) Requiring an ade-
quately large number of scenarios to model behavior of uncer-
tain parameters which can increase the problem size and com-
putation burden [8].  

Robust optimization has been used to construct the bidding 
strategy of a cluster of small wind power plants, energy storage 
facilities, and price-responsive demands in [9]. In [10], the un-
certainty of DA market price and customers’ demand has been 
addressed by robust optimization approach in the VPP self-
scheduling problem through supposing a linear relation be-

tween the market prices and the customers’ demand. However, 

robust optimization cannot optimize opportunistic self-sched-
uling solutions using favorable fluctuations of uncertainties, 
since it essentially looks for the worst-case realization of the 
uncertain parameters to provide the highest robustness. 

B. Contributions and Assumptions 

In this paper, VPP self-scheduling problem considering the 
uncertainty sources of electricity price as well as VPP wind 
generations and loads is addressed through a multi-horizon in-
formation-gap decision theory (MH-IGDT) approach. Instead 
of making assumption on multifold uncertain parameters and 
maximizing the VPP total profit, the proposed MH-IGDT 
model optimizes uncertainty horizons and provides short-term 
operation schedules of the members so that a minimum prede-
fined admissible profit is achieved. From a VPP decision-
maker point of view, defining a target value on the total profit 
is more sensible than holding assumption on PDF or introduc-
ing confidence interval on each uncertain parameter. However, 
previous applications of information-gap decision theory 
(IGDT) for uncertainty modeling are uni-directional frame-
works. Some of these frameworks consider solely the robust 
side, e.g., [11], and some other ones can only select either a 
risk-averse or a risk-seeker strategy for all hours of the self-
scheduling horizon, e.g., [12]. In addition, the uni-directional 
IGDT frameworks left this problem unsolved for a generation 
company to act as either risk-averse or risk-seeker in the market 
considering benefits/losses obtained from desirable/undesira-
ble variations of multiple uncertain parameters. 

 Considering the aforementioned discussions, the main con-
tributions of this research work can be summarized as: 

1) A new MH-IGDT model for VPP self-scheduling strategy 
is proposed which neither requires any PDF for uncertain pa-
rameters (as in scenario-based programming methods) nor as-
sumes any confidence interval for uncertain parameters (as in 
robust optimization methods). The proposed MH-IGDT can 
specifically model and optimize different optimistic/robust un-
certainty horizons of multiple uncertain parameters affecting 
the self-scheduling strategy. It optimally schedules the short-
term operation of VPP members both in risk-seeker and risk-
averse manners. Accordingly, the risk-averse and risk-seeker 
Pareto frontiers are provided. 

2) For solving the MH-IGDT multi-objective optimization 
problem, an efficient multi-objective mathematical program-
ming (MOMP) method, i.e., ENNC, is proposed. The proposed 
ENNC is composed of lexicographic optimization and an aug-
mented version of normalized normal constraint (NNC) 
method, called hereafter ANNC. Using ANNC, efficient Pareto 
optimal solutions with uniform distribution in the objective 
space are generated. Lexicographic optimization approach op-
timizes ranges of objective functions as well as anchor points 
in the proposed ENNC to enhance the search efficiency in the 
objective space.  

3) A bi-directional decision-making approach is proposed to 
find hourly the most preferred Pareto optimal solution for the 
MH-IGDT problem over the aggregated risk-averse and risk-
seeker Pareto sets generated by the ENNC. Thus, unlike the 
previous uni-directional IGDT-based approaches, the proposed 
bi-directional decision maker assesses the risk-based behaviors 
of the VPP in the market and suggests to act as either risk-
averse or risk-seeker participant over the scheduling horizon. 
The proposed decision maker, comprising an ex-ante perfor-
mance evaluation and forward-backward dynamic program-
ming (FBDP), also optimizes the opportunistic/robustness level 
of the MH-IGDT model in terms of the uncertainty budget. 

I 
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The organization of this paper is as follows. In Section II, 
the proposed MH-IGDT model is introduced. The proposed 
ENNC method, as a proficient MOMP approach, is presented 
in Section III. Section IV details the proposed bi-directional de-
cision-making approach. The results obtained from this VPP 
self-scheduling strategy (comprising MH-IGDT + ENNC + bi-
directional decision-making approach) are presented in Section 
V and compared with the results of other alternatives. Section 
VI provides the main conclusions. 

II. PROPOSED VPP SELF-SCHEDULING STRATEGY MODEL 

In this section, the deterministic self-scheduling strategy of 
VPP for DA market is first introduced briefly. Using it, the pro-
posed MH-IGDT model considering the uncertainty sources is 
presented. 

A. Deterministic VPP Self-Scheduling Strategy 

    Deterministic self-scheduling strategy for a VPP including 
dispatchable/non-dispatchable DERs, storages, and loads is as:  𝑀𝑎𝑥  ℱ(�̅�, 𝛯) = ∑ ℱ𝑡 (�̅�, 𝛯)𝑡 =       ∑ ∑ [�̅�𝑏𝑡 . 𝑃𝑏𝑡𝑁 + ∑ 𝜌𝑙𝑡 . �̅�𝑙𝑡𝑙 ∈ Ω𝑙𝑏 − ∑ 𝐶𝑢(𝑃𝑢𝑡)𝑢 ∈ Ω𝑢𝑏  ]𝑏𝑡  (1a) 𝑃𝑏𝑡𝑁 = ∑ 𝑃𝑢𝑡𝑢 ∈ Ω𝐷𝑏 + ∑ (𝑃𝑢𝑡𝑟 − 𝑃𝑢𝑡𝑠 )𝑢 ∈ Ω𝑆𝑏 +            ∑ �̅�𝑢𝑡𝑢 ∈ Ω𝑊𝑏  − ∑ �̅�𝑙𝑡𝑙 ∈ Ω𝑙𝑏                          ∀𝑏, ∀𝑡 

(1b) 
 𝐶𝑢(𝑃𝑢𝑡 ) = 𝐴𝑢 . 𝐼𝑢𝑡 + 𝐵𝑢 . 𝑃𝑢𝑡 + 𝑆𝑈𝑢𝑐 . 𝑥𝑢𝑡 + 𝑆𝐷𝑢𝑐 . 𝑦𝑢𝑡 

 ∀𝑢, ∀𝑡 (1c) 𝐼𝑢𝑡 . 𝑃𝑢𝑚𝑖𝑛 ≤ 𝑃𝑢𝑡 ≤ 𝑃𝑢𝑚𝑎𝑥 . 𝐼𝑢𝑡 ∀𝑢 ∈ Ω𝐷, ∀𝑡 (1d) 𝑃𝑢𝑡 − 𝑃𝑢(𝑡−1) ≤ 𝑅𝑈𝑢. 𝐼𝑢(𝑡−1) + 𝑆𝑈𝑢𝑟 . 𝑥𝑢𝑡 ∀𝑢 ∈ Ω𝐷, ∀𝑡 (1e) 𝑃𝑢(𝑡−1) − 𝑃𝑢𝑡 ≤ 𝑅𝐷𝑢. 𝐼𝑢𝑡 + 𝑆𝐷𝑢𝑟 . 𝑦𝑢𝑡 ∀𝑢 ∈ Ω𝐷, ∀𝑡 (1f) ∑ 𝑥𝑢𝑡′𝑡𝑡′=𝑡−𝜏𝑢𝑜𝑛+1 ≤ 𝐼𝑢𝑡  ∀𝑢 ∈ Ω𝐷, ∀𝑡 (1g) ∑ 𝑦𝑢𝑡′𝑡𝑡′=𝑡−𝜏𝑢𝑜𝑓𝑓+1 ≤ 1 − 𝐼𝑢𝑡  ∀𝑢 ∈ Ω𝐷, ∀𝑡 (1h) 𝐼𝑢(𝑡−1) − 𝐼𝑢𝑡 + 𝑥𝑢𝑡 − 𝑦𝑢𝑡 = 0 ∀𝑢 ∈ Ω𝐷, ∀𝑡 (1i) 𝐸𝑢𝑡 = (1 − б𝑢). 𝐸𝑢(𝑡−1) − 𝑃𝑢𝑡𝑟 𝜇𝑢𝑟⁄ + 𝑃𝑢𝑡𝑠 . 𝜇𝑢𝑠  

 ∀𝑢 ∈ Ω𝑆, ∀𝑡 (1j) 𝐸𝑢𝑚𝑖𝑛 ≤ 𝐸𝑢𝑡 ≤ 𝐸𝑢𝑚𝑎𝑥 ∀𝑢 ∈ Ω𝑆, ∀𝑡 (1k) 𝐸𝑢𝑡|𝑡=𝑙𝑎𝑠𝑡 ℎ𝑜𝑢𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 = 𝐸𝑢0  ∀𝑢 ∈ Ω𝑆 (1l) 0 ≤ 𝑃𝑢𝑡𝑟 ≤ 𝐼𝑢𝑡𝑟 . 𝑃𝑢𝑟,𝑚𝑎𝑥
 ∀𝑢 ∈ Ω𝑆, ∀𝑡 (1m) 0 ≤ 𝑃𝑢𝑡𝑠 ≤ 𝐼𝑢𝑡𝑠 . 𝑃𝑢𝑠,𝑚𝑎𝑥
 ∀𝑢 ∈ Ω𝑆, ∀𝑡 (1n) 𝐼𝑢𝑡𝑟 + 𝐼𝑢𝑡𝑠 ≤ 1 ∀𝑢 ∈ Ω𝑆, ∀𝑡 (1o) 

The objective function (1a) maximizes the total profit of 
VPP coalition, including income of VPP power injection to the 
contractual buses plus income of selling energy to VPP con-
sumers minus operating costs of VPP units, over the scheduling 
period. VPP injected power to the grid through each contractual 
bus is defined in (1b). The operating costs of VPP units are 
given in (1c). For dispatchable units, all terms of (1c) should be 
considered, while for wind and storage units (1c) is changed to 𝐶𝑢(𝑃𝑢𝑡 ) = 𝐵𝑢 . 𝑃𝑢𝑡 , ∀𝑢 ∈ Ω𝑊, ∀𝑡 and 𝐶𝑢(𝑃𝑢𝑡) = 𝐵𝑢 . (𝑃𝑢𝑡𝑟 −𝑃𝑢𝑡𝑠 ), ∀𝑢 ∈ Ω𝑆, ∀𝑡, respectively. The generation limits of dis-
patchable units are presented in (1d). Ramping constraints and 
minimum up/down time limits of dispatchable units are given 
in (1e)-(1f) and (1g)-(1i), respectively. Although some small-
scale dispatchable units have high ramp rates and low 
MUT/MDT values, the constraints (1e)-(1i) are integrated into 
the proposed self-scheduling model to keep the comprehen-
siveness of the model so that it can be applied to VPPs with 

various coalition units. Dynamic energy balance constraint, en-
ergy limits, and end-coupling constraint of storage units are 
presented in (1j), (1k), and (1l), respectively. The discharging 
and charging rates are bounded in (1m) and (1n). Simultaneous 
discharging and charging of storage units are prohibited in (1o).  

For the sake of brevity, the deterministic VPP self-schedul-
ing strategy (1a)–(1o) can be recast as follows: ℱ̅ = 𝑀𝑎𝑥𝛯 ∈ £(�̅�) ℱ(�̅�, 𝛯) (2) 

where the feasible solution space of the deterministic model, 

i.e., £(�̅�), is a part of solution space bounded by (1b)–(1o). The 
solution of this model is just optimal for the forecasted values 

of the uncertain parameters (i.e., �̅�), while the uncertain param-
eters may deviate from their forecasts. To cope with the uncer-
tain parameters, the proposed MH-IGDT model is introduced. 
Since the deterministic model assumes that the day-ahead fore-
cast values of uncertain parameters would realize the next day, 
there is no need to consider balancing prices to compensate for 
excess/deficit power injections in this model.  

B. Proposed MH-IGDT Model 

IGDT is an interval-based optimization approach which 
looks for optimizing either robustness against incurring unex-
pected loss or opportunity of gaining unexpected profit [13]. 
Thus, based on risk management strategy, the IGDT-based de-
cision-making model can be formulated as either risk-averse or 
risk-seeker framework. The risk-averse/seeker VPP imple-
ments robust/opportunistic function through which the maxi-
mum/minimum unfavorable/favorable uncertainty horizons are 
determined. If the deviation of each uncertain parameter from 
its forecast falls into its corresponding robust/opportunistic un-
certainty horizon, the profit expectations of risk-averse/seeker 
VPP are guaranteed. Details of single-horizon IGDT method 
can be found in [13]. Here, the proposed multi-horizon IGDT 
model is presented. 

The forecast-type uncertainties 𝛩 are mathematically formu-
lated through the envelope-bound model in the proposed MH-
IGDT framework as follows: ℛ𝜆 = {𝜆𝑏𝑡: |𝜆𝑏𝑡 − �̅�𝑏𝑡| ≤ 𝛼𝜆 . �̅�𝑏𝑡} ∀𝑏, ∀𝑡 (3a) ℛ𝑤 = {𝑃𝑢𝑡: |𝑃𝑢𝑡 − �̅�𝑢𝑡| ≤ 𝛼𝑤 . �̅�𝑢𝑡} ∀𝑢 ∈ Ω𝑊, ∀𝑡 (3b) ℛ𝑙 = {𝑃𝑙𝑡: |𝑃𝑙𝑡 − �̅�𝑙𝑡| ≤ 𝛼𝑙 . �̅�𝑙𝑡} ∀𝑙, ∀𝑡 (3c) 

Considering deviations of uncertain parameters from their 
forecasts, i.e., Δ𝛩, MH-IGDT model can be constructed from 
the deterministic counterpart as follows:  ℱ(�̅� + Δ𝛩, 𝛯) =  ∑ ∑ [(�̅�𝑏𝑡 + Δ𝜆𝑏𝑡). 𝑃𝑏𝑡𝑁 + ∑ 𝜌𝑙𝑡 . (�̅�𝑙𝑡𝑙 ∈ Ω𝑙𝑏 + Δ𝑃𝑙𝑡) −𝑏𝑡∑ 𝐶𝑢(𝑃𝑢𝑡)𝑢 ∈ {Ω𝐷𝑏  ∪ Ω𝑆𝑏} − ∑ 𝐶𝑢(�̅�𝑢𝑡 + Δ𝑃𝑢𝑡 )𝑢 ∈ Ω𝑊𝑏 ]  (4) 

The risk-averse self-scheduling model of VPP is formulated 
as the following bi-level max-min optimization framework: 𝑀𝑎𝑥𝛯 ∈ {£(�̅�+Δ𝛩) ∪ (5c)}  (�̌�𝜆 , �̌�𝑤 , �̌�𝑙) (5a) 

where £(�̅� + Δ𝛩) = {(1b) − (1o)}|�̅�+Δ𝛩  (5b) 𝑀𝑖𝑛Δ𝛩    ℱ(�̅� + Δ𝛩, 𝛯) ≥ (1 − 𝑈𝐵). ℱ̅ (5c) 

subject to:  −�̌�𝜆 . �̅�𝑏𝑡 ≤ Δ𝜆𝑏𝑡 ≤ �̌�𝜆 . �̅�𝑏𝑡  ∀𝑏, ∀𝑡 (5d) −�̌�𝑤 . �̅�𝑢𝑡 ≤ Δ𝑃𝑢𝑡 ≤ �̌�𝑤 . �̅�𝑢𝑡  ∀𝑢 ∈ Ω𝑊, ∀𝑡 (5e) −�̌�𝑙 . �̅�𝑙𝑡 ≤ Δ𝑃𝑙𝑡 ≤ �̌�𝑙 . �̅�𝑙𝑡  ∀𝑙, ∀𝑡 (5f) 
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Similarly, the risk-seeker self-scheduling model of VPP is 
formulated as a bi-level min-max optimization framework as: 𝑀𝑖𝑛𝛯 ∈ {£(�̅�+Δ𝛩) ∪ (6c)}  (�̂�𝜆 , �̂�𝑤 , �̂�𝑙)  (6a) 

where 
(5b) (6b) 𝑀𝑎𝑥Δ𝛩    ℱ(�̅� + Δ𝛩, 𝛯) ≥ (1 + 𝑈𝐵). ℱ̅ (6c) 

subject to:  −�̂�𝜆 . �̅�𝑏𝑡 ≤ Δ𝜆𝑏𝑡 ≤ �̂�𝜆 . �̅�𝑏𝑡  ∀𝑏, ∀𝑡 (6d) −�̂�𝑤 . �̅�𝑢𝑡 ≤ Δ𝑃𝑢𝑡 ≤ �̂�𝑤 . �̅�𝑢𝑡  ∀𝑢 ∈ Ω𝑊, ∀𝑡 (6e) −�̂�𝑙 . �̅�𝑙𝑡 ≤ Δ𝑃𝑙𝑡 ≤ �̂�𝑙 . �̅�𝑙𝑡  ∀𝑙, ∀𝑡 (6f) 

In the bi-level max-min/min-max model (5a)-(5f)/(6a)-(6f), 
the objective of the upper level (5a)/(6a) is to find the maxi-
mum/minimum unfavorable/favorable horizons of uncertain-
ties such that the lower-level objective (5c)/(6c) is satisfied. 
The control parameter of uncertainty budget (𝑈𝐵) [14] adjusts 
the risk averting/seeking level of the risk-averse/seeker deci-

sion maker. In (5c) and (6c), ℱ̅ is obtained from (2). Details of 
(5) and (6) can be found in Appendix A. 

The upper-level of the risk-averse/seeker models is just a 
function of 𝛯 set. The decision variables of the upper-level 
problem are considered as constant parameters in the lower-
level one. Consequently, the lower-level of the risk-
averse/seeker models is optimized over Δ𝛩 set. The lower-level 
problems (5c)/(6c) are linear optimization problems where the 
minimum/maximum of the profit ℱ(�̅� + Δ𝛩, 𝛯) is obtained on 
either lower or upper bound of Δ𝛩 introduced in (5d)-(5f)/(6d)-
(6f). The minimum profit in (5c) is obtained when the loca-
tional marginal price (LMP) takes the lowest/highest value dur-
ing selling/purchasing power to/from the grid as well as the 
lowest wind generation value and the highest load value occur. 
Thus, considering (5d)-(5f), constraints (7a)-(7d) derive the 
minimum profit for the risk-averse model: 𝑃𝑏𝑡𝑁 . (Δ𝜆𝑏𝑡 + �̌�𝜆 . �̅�𝑏𝑡) ≤ 0 ∀𝑏, ∀𝑡 (7a) 𝑃𝑏𝑡𝑁 . (Δ𝜆𝑏𝑡 − �̌�𝜆 . �̅�𝑏𝑡) ≤ 0 ∀𝑏, ∀𝑡 (7b) 𝛥𝑃𝑢𝑡 = −�̌�𝑤 . �̅�𝑢𝑡  ∀𝑢 ∈ Ω𝑊, ∀𝑡 (7c) 𝛥𝑃𝑙𝑡 = +�̌�𝑙 . �̅�𝑙𝑡  ∀𝑙, ∀𝑡 (7d) 

As a result, the equivalent single-level risk-averse MH-
IGDT model can be formulated as: 𝑀𝑎𝑥𝛯 ∈ {£(�̅�+Δ𝛩)}  (�̌�𝜆 , �̌�𝑤 , �̌�𝑙) 

(8a) 
subject to: ℱ(�̅� + Δ𝛩, 𝛯) ≥ (1 − 𝑈𝐵). ℱ̅  (8b) 
(5b), (5d), (7a)-(7d) (8c) 

Similarly, the maximum profit in (6c) is obtained when the 
LMP takes the highest/lowest value during selling/purchasing 
power to/from the grid as well as the highest wind generation 
value and the lowest load value occur. Thus, considering (6d)-
(6f), constraints (9a)-(9d) derive the maximum profit for the 
risk-seeker model:  𝑃𝑏𝑡𝑁 . (Δ𝜆𝑏𝑡 + �̂�𝜆 . �̅�𝑏𝑡) ≥ 0 ∀𝑏, ∀𝑡 (9a) 𝑃𝑏𝑡𝑁 . (Δ𝜆𝑏𝑡 − �̂�𝜆 . �̅�𝑏𝑡) ≥ 0 ∀𝑏, ∀𝑡 (9b) 𝛥𝑃𝑢𝑡 = +�̂�𝑤 . �̅�𝑢𝑡  ∀𝑢 ∈ Ω𝑊, ∀𝑡 (9c) 𝛥𝑃𝑙𝑡 = −�̂�𝑙 . �̅�𝑑𝑡  ∀𝑙, ∀𝑡 (9d) 

As a result, the equivalent single-level risk-seeker MH-
IGDT model can be formulated as: 𝑀𝑖𝑛𝛯 ∈ {£(�̅�+Δ𝛩)}  (�̂�𝜆 , �̂�𝑤 , �̂�𝑙) 

(10a) 
subject to: 

ℱ(�̅� + Δ𝛩, 𝛯) ≥ (1 + 𝑈𝐵). ℱ̅  (10b) 
(6b), (6d), (9a)-(9d) (10c) 

   The nonlinearity of the risk-averse/seeker MH-IGDT sched-
uling models (8)/(10) arises from the following bilinear terms: 

- Δ𝜆𝑏𝑡 . 𝑃𝑏𝑡𝑁  in (8b)/(10b), 

- Δ𝜆𝑏𝑡 . 𝑃𝑏𝑡𝑁  in (8c)/(10c) due to constraints (7a)-(7b)/(9a)-
(9b). 

- 𝑃𝑏𝑡𝑁 . �̌�𝜆/𝑃𝑏𝑡𝑁 . �̂�𝜆 in (8c)/(10c) due to constraints (7a)-
(7b)/(9a)-(9b). 

Thus, the risk-averse/seeker MH-IGDT self-scheduling models 
do not include highly nonlinear or highly non-convex terms 
(such as trigonometric functions [15]). Therefore, it is expected 
that the commercially available non-linear solvers can solve the 
single-objective problem of each Pareto solution up to global 
optimality. However, the mathematical proof of this global op-
timality is out of the scope of this paper.  

III. PROPOSED MOMP METHOD  

The proposed ENNC is composed of ANNC and lexico-
graphic optimization, which are introduced in the following.  

NNC is a well-organized MOMP method that provides uni-
formly distributed Pareto optimal solutions for a multi-objec-
tive optimization problem by reducing the feasible objective 
space systematically [16]. Despite the NNC capability to cover 
various parts of the objective space, it suffers from generating 
inefficient or dominated solutions. To remedy this problem, 
ANNC has been presented in [17], which augments the Pareto 
solution production mechanism of NNC using slack variables. 
ANNC can essentially generate solely non-dominated or effi-
cient Pareto solutions. At the same time, ANNC saves the ad-
vantages of NNC to search objective space systematically and 
to generate distributed Pareto solutions uniformly. Details of 
ANNC can be found in [17]. 

The second component of the proposed ENNC is lexico-
graphic optimization [18]. In [19], lexicographic optimization 
has been used to successively optimize the objective functions 
of a multi-objective problem. In [20], the range of objective 
functions in an augmented ε-constraint method has been opti-
mized by lexicographic optimization. However, lexicographic 
optimization has been used in our proposed MOMP approach 
to 1) optimize the payoff matrixes of risk-averse/seeker MH-
IGDT models with corresponding lexicographic orders, and 2) 
optimize the risk-averse/seeker anchor points of the ENNC 
method, which leads to improving the ENNC search efficiency 
in the objective space. The performance of the lexicographic 
optimization to construct the payoff matrix of the risk-averse 
MH-IGDT problem is as follows. 

In order to obtain the first row of the risk-averse payoff ma-
trix, the uncertainty horizons are sorted as lexicographic order {�̌�𝜆 , �̌�𝑤 , �̌�𝑙}: 

Step 1)  �̌�𝜆∗ = 𝑀𝑎𝑥𝛯 ∈ {£(�̅�+Δ𝛩)}∩(8b)∩(8c) �̌�𝜆 (11a) 

Step 2) 
�̌�𝑤∗ = 𝑀𝑎𝑥𝛯 ∈ {{£(�̅�+Δ𝛩)}∩(8b)∩(8c)}|�̌�𝜆=�̌�𝜆∗  �̌�𝑤 

(11b) 

Step 3) 
�̌�𝑙∗ = 𝑀𝑎𝑥𝛯 ∈ {{£(�̅�+Δ𝛩)}∩(8b)∩(8c)}| �̌�𝜆=�̌�𝜆∗�̌�𝑤=�̌�𝑤∗

 �̌�𝑙 
(11c) 

As (11) implies, Step 1 gives the diagonal element while 
Steps 2 and 3 form off-diagonal elements of the first row of this 
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payoff matrix. The second and third rows of the risk-averse 
payoff matrix are obtained using the three-step procedure pre-
sented in (11) with lexicographic orders {�̌�𝑤 , �̌�𝑙 , �̌�𝜆} and {�̌�𝑙 , �̌�𝜆 , �̌�𝑤}, respectively. While the payoff matrix in NNC and 
ANNC methods is constructed by just substituting the single-
objective optimization solution of an objective function in the 
other ones [18], the risk-averse payoff matrix in (11) is con-
structed by individually optimizing each uncertainty horizon 
considering the results obtained for the previous ones. These 
optimized ranges of objective functions enhance search effi-
ciency of the proposed ENNC in the objective space.  

To construct the optimized payoff matrix for the risk-seeker 
MH-IGDT problem, the same procedure is followed except for 
(11) which is changed as (12):  

Step 1) �̂�𝜆∗ = 𝑀𝑖𝑛𝛯 ∈ {£(�̅�+Δ𝛩)}∩(10b)∩(10c) �̂�𝜆 (12a) 

Step 2) 
�̂�𝑤∗ = 𝑀𝑖𝑛𝛯 ∈ {{£(�̅�+Δ𝛩)}∩(10b)∩(10c)}|�̂�𝜆=�̂�𝜆∗  �̂�𝑤 

(12b) 

Step 3) 
�̂�𝑙∗ = 𝑀𝑖𝑛𝛯 ∈ {{£(�̅�+Δ𝛩)}∩(10b)∩(10c)}| �̂�𝜆=�̂�𝜆∗�̂�𝑤=�̂�𝑤∗

 �̂�𝑙 
(12c) 

In addition to optimizing the payoff matrix, using the pro-
posed lexicographic orders and lexicographic optimizations, 
the anchor points of the ANNC [17] are also optimized within 
the proposed ENNC. In other words, each anchor point coordi-
nate in the objective space (which is one objective function in 
the MH-IGDT problem) is successively optimized considering 
the results obtained for the previous coordinates. Since the an-
chor points are the vertices of the utopia hyperplane in the ob-
jective space, this feature provides a more effective utopia hy-
perplane for the ENNC to generate the Pareto frontier. How-
ever, only one coordinate is optimized for each anchor point in 
the ANNC.   

IV.  BI-DIRECTIONAL DECISION-MAKING FRAMEWORK 

The proposed bi-directional decision-making approach: a) 
selects the most profitable Pareto solution within the risk-
averse/seeker Pareto sets considering various realizations of the 
uncertain parameters, b) fine-tunes 𝑈𝐵 setting for the risk-
averse/seeker MH-IGDT models, c) addresses the unsolved 
problem of acting as risk-averse or risk-seeker VPP in the mar-
ket. The proposed decision maker includes an ex-ante perfor-
mance evaluation method and an FBDP approach. 

A. Ex-ante Performance Evaluation Method 

The proposed ex-ante performance evaluation method as-
sesses risk-averse/seeker Pareto solutions provided by the pro-
posed ENNC using various realizations of the uncertain param-
eters. The performance of this method, which acts before the 
actual realization of the uncertain parameters, is as follows: 
Step 1) A sufficient number of scenarios are generated by the 
ARMA-based scenario generation method of [21]. Each sce-
nario includes one realization of 𝛩 over the scheduling period. 
To implement a fair comparison, the same performance evalu-
ation scenarios (in-sample scenarios) are used for all Pareto so-
lutions.  
Step 2) Initialize the Pareto solution counter 𝑗 = 1. Also, set 𝑈𝐵 value. 
Step 3) Initialize scenario counter 𝜁 = 1. 
Step 4) Set all uncertain parameters of 𝛩 based on the realized 

values in scenario 𝜁. 
Step 5) All decision variables 𝛯 are partitioned to scenario-in-

dependent variables 𝛯𝑗 = {𝐼𝑢𝑡𝑗 , 𝑥𝑢𝑡𝑗 , 𝑦𝑢𝑡𝑗 }, ∀𝑢 ∈ Ω𝐷,∀𝑗,∀𝑡 and 

scenario-dependent variables 𝛯𝑗𝜁 = {𝑃𝑢𝑡𝑗𝜁 , ∀𝑢 ∈ 𝛺𝐷 ,(𝐼𝑢𝑡𝑟,𝑗𝜁 , 𝐼𝑢𝑡𝑠,𝑗𝜁 , 𝑃𝑢𝑡𝑟,𝑗𝜁 , 𝑃𝑢𝑡𝑠,𝑗𝜁), ∀𝑢 ∈ 𝛺𝑆}, ∀𝑗,∀𝜁,∀𝑡. The variables 𝛯𝑗 

are fixed based on the results of Pareto solution 𝑗. However, 𝛯𝑗𝜁 variables are separately determined for each scenario 𝜁 of 
Pareto solution 𝑗, since these decision variables can be easily 
changed in the real-time operation. In this way, the perfor-
mance of each Pareto optimal solution 𝑗 encountering various 
realizations of the uncertain parameters can be evaluated. 
Step 6) For each scenario 𝜁, the following optimization prob-

lem is solved to determine its ℱ𝑗𝜁: 𝑀𝑎𝑥  ℱ𝑗𝜁(𝛩𝜁 , 𝛯) = ∑ ℱ𝑡𝑗𝜁(𝛩𝜁 , 𝛯)𝑡 =∑ ∑ [𝜆𝑏𝑡𝜁 . 𝑃𝑏𝑡𝑁,𝑗 + ∑ 𝜌𝑙𝑡 . 𝑃𝑙𝑡𝜁𝑙 ∈ Ω𝑙𝑏 − ∑ 𝐶𝑢(𝑃𝑢𝑡𝑗𝜁)𝑢 ∈ Ω𝑢𝑏  +𝑏𝑡𝜆𝑏𝑡𝜁,+. ∆𝑃𝑏𝑡𝑁,𝑗𝜁,+ − 𝜆𝑏𝑡𝜁,−. ∆𝑃𝑏𝑡𝑁,𝑗𝜁,−]                               ∀𝜁,∀𝑗 (13a) 
 𝑃𝑏𝑡𝑁,𝑗𝜁 = ∑ 𝑃𝑢𝑡𝑗𝜁𝑢 ∈ Ω𝐷𝑏 + ∑ (𝑃𝑢𝑡𝑟,𝑗𝜁 − 𝑃𝑢𝑡𝑠,𝑗𝜁)𝑢 ∈ Ω𝑆𝑏 +               ∑ 𝑃𝑢𝑡𝜁𝑢 ∈ Ω𝑊𝑏 − ∑ 𝑃𝑙𝑡𝜁𝑙 ∈ Ω𝑙𝑏               ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (13b) 
 𝐶𝑢(𝑃𝑢𝑡𝑗𝜁) = 𝐴𝑢 . 𝐼𝑢𝑡𝑗 + 𝐵𝑢. 𝑃𝑢𝑡𝑗𝜁 + 𝑆𝑈𝑢𝑐 . 𝑥𝑢𝑡𝑗 + 𝑆𝐷𝑢𝑐 . 𝑦𝑢𝑡𝑗

  

 ∀𝑢,∀𝑡,∀𝜁,∀𝑗 (13c) 𝐼𝑢𝑡𝑗 . 𝑃𝑢𝑚𝑖𝑛 ≤ 𝑃𝑢𝑡𝑗𝜁 ≤ 𝑃𝑢𝑚𝑎𝑥 . 𝐼𝑢𝑡𝑗
 ∀𝑢 ∈ Ω𝐷,∀𝑡,∀𝜁,∀𝑗 (13d) 𝑃𝑢𝑡𝑗𝜁 − 𝑃𝑢(𝑡−1)𝑗𝜁 ≤ 𝑅𝑈𝑢 . 𝐼𝑢(𝑡−1)𝑗 + 𝑆𝑈𝑢𝑟 . 𝑥𝑢𝑡𝑗

  

 ∀𝑢 ∈ Ω𝐷,∀𝑡,∀𝜁,∀𝑗 (13e) 𝑃𝑢(𝑡−1)𝑗𝜁 − 𝑃𝑢𝑡𝑗𝜁 ≤ 𝑅𝐷𝑢. 𝐼𝑢𝑡𝑗 + 𝑆𝐷𝑢𝑟 . 𝑦𝑢𝑡𝑗
  

 ∀𝑢 ∈ Ω𝐷,∀𝑡,∀𝜁,∀𝑗 (13f) ∑ 𝑥𝑢𝑡′𝑗𝑡𝑡′=𝑡−𝜏𝑢𝑜𝑛+1 ≤ 𝐼𝑢𝑡𝑗
  ∀𝑢 ∈ Ω𝐷,∀𝑡,∀𝑗 (13g) ∑ 𝑦𝑢𝑡′𝑗𝑡𝑡′=𝑡−𝜏𝑢𝑜𝑓𝑓+1 ≤ 1 − 𝐼𝑢𝑡𝑗

  ∀𝑢 ∈ Ω𝐷,∀𝑡,∀𝑗 (13h) 𝐼𝑢(𝑡−1)𝑗 − 𝐼𝑢𝑡𝑗 + 𝑥𝑢𝑡𝑗 − 𝑦𝑢𝑡𝑗 = 0 ∀𝑢 ∈ Ω𝐷,∀𝑡,∀𝑗 (13i) 𝐸𝑢𝑡𝑗𝜁 = (1 − б𝑢). 𝐸𝑢(𝑡−1)𝑗𝜁 − 𝑃𝑢𝑡𝑟,𝑗𝜁 𝜇𝑢𝑟⁄ + 𝑃𝑢𝑡𝑠,𝑗𝜁 . 𝜇𝑢𝑠   

 ∀𝑢 ∈ Ω𝑆,∀𝑡,∀𝜁,∀𝑗 (13j) 𝐸𝑢𝑚𝑖𝑛 ≤ 𝐸𝑢𝑡𝑗𝜁 ≤ 𝐸𝑢𝑚𝑎𝑥 ∀𝑢 ∈ Ω𝑆,∀𝑡,∀𝜁,∀𝑗 (13k) 𝐸𝑢𝑡|𝑡=𝑙𝑎𝑠𝑡 ℎ𝑜𝑢𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑𝑗𝜁 = 𝐸𝑢0 ∀𝑢 ∈ Ω𝑆,∀𝜁,∀𝑗 (13l) 0 ≤ 𝑃𝑢𝑡𝑟,𝑗𝜁 ≤ 𝐼𝑢𝑡𝑟,𝑗𝜁 . 𝑃𝑢𝑟,𝑚𝑎𝑥
 ∀𝑢 ∈ Ω𝑆,∀𝑡,∀𝜁,∀𝑗 (13m) 0 ≤ 𝑃𝑢𝑡𝑠,𝑗𝜁 ≤ 𝐼𝑢𝑡𝑠,𝑗𝜁 . 𝑃𝑢𝑠,𝑚𝑎𝑥
 ∀𝑢 ∈ Ω𝑆,∀𝑡,∀𝜁,∀𝑗 (13n) 𝐼𝑢𝑡𝑟,𝑗𝜁 + 𝐼𝑢𝑡𝑠,𝑗𝜁 ≤ 1 ∀𝑢 ∈ Ω𝑆,∀𝑡,∀𝜁,∀𝑗 (13o) ∆𝑃𝑏𝑡𝑁,𝑗𝜁,+ − ∆𝑃𝑏𝑡𝑁,𝑗𝜁,− = 𝑃𝑏𝑡𝑁,𝑗𝜁 − 𝑃𝑏𝑡𝑁,𝑗

 ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (13p) 0 ≤ ∆𝑃𝑏𝑡𝑁,𝑗𝜁,+ ≤ (1 − 𝑧𝑏𝑡𝑗𝜁). (𝑃𝑏𝑡𝑁,𝑗𝜁 − 𝑃𝑏𝑡𝑁,𝑗) ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (13q) 0 ≤ ∆𝑃𝑏𝑡𝑁,𝑗𝜁,− ≤ 𝑧𝑏𝑡𝑗𝜁 . (𝑃𝑏𝑡𝑁,𝑗 − 𝑃𝑏𝑡𝑁,𝑗𝜁)  ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (13r) 

The first three terms in the objective (13a) are similar to the 
three terms in (1a). However, the forecasts of the uncertain pa-

rameters, i.e., �̅�𝑏𝑡, �̅�𝑢𝑡 , ∀𝑢 ∈ Ω𝑊, and �̅�𝑙𝑡 , are replaced by the 
realized values for these uncertain parameters in scenario 𝜁, 

i.e., 𝜆𝑏𝑡𝜁
, 𝑃𝑢𝑡𝜁

, ∀𝑢 ∈ Ω𝑊, and 𝑃𝑙𝑡𝜁. In addition, 𝑃𝑏𝑡𝑁  and 𝑃𝑢𝑡  are re-

placed by 𝑃𝑏𝑡𝑁,𝑗𝜁
 and 𝑃𝑢𝑡𝑗𝜁

. The next two terms of (13a) model 

sell/purchase of excess/deficit injected power to the grid with 
respect to the scheduled value in the Pareto solution 𝑗. These 

excess/deficit values are denoted by ∆𝑃𝑏𝑡𝑁,𝑗𝜁,+
/∆𝑃𝑏𝑡𝑁,𝑗𝜁,−

 and their 

prices are shown by 𝜆𝑏𝑡𝜁,+
/𝜆𝑏𝑡𝜁,−

. Thus, (13a) models the realized 

profit of the Pareto solution 𝑗 in scenario 𝜁, i.e., ℱ𝑗𝜁(𝛩𝜁 , 𝛯), 
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considering the realized values for the uncertain parameters in 

scenario 𝜁, i.e., 𝛩𝜁. Constraints (13b)-(13p) are similar to (1b)-
(1p) considering the variables’ dependencies on scenario 𝜁 and 

Pareto solution 𝑗. Constraints (13p)-(13r) model ∆𝑃𝑏𝑡𝑁,𝑗𝜁,+
/ ∆𝑃𝑏𝑡𝑁,𝑗𝜁,−

 where 𝑧𝑏𝑡𝑗𝜁
 is a binary modeling variable to determine 

the excess/deficit injected power to the grid. In these con-

straints, 𝑃𝑏𝑡𝑁,𝑗
 indicates the scheduled value for 𝑃𝑏𝑡𝑁  in Pareto so-

lution 𝑗 and 𝑃𝑏𝑡𝑁,𝑗𝜁
 is the obtained value for 𝑃𝑏𝑡𝑁,𝑗

 in scenario 𝜁 

through the optimization problem (13) considering the uncer-
tainties’ realizations in scenario 𝜁. The only nonlinearity in (13) 

is related to the product 𝑧𝑏𝑡𝑗𝜁 . 𝑃𝑏𝑡𝑁,𝑗𝜁
 in (13q) and (13r). This non-

linear term can be linearized using the big-M linearization 
method as: 0 ≤ ∆𝑃𝑏𝑡𝑁,𝑗𝜁,+ ≤ 𝑃𝑏𝑡𝑁,𝑗𝜁 − 𝑃𝑏𝑡𝑁,𝑗 − 𝐿𝑃𝑏𝑡𝑁,𝑗𝜁 + 𝑧𝑏𝑡𝑗𝜁 . 𝑃𝑏𝑡𝑁,𝑗

 

 ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (14a) 0 ≤ ∆𝑃𝑏𝑡𝑁,𝑗𝜁,− ≤ 𝑧𝑏𝑡𝑗𝜁 . 𝑃𝑏𝑡𝑁,𝑗 − 𝐿𝑃𝑏𝑡𝑁,𝑗𝜁
  ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (14b) −𝑀. 𝑧𝑏𝑡𝑗𝜁 ≤ 𝐿𝑃𝑏𝑡𝑁,𝑗𝜁 ≤ 𝑀. 𝑧𝑏𝑡𝑗𝜁

 ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (14c) 𝑃𝑏𝑡𝑁,𝑗𝜁 − 𝑀. (1 − 𝑧𝑏𝑡𝑗𝜁) ≤ 𝐿𝑃𝑏𝑡𝑁,𝑗𝜁 ≤ 𝑃𝑏𝑡𝑁,𝑗𝜁 + 𝑀. (1 − 𝑧𝑏𝑡𝑗𝜁) 

 ∀𝑏,∀𝑡,∀𝜁,∀𝑗 (14d) 

where 𝐿𝑃𝑏𝑡𝑁,𝑗𝜁
 is an auxiliary continuous variable used for line-

arization. The formulation (14a)-(14d) is the exact linearized 
form of the nonlinear constraints (13q) and (13r). Thus, the 
nonlinear optimization problem (13a)-(13r) is linearized as 
(13a)-(13p) and (14a)-(14d). Since this optimization problem 
should be solved for all scenarios 𝜁, solving this problem is the 
most time-consuming part of the proposed solution method, 
and thus, its linearization significantly reduces the computation 
burden of the proposed method.  
Step 7) If 𝜁 is less than the number of scenarios, set 𝜁 = 𝜁 + 1 
and return to Step 4; otherwise, calculate the expected profit of 

Pareto solution 𝑗 as the expected value of ℱ𝑗𝜁 values over the 
generated scenarios 𝜁. 
Step 8) If 𝑗 is less than the number of Pareto solutions, set 𝑗 =𝑗 + 1 and go back to Step 3; otherwise, find the most profitable 
Pareto solution having the highest expected profit value (ob-
tained in the previous step) and report it. 

The aforementioned eight-step performance evaluation 
method is implemented separately over risk-averse/seeker Pa-
reto sets to attain the most profitable risk-averse/seeker Pareto 
solutions for each particular value of 𝑈𝐵. In addition, this 
method is run for different 𝑈𝐵 values. In this way, a set of most 
profitable risk-averse/seeker Pareto solutions over various 𝑈𝐵 
values is produced. Using this set, the final solution of the VPP 
self-scheduling problem is constructed by the proposed FBDP 
approach. 

The proposed ex-ante performance evaluation method uses 
scenarios through a different way compared to stochastic pro-
gramming. While stochastic programming uses scenarios to 
model uncertainties, the ex-ante performance evaluation uses 
in-sample scenarios to select the most profitable Pareto solution 
within the generated Pareto set considering various realizations 
of uncertain parameters. However, any other decision maker 
that does not require these scenarios, such as optimality-based 
decision maker [22] and fuzzy decision maker [23], can be used 
instead of the ex-ante performance evaluation method. In addi-
tion, since the performance of the whole proposed hybrid meth-

odology is less sensitive to these in-sample scenarios than sce-
nario-based approaches, we can generate scenarios of the ex-
ante performance evaluation method without using PDF of un-
certain parameters. For instance, in the practical power sys-
tems, we can use historical data (i.e., previous realizations) of 
uncertain parameters, recorded in the SCADA (supervisory 
control and data acquisition) systems, as the in-sample scenar-
ios for the ex-ante performance evaluation method. 

B. FBDP 

The most profitable Pareto optimal solution in the previous 
subsection is attained assuming that the VPP owner takes solely 
risk-averse/seeker role in the market with a fixed robust-
ness/opportunistic level for all the scheduling hours. However, 
market conditions and uncertain parameters usually change 
from hour to hour. Thus, hourly decision making to act as either 
risk-averse or risk-seeker player and to select appropriate ro-
bustness or opportunistic level (in terms of 𝑈𝐵 value) can pro-
vide higher profit for the VPP. The proposed FBDP addresses 
this critical issue considering the VPP inter-temporal con-
straints. 

In the proposed FBDP, the stages are scheduling hours and 
the states of each stage represent the results of the most profit-
able risk-averse/seeker Pareto optimal solutions with different 𝑈𝐵 values in that hour as shown in Fig. 1. In this figure, 24 
scheduling hours from 𝑡 = 1 to 𝑡 = 24 and 11 states from 𝑘 = 1 
to 𝑘 = 11 are shown. These 11 states include five most profita-
ble risk-seeker, one risk-neutral (i.e., deterministic), and five 
most profitable risk-averse Pareto optimal solutions. In the five 
most profitable risk-averse/seeker Pareto optimal solutions (de-
noted by �̌�∗and �̂�∗, respectively), 𝑈𝐵 = 10% to 𝑈𝐵 = 50% are 
considered, while the risk-neutral deterministic solution (de-
noted by �̅�∗) is specified by 𝑈𝐵 = 0 as shown in Fig. 1. The 
proposed FBDP seeks the most profitable path in the forward 
movement. However, from each stage to the next one, the VPP 
inter-temporal constraints should be checked due to the proba-
ble change of the Pareto solution. If a violation from the inter-
temporal constraints occurs, the FBDP through the backward 
movement returns to the switching stage that causes the infea-
sibility and does not make that switching action. An instance of 
backward movement is illustrated by red color in Fig. 1 where 
switching from state 5 in stage 2 to state 6 in stage 3 causes a 
violation from the VPP inter-temporal constraints (e.g., viola-
tion from the minimum up/down time limits). Thus, the FBDP 
returns from state 6 in stage 3 to state 5 in stage 2. The inter-
temporal constraints here include the dynamic energy balance 
constraints (1j) and other relevant constraints (1k)-(1l) of stor-
age units as well as the ramping constraints (1e)-(1f) and min-
imum up/down time limits (1g)-(1i) of dispatchable units. The 
proposed FBDP performs based on the following steps:  
Step 1) Initialize the stage counter, 𝑡 = 0. The state of this stage 
is known from the last hour of the previous scheduling day. 
Step 2) In each stage 𝑡 with state k, find more profitable states 
for switching in the next stage 𝑡+1. These states are indexed by 𝑘′. If there is no state 𝑘′, remain in state 𝑘 in the next stage 𝑡+1 
(i.e., no switching action is performed) and go to Step 4. Oth-
erwise, sort the more profitable states k' in terms of their profits. 
Step 3) Begin with the most profitable state 𝑘′. If switching 
from 𝑘 to 𝑘′ is feasible (i.e., it does not violate the inter-tem-
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poral constraints in the next stage), perform this switching ac-
tion and update the profit as well as the energy level of storage 
units based on the new state 𝑘′. Otherwise, this switching ac-
tion is not feasible and evaluate the second most profitable state 𝑘′. This cycle is repeated until: 
3-1) No feasible state 𝑘′ is found. In this case, the proposed 
FBDP remains in the same state 𝑘 in the next stage 𝑡+1. 
3-2) A feasible state 𝑘′ is found. In this case, the proposed 
FBDP switches from state 𝑘 in stage 𝑡 to state 𝑘′ in stage 𝑡+1. 
Step 4) 𝑡 = 𝑡+1. If 𝑡 < 24, go to Step 2. Otherwise, the most 
profitable and feasible states of all time stages have been deter-
mined and thus report the final solution of the VPP self-sched-
uling problem. 
    Using the forward and backward movements, the proposed 
FBDP can find the economically optimal and technically feasi-
ble (regarding inter-temporal constraints) self-schedule for the 
VPP. Even if a VPP has no inter-temporal constraint, the back-
ward movements of the FBDP may not be required. However, 
the FBDP using its forward movements can still find the most 
profitable self-scheduling strategy to act as either risk-averse or 
risk-seeker participant and to decide the risk-averting/seeking 
level for each hour of the self-scheduling horizon.  
    It is noted that the proposed FBDP does not suffer from the 
curse of dimensionality problem occurred in solving unit com-
mitment by DP. The states of the proposed FBDP are risk-
averse/neutral/seeker Pareto optimal solutions and not unit 
combinations. While the number of unit combinations in a unit 
commitment problem increases exponentially with the number 
of units, the number of states in each stage of the proposed 
FBDP increases linearly with the number of 𝑈𝐵 levels. For in-
stance, there are 11 𝑈𝐵 levels in Fig. 1. If we have 11 units in 
a unit commitment problem, we would have 211−1=2047 states 
in each stage of its DP [24], while 11 𝑈𝐵 levels lead to 11 states 
in each stage of the proposed FBDP. 

V. NUMERICAL RESULTS 

    The effectiveness of the proposed VPP self-scheduling strat-
egy (including MH-IGDT, ENNC, and bi-directional decision 
maker) is illustrated on a coalition of dispatchable and non-dis-
patchable units.  
    The dispatchable units contain two 12-MW oil/steam units, 
one 20-MW oil/combined turbine type unit, and one 5-MW 
storage unit. The data of the two 12-MW and one 20-MW units 
is taken from the IEEE-RTS [25] which is shown in Table B1 
in Appendix B. The data of the storage unit is given in Table I. 
It is assumed that the storage unit has no stored energy at the  
 

 
Fig. 1. Illustration of the proposed FBDP. 

start of the 24-hour scheduling horizon. Also, one 50-MW wind 
farm is a member of the coalition. The cut-in, rated, and cut-
out speeds of the wind farm are 3, 14, and 25 m/s, respectively. 
Moreover, it is assumed that 20% of hourly load pertaining to 
bus 2 of the IEEE-RTS [25] is a member of the VPP. The LMP 
forecasts and the load price used for the VPP test case are 
graphically illustrated in Fig. 2. The load consumption price in 
Fig. 2 is 60 $/MWh. Besides, the forecasts of load and wind 
speed, used for this test case, are shown in Fig. 3.  
    The vector of uncertain parameters 𝛩 includes one load, one 
wind generation, and one LMP pertaining to the contractual 
bus. The historical data of these uncertain parameters is ob-
tained from the hourly data related to the Millwood City in New 
York, US from Oct.1, 2014 to Nov. 4, 2015 [26], [27]. The 
forecast values of these uncertain parameters are related to 
Nov. 5, 2015. The big-M values in (14c) and (14d) should be: 𝑀 ≥ |𝑃𝑏𝑡𝑁,𝑗𝜁|. In this test case, the big-M values are set to 

100MW, which is the minimum value satisfying this condition. 
    The optimal solution results of the proposed VPP self-sched-
uling strategy are first provided and analyzed. Then, compara-
tive results for the proposed model and the proposed solution 
method are presented. All case studies of this paper have been 
run on a 64-bit core i7 2.40 GHz personal computer with 4 GB 
RAM. The proposed MH-IGDT model is an MINLP optimiza-
tion problem. Its nonlinear nature arises by the bilinear terms 
introduced in Subsection II.B. Thus, this model should be 
solved by an MINLP solver, such as DICOPT [28] used in this 
paper. However, the ex-ante performance evaluation method 
has an MILP formulation. Thus, the optimization problems of  
 

 
Fig. 2. LMP forecast and consumption price for the VPP test case. 

Fig. 3. Load forecast and wind speed forecast for the VPP test case. 
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TABLE I 
THE STORAGE UNIT DATA SET б𝑢 𝜇𝑢𝑟 , 𝜇𝑢𝑠  𝐸𝑢𝑚𝑖𝑛, 𝐸𝑢𝑚𝑎𝑥 (MWh) 

0.03 0.85, 0.90 0, 100 

this method can be solved by an MILP solver, such as CPLEX 
[28] used in this paper. The MINLP optimization problem of 
the proposed MH-IGDT model has small size since it is solved 
solely for the worst-case realization of uncertain parameters. 
Thus, this MINLP problem can be easily solved. On the other 
hand, although the ex-ante performance evaluation method in-
cludes various realizations of uncertain parameters, its optimi-
zation problems have MILP form which can be tractably 
solved. Thus, the whole proposed VPP self-scheduling ap-
proach has a tractable computation burden. 
    Fig. 2 shows that the consumption price is lower than the 
LMP in most of the scheduling hours. Thus, selling VPP pro-
duced power to the grid is overall more profitable than selling 
it to the load. Accordingly, the VPP minimum profit in (5c) is 
obtained when the highest load occurs based on (7d). The data 
of the generated scenarios for the ex-ante performance evalua-
tion method are given in Appendix B. 

A. Optimal Solution Results  

The proposed risk-averse/seeker MH-IGDT + ENNC ap-
proach is evaluated for 10 MH-IGDT cases and one determin-
istic case. The 10 MH-IGDT cases include five risk-seeker 
models with 𝑈𝐵 = 50%, 40%, 30%, 20%, and 10% (specified by 𝑘 = 1, 2, 3, 4, and 5, respectively) as well as five risk- 
averse cases with 𝑈𝐵 = 10%, 20%, 30%, 40%, and 50% (speci-
fied by 𝑘 = 7, 8, 9, 10, and 11, respectively). The risk-neutral 
deterministic case with 𝑈𝐵 = 0% is specified by 𝑘 = 6. In other 
words, the models are sorted from the most risk-seeker case (𝑘 

= 1) to risk-neutral deterministic case (𝑘 = 6) and to the most 
risk-averse case (𝑘 = 11). For each of these 11 models (i.e., 𝑘 = 

1 to 𝑘 = 11), 45 Pareto solutions are generated by the proposed 
ENNC. For instance, the uncertainty horizons �̌�𝜆, �̌�𝑤, �̌�𝑙 ob-
tained by the 45 Pareto solutions of the risk-averse model with 𝑈𝐵 = 20% (i.e., the eighth model or 𝑘 = 8) are shown in Fig. 4. 
These 45 Pareto solutions are indicated by J1 to J45 on the hor-
izontal axis of Fig. 4, and the vertical axis indicates �̌�𝜆, �̌�𝑤, and �̌�𝑙 values of these solutions. This figure shows that �̌�𝜆, �̌�𝑤, and �̌�𝑙 vary in the ranges [0, 0.1107], [0, 0.3123], and [0, 0.7473], 
respectively, in the 45 Pareto solutions of the eighth model. As 
an example, �̌�𝜆, �̌�𝑤, and �̌�𝑙 in the first Pareto solution J1 of Fig. 
4 are 0.1107, 0.0168, and 0.0874, respectively. This means that 
the profit obtained by Pareto solution J1 is robust as long as the 
uncertain parameters’ deviations from their forecast values are |𝜆𝑏𝑡𝜁 − �̅�𝑏𝑡| ≤ 0.1107�̅�𝑏𝑡, �̅�𝑢𝑡 − 𝑃𝑢𝑡𝜁

 ≤ 0.0168�̅�𝑢𝑡 , ∀𝑢 ∈ Ω𝑊 and 𝑃𝑙𝑡𝜁 − �̅�𝑙𝑡  ≤ 0.0874�̅�𝑙𝑡 . In the risk-averse models, the worst LMP 

value can be on both sides of its forecast value as specified in 
(7a)-(7b). However, the worst wind and load values can only 
be on one side of their forecast values as specified in (7c) and 
(7d). Thus, the absolute value operator has been only used for 
the price deviations. Another point which can be seen from Fig. 
4 is the higher dependency of the VPP profit on LMP, then 
wind generation, and finally load as a lower variation of LMP 
(and then wind generation and finally load) consumes the entire 
uncertainty budget.  
    The 24-hour profits of the 45 Pareto solutions pertaining to 

risk-seeker model with 𝑈𝐵 = 20% (𝑘 = 4), risk-neutral deter-
ministic model with 𝑈𝐵 = 0 (𝑘 = 6), and risk-averse model with 𝑈𝐵 = 20% (𝑘 = 8), calculated using the proposed ex-ante perfor-
mance evaluation method, are shown in Fig. 5. In the determin-
istic model with 𝑈𝐵 = 0, the uncertainty horizons become zero 
in all 45 Pareto solutions. Thus, the same profit is obtained in 
all Pareto solutions of this deterministic model, as shown in 
Fig. 5. In this figure, all the Pareto solutions of the risk-averse 
model and most of the Pareto solutions of the risk-seeker model 
have higher profits than the deterministic model. In addition, 
the profits of the Pareto solutions of the risk-seeker model show 
higher variations than the profits of the Pareto solutions of the 
risk-averse model. The best Pareto solution of the risk-averse 
and the risk-seeker model is J3 and J27, respectively, indicated 
by the surrounding circle in Fig. 5. 
    The VPP self-scheduling strategy obtained by the proposed 
FBDP is shown in Fig. 6. The best Pareto optimal solutions of 
the 11 models are the states of the FBDP and 24 hours of the 
scheduling day are the stages of the FBDP, which are shown 
vertically and horizontally in Fig. 6, respectively. The proposed 
FBDP approach searches for the most profitable and feasible 
path among risk-seeker/neutral/averse states over the schedul-
ing horizon such that the VPP inter-temporal constraints are 
satisfied. In this path, the forward and backward movements 
are illustrated by blue and red arrows in Fig. 6, respectively.  
  

 
Fig. 4. The uncertainty horizons obtained by the 45 Pareto solutions of the 

risk-averse model with 𝑈𝐵=20%. 

 

Fig. 5. The 24-hour profits of the 45 Pareto optimal solutions pertaining to the 

fourth, sixth, and eighth models. 
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According to this figure, the proposed FBDP selects the risk- 
seeker states during hours 3-6 and 22-24 to benefit from favor-
able variations of uncertain parameters. Discussing in more de-
tails, the risk-seeker states are chosen in hours with low LMP 
and load values and high wind generation values aiming that 
the VPP takes the advantages of wind generation deviations 
above the �̅�𝑢𝑡 , ∀𝑢 ∈ Ω𝑊 without serious concern for the devia-
tions below the forecasts due to the low cost of supply from the 
grid. By further increasing the wind generation and decreasing 
the LMP and load in these hours, the risk-seeking level of the 
VPP increases (e.g., in hour 3). Alternatively, by tending to be 
robust at unfavorable realizations of the uncertain parameters, 
the risk-averse states are selected in hours 1-2 and 7-21 with 
high LMP and load values. Since both the VPP load and the 
cost of supplying it from the grid are high, a risk-averse self-
scheduling strategy is adopted by the proposed FBDP in these 
hours to avoid serious economic risks. 
    Three backward movements are seen in Fig. 6 due to violat-
ing the VPP inter-temporal constraints. The first two ones oc-
cur at hour 2 due to violating the minimum up-time constraint 
of one 12-MW unit. At first, the proposed FBDP switches back 
from state 4 in stage 2 to state 7 in stage 1 due to this violation. 
Switching to the next most profitable state (i.e., state 5) leads 
to the same violation, yielding the second backward transition. 
Thus, the FBDP moves to the next most profitable state 8 in 
stage 2, which is feasible in terms of the minimum up-time con-
straint. Also, violating the end-coupling constraint of the 5-
MW storage unit leads to the third backward movement of the 
FBDP in hour 24 to remain in state 5. 

The execution time of the whole proposed VPP self-sched-
uling strategy (i.e., MH-IGDT + ENNC + ex-ante performance 
evaluation + FBDP) for this test case is about 8 minutes (ex-
actly 7:58 min), which is a completely acceptable computation 
time for a day-ahead self-scheduling problem. 

B. Comparative Results of Solution Methods 

    To better illustrate the performance of the proposed FBDP 
self-scheduling strategy, the 24-hour profit of the FBDP solu-
tion is compared with the 24-hour profit of the most profitable 
Pareto solutions of the 11 risk seeker/neutral/averse models in 
Table II. It is seen that the proposed FBDP attains the highest 

profit in Table II, illustrating its effectiveness. The reason for 
this better performance is bi-directional decision making of the 
proposed FBDP considering both risk-seeker and risk-averse 
behaviors. Moreover, the proposed FBDP can adaptively select 
the best risk-seeking/averting level in each hour based on the 
uncertain parameters’ realizations. However, the 11 compara-
tive models can only adopt risk seeker/neutral/averse decision 
making with a fixed 𝑈𝐵 over the scheduling horizon. 
In Table III, the proposed ENNC is compared with other 
MOMP methods including weighted sum (WS) [29], normal 
boundary intersection (NBI) [30], NNC [16], modified aug-
mented ε-constraint (MAΕC) [31], and ANNC [17]. To fairly 
compare the MOMP methods of Table III, the same ex-ante 
performance evaluation and FBDP have been used for all of 
these methods. Moreover, 45 Pareto solutions have been con-
sidered for these methods except for WS, which can essentially 
produce only one Pareto optimal solution. For this reason, WS 
has the poorest performance among the MOMP methods of Ta-
ble III. NBI and NNC generate a set of Pareto solutions with 
uniform distribution and thus have considerably better perfor-
mance than WS. However, NNC is less prone to produce dom-
inated Pareto solutions than NBI [16], which leads to its higher 
profit in Table III. MAEC only generates non-dominated Pa-
reto solutions, and thus, it has better performance than NBI and 
NNC in Table III. ANNC both generates non-dominated Pareto 
solutions and distributes these solutions uniformly in the objec-
tive space. Therefore, ANNC obtains a higher profit than 
MAEC. The proposed ENNC has the advantages of ANNC in 
addition to optimizing the payoff matrix to attain the optimal 
ranges of the uncertainty horizons as well as optimizing the an-
chor points to provide a more effective utopia hyperplane. Due 
to these reasons, the proposed ENNC has the best performance 
among the MOMP methods of Table III. 
    To further evaluate the effectiveness of the proposed VPP 
self-scheduling strategy, it is compared with: 
- Two-stage stochastic programming (SP) with three different 
numbers of scenarios in Table IV [3], [4]. These SP methods, 
denoted by SP1, SP2, and SP3, have 20, 50, 100 scenarios.  
- First-order stochastic dominance (FOSD) with three different 
numbers of benchmark scenarios in Table V [32]. These FOSD  
 

 

Fig. 6. The most profitable and feasible path obtained by the proposed FBDP.  
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TABLE II 
THE PROFITS OF THE MOST PROFITABLE PARETO SOLUTIONS OF RISK SEEKER/NEUTRAL/AVERSE MH-IGDT MODELS AND THE PROFIT OF THE PROPOSED FBDP 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10 𝑘 = 11 Proposed 

48,380.0 50,848.9 55,017.5 56,755.9 57,434.8 46,553.5 60,354.2 63,244.7 63,030.8 62,042.8 59,142.2 64,833.1 

TABLE III 

 THE VPP PROFITS AND OBTAINED BY DIFFERENT MOMP METHODS 

Method WS NBI NNC MAEC ANNC 
ENNC 

(proposed) 

Profit ($) 52,448.5 58,989.3 60,242.3 62,351.5 62,742.6 64,833.1 
 

TABLE IV 
 COMPARISON OF THE PROPOSED APPROACH WITH SP METHODS  

Method  SP1  SP2 SP3 Proposed  

Profit ($) 52,420.2 52,779.3 53,022.9 59,500.1 

Exe. time (min) 3:23 7:09 13:31 7:58 
 

TABLE V 
 COMPARISON OF THE PROPOSED APPROACH WITH FOSD METHODS 

Method  FOSD1 FOSD2  FOSD3 Proposed  

Profit ($) 53,279.5 53,414.6 53,513.6 59,500.1 

Exe. time (min) 14:19 14:53 15:37 7:58 
 

TABLE VI 

 COMPARISON OF THE PROPOSED APPROACH WITH SOSD METHODS 

Method  SOSD1 SOSD2 SOSD3 Proposed  

Profit ($) 53,086.5 53,207.1 53,301.8 59,500.1 

Exe. time (min) 14:03 14:31 15:18 7:58 
 

TABLE VII 
 COMPARISON OF THE PROPOSED APPROACH WITH CVAR-BASED SP 

METHODS 

Method  CVaR1 CVaR2 CVaR3 Proposed  

Profit ($) 54,298.7 53,566.7 53,333.1 59,500.1 

Exe. time (min) 13:42 13:55 14:11 7:58 

methods, denoted by FOSD1, FOSD2, and FOSD3, have 20, 
50, 100 benchmark scenarios. 
- Second-order stochastic dominance (SOSD) with three differ-
ent numbers of benchmark scenarios in Table VI [33]. These 
SOSD methods, denoted by SOSD1, SOSD2, and SOSD3, 
have 20, 50, 100 benchmark scenarios. 
- CVaR-based SP with three different confidence intervals in 
Table VII [5]. These CVaR-based SP methods, denoted by 
CVaR1, CVaR2, and CVaR3, have 0.9, 0.95, and 0.99 confi-
dence intervals.  
    These uncertainty modeling approaches have been consid-
ered as comparative methods in the Tables IV, V, VI, and VII 
since these methods have been used for VPP self-scheduling in 
the previous works, such as in [3], [4], [5], [32] and [33]. As 
these comparative methods and the proposed approach have 
different uncertainty modeling strategies, for the sake of a fair 
comparison, an out-of-sample analysis with the same set of out-
of-sample scenarios [21] has been used to evaluate the perfor-
mance of all methods in Tables IV, V, VI, and VII. For this 
reason, the result reported for the proposed approach in Table 
III (which has been obtained using the in-sample scenarios) is 
different from the result reported in Tables IV-VII (which has 
been obtained using the out-of-sample scenarios). Table IV 

shows that by increasing the number of scenarios, the profit of 
SP methods increases as the uncertainty spectrum can be better 
captured. The SP3 method of Table IV with 100 scenarios has 
been used for the comparative methods of Tables V, VI, and 
VII, which are SP methods with risk measures. The compara-
tive methods in Tables V, VI, and VII have higher profits than 
the SP methods in Table IV, since the comparative methods in 
Tables V, VI, and VII incorporate risk measures. FOSD and 
SOSD comparative methods in Tables V and VI have similar 
performances. The profit of these methods slightly increases by 
increasing the number of their benchmark scenarios which are 
different from the 100 scenarios of SP3. Moreover, it is seen 
that CVaR-based SP leads to higher profits than other compar-
ative methods in Tables IV, V, and VI, since CVaR is a more 
coherent risk measure [34]. 
    It is seen that the proposed VPP self-scheduling strategy out-
performs all of the 12 comparative methods in Tables IV, V, 
VI, and VII due to the following reasons: 1) The proposed ap-
proach can find both robust solutions using unfavorable devia-
tions of uncertain parameters and opportunistic solutions using 
favorable deviations of uncertain parameters, 2) The proposed 
approach can provide both the risk-averse and risk-seeker Pa-
reto frontiers for VPP self-scheduling problem. In addition, it 
can find the most effective Pareto solution of each Pareto fron-
tier, 3) The proposed approach can adaptively decide to act as 
either risk-averse or risk-seeker in each hour of the scheduling 
horizon to maximize the VPP profit, and 4) The proposed ap-
proach can adaptively determine optimal risk-averting/seeking 
level for each scheduling hour. In other words, the proposed 
approach provides adaptive bi-directional decision-making ca-
pability with optimized risk averting/seeking levels. The above 
features are specific to the proposed VPP self-scheduling strat-
egy. 
    Tables IV, V, VI, and VII show that only the computation 
times of SP1 and SP2 are slightly lower than the computation 
time of the proposed method. However, the computation time 
of the proposed method is lower than the computation time of 
all other methods of Tables IV, V, VI, and VII. 

C. Evaluating the Impact of the Standard deviations of the Un-

certain Parameters 

    To evaluate the impact of the standard deviations of the un-
certain parameters on the proposed VPP self-scheduling ap-
proach, these standard deviations are halved/doubled with  
 

TABLE VIII 
THE VPP PROFITS OBTAINED FOR CASES I, II, AND III  

Case  I II III 

Profit ($) 67,769.7 64,833.1 59,599.7 

TABLE IX 
THE MOST PROFITABLE AND FEASIBLE PATH OBTAINED IN CASES I, II, AND III 

 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10 𝑡 = 11 𝑡 = 12 𝑡 = 13 𝑡 = 14 𝑡 = 15 𝑡 = 16 𝑡 =17 𝑡 =18 𝑡 =19 𝑡 =20 𝑡 =21 𝑡 =22 𝑡 =23 𝑡 =24 

Case I 𝑘 = 7 𝑘 = 7 𝑘 = 3 𝑘 = 5 𝑘 = 4 𝑘 =3 𝑘 = 7 𝑘 = 9 𝑘 = 7 𝑘 = 8 𝑘 = 8 𝑘 = 7 𝑘 = 7 𝑘 = 7 𝑘 = 8 𝑘 = 8 𝑘 = 8 𝑘 = 7 𝑘 = 7 𝑘 = 8 𝑘 = 8 𝑘 = 5 𝑘 = 5 𝑘 = 4 

Case II 𝑘 = 7 𝑘 = 8 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 =5 𝑘 = 8 𝑘 = 9 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 8 𝑘 = 7 𝑘 = 8 𝑘 = 8 𝑘 = 8 𝑘 = 8 𝑘 = 8 𝑘 = 7 𝑘 = 9 𝑘 = 7 𝑘 = 5 𝑘 = 5 𝑘 = 5 

Case III 𝑘 = 7 𝑘 = 8 𝑘 = 5 𝑘 = 5 𝑘 = 5 𝑘 =8 𝑘 = 7 𝑘 = 9 𝑘 = 6 𝑘 = 9 𝑘 = 10 𝑘 = 9 𝑘 = 8 𝑘 = 9 𝑘 = 7 𝑘 = 9 𝑘 = 9 𝑘 = 9 𝑘 = 7 𝑘 = 7 𝑘 = 7 𝑘 = 9 𝑘 =8 𝑘 = 8 
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TABLE X 
RESULTS OF THE PROPOSED VPP SELF-SCHEDULING STRATEGY FOR DIFFERENT NETWORK INJECTION LIMITS  

Network Limitation (MW) 110 100 90 80 70 60 50 40 30 20 10 0 

Profit ($) 64,833.1 64,833.1 64,184.8 62,343.0 59,045.3 53,960.5 47,059.5 39,506.2 33,085.0 27,631.8 23,059.8 19,235.8 

respect to their base values, which are referred to as Case I/III. 
The base case is referred to as Case II. The profits obtained by 
the proposed VPP self-scheduling approach for these three 
cases are shown in Table VIII. It is seen that the VPP profit 
decreases from Case I to Case III. Its reason is that from Case I 
to Case III, the standard deviations of the uncertain parameters 
increase, leading to higher volatility of wind power, load and 
price, and thus their forecast accuracies decrease. In Table VIII, 
the most profitable and feasible paths obtained in Cases I-III 
are shown. The path of Case II is the same path shown in Fig. 
6, and it is again illustrated in Table VIII for the sake of com-
parison with the other cases. Also, only the state selected in 
each hour is shown in Table IX for the sake of conciseness. By 
comparing the results of the three cases in Table IX it is seen 
that: 
a) Case I with respect to Case II has more risk-averse state (i.e., 
with a higher k value) in 1 hour, the same states (i.e., with the 
same k values) in 12 hours, and more risk-seeker states (i.e., 
with lower k values) in 11 hours. Thus, overall, Case I becomes 
more risk-seeker with respect to Case II as more accurate fore-
casts are used in Case I, which allows adopting a more risk-
seeking self-scheduling strategy. 
b) Case III with respect to Case II has more risk-seeker states 
(i.e., with lower k values) in 4 hours, the same states (i.e., with 
the same k values) in 6 hours, and more risk-averse states (i.e., 
with higher k values) in 14 hours. Thus, overall, Case III be-
comes more risk-averse with respect to Case II as less accurate 
forecasts are used in Case III, which leads to a more risk-avert-
ing (or more conservative) decision-making strategy. 

D.   Evaluating the Impact of Network Injection Limit and Wind 

Spillage  

    To model the limit of power injection to/from the grid and 
wind spillage in the proposed VPP self-scheduling strategy, 
each of the deterministic model (1), risk-averse MH-IGDT 
model (8), risk seeker MH-IGDT model (10), and in-sample 
scenario formulation (13) is changed as follows: 
1) Changes applied to the deterministic model.  Network 

constraint |𝑃𝑏𝑡𝑁 | ≤ 𝑃𝑏𝑡𝑁,𝑚𝑎𝑥
 is explicitly added to the determinis-

tic model (1) as a new constraint (1p). To model wind spillage, 

wind power variable 𝑃𝑢𝑡  (which is �̅�𝑢𝑡  minus wind power spill-
age) replaces �̅�𝑢𝑡  in (1b) for wind units 𝑢 ∈ Ω𝑊𝑏. Moreover, 

the constraint 0 ≤ 𝑃𝑢𝑡 ≤ �̅�𝑢𝑡 , 𝑢 ∈ Ω𝑊 is added as (1q) to the 
deterministic model. 
2) Changes applied to the risk-averse/seeker MH-IGDT 
models. At first, (1b)-(1o) in (5b) is replaced by (1b)-(1p) to 
include network injection limit (1p) in the MH-IGDT models. 
Moreover, to include wind spillage, (7c) is replaced by 0 ≤𝑃𝑢𝑡 ≤ (1 − �̂�𝑤). �̅�𝑢𝑡 , ∀𝑢 ∈ Ω𝑊, ∀𝑡 in the risk-averse MH-

IGDT model, and (9c) is replaced by 0 ≤ 𝑃𝑢𝑡 ≤ (1 + �̌�𝑤). �̅�𝑢𝑡 ,∀𝑢 ∈ Ω𝑊, ∀𝑡 in the risk-seeker MH-IGDT model. Thus, (8) 
with updated (5b) and (7c), and (10) with updated (6b) and (9c) 
represent risk-averse/seeker MH-IGDT models, respectively, 
including network injection limit and wind spillage. 

3) Changes applied to the in-sample scenario formulation. 

The network constraint |𝑃𝑏𝑡𝑁,𝑗𝜁| ≤ 𝑃𝑏𝑡𝑁,𝑚𝑎𝑥
 is added as a new 

constraint (13s) to in-sample scenario formulation given in 
(13). To model wind spillage, similar to the changes applied to 

the deterministic model, the wind power variable 𝑃𝑢𝑡𝑗𝜁
 replaces 𝑃𝑢𝑡𝜁

 in (13b) for wind units 𝑢 ∈ Ω𝑊𝑏.  Moreover, the constraint 0 ≤ 𝑃𝑢𝑡𝑗𝜁 ≤ 𝑃𝑢𝑡𝜁 , 𝑢 ∈ Ω𝑊 is added as (13t) to (13). 

    The solution of the proposed VPP self-scheduling strategy 
including network injection limit and wind power spillage, as 
described above, is reported in the following Table X for dif-
ferent network injection limit values. In Table X, the network 
injection limit is decreased from its base value 110MW in 
10MW steps to zero. At first, by decreasing the network injec-
tion limit from 110MW to 100MW, the VPP profit is not 
changed, since the 100MW limit is still larger than the maxi-
mum capacity that the VPP can inject to the network. However, 
by further decreasing the network injection limit from 100MW 
to zero, the VPP profit monotonically decreases from the base 
value $64,833.1 to $19,235.8. However, it is seen that no infea-
sibility occurs and only the VPP profit decreases. Its reason is 
that, for lower network injection limit values, the proposed 
VPP self-scheduling strategy reduces the generation of dis-
patchable units and the generation of wind units (using wind 
spillage) such that the network injection limit is satisfied. Even 
with the most serious network injection limit (i.e., 0MW limit), 
the proposed approach decreases the generation of dispatchable 
and wind units to solely supply the VPP load demand (similar 
to the operation of an islanded microgrid). 
    Some risk-seeker solutions with a high 𝑈𝐵 value may be-
come infeasible due to violation of the constraint (10b). It is 
possible that a high 𝑈𝐵 value excessively increases the right-

hand side (1 + 𝑈𝐵). ℱ̅ such that no feasible profit can be ob-
tained. Considering network injection limits may intensify this 
case, since considering network injection limits may lead to de-
creasing the VPP generation and thus may decrease the profits 
of the risk seeker/averse solutions. However, even if some risk-
seeker solutions become infeasible, no infeasibility problem 
occurs for the proposed approach and its solution becomes fea-
sible in all cases as reported in Table X. Its reason is as follows. 
    The ENNC produces 45 Pareto solutions for each 𝑈𝐵 value. 
If one of these solutions becomes infeasible, the ENNC filters 
it and the best Pareto solution is found among the remaining 44 
feasible solutions. Even if, in an extreme case, all 45 Pareto 
solutions produced for one 𝑈𝐵 value become infeasible (which 
is very unlikely), again no infeasibility problem occurs for the 
proposed VPP self-scheduling approach, since the correspond-
ing state (i.e., the corresponding 𝑈𝐵 value) is removed from the 

 
TABLE B1 

THE DISPATCHABLE UNITS’ DATA SET [25] 

Unit 
𝑆𝑈𝑢𝑟, 𝑆𝐷𝑢𝑟  

(MW/Min) 
𝑅𝑈𝑢, 𝑅𝐷𝑢 
(MW/Min) 

𝜏𝑢𝑜𝑛, 𝜏𝑢𝑜𝑓𝑓
 

(Hour) 

𝐴𝑢($), 𝐵𝑢($/MW) 
𝑆𝑈𝑢𝑐, 𝑆𝐷𝑢𝑐 

($) 

2×12MW 2, 12 1, 1 2, 4 5.9, 13.6 132.1, 13.2 

1×20MW 6, 20 3, 3 0, 0 9.4, 27.1 31.7, 3.2 
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TABLE B2 

THE EXPECTED VALUES OF LMP ($/MWH), WIND SPEED (M/S), AND LOAD (MW) OF THE GENERATED SCENARIOS FOR PERFORMANCE EVALUATION METHOD 

 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10 𝑡 = 11 𝑡 = 12 𝑡 = 13 𝑡 = 14 𝑡 = 15 𝑡 = 16 𝑡 =17 𝑡 =18 𝑡 =19 𝑡 =20 𝑡 =21 𝑡 =22 𝑡 =23 𝑡 =24 

LMP 45.3 44.5 37.2 36.8 38.3 51.1 75.6 71.7 67.3 75.9 79.1 76.6 75.7 77.5 77.1 76.6 77.3 79.4 88.1 97.6 74.7 62.2 60.7 57.2 

Wind speed 4.5 8.4 9.0 7.9 6.6 8.3 6.6 4.5 6.6 7.9 9.1 9.2 7.2 9.4 9.2 9.1 9.1 7.2 3.6 4.9 6.9 7.9 8.3 9.1 

Load  13.0 12.2 11.7 11.4 11.4 11.7 14.4 16.7 18.5 18.6 18.6 18.4 18.5 18.5 18.0 18.2 19.2 19.4 19.4 18.6 17.7 16.1 14.2 12.2 

FBDP and the most profitable path is searched among the re-
maining states. Thus, no infeasibility occurs for the proposed 
VPP self-scheduling approach (without or with considering 
network injection limits) due to its ENNC and FBDP even if 
some risk-seeker MH-IGDT solutions become infeasible. 

VI. CONCLUSION 

This paper proposes a new VPP self-scheduling strategy 
composed of MH-IGDT, ENNC, and bi-directional decision-
making approach. To optimize the uncertainty horizons of un-
certain parameters such that the predetermined profit is guaran-
teed, the MH-IGDT is proposed. The ENNC framework, com-
prising ANNC and lexicographic optimization, is proposed as 
a new MOMP solution approach to solve the MH-IGDT mod-
els. The ANNC part of the proposed ENNC ensures the effi-
ciency and even distribution of Pareto optimal solutions while 
the lexicographic optimization optimizes the ranges of the un-
certainty horizons. Finally, the bi-directional decision maker 
comprising ex-ante performance evaluation and FBDP is pro-
posed to find the most profitable and feasible path among risk-
seeker/neutral/averse states over the scheduling horizon such 
that the VPP inter-temporal constraints are satisfied. Thus, the 
two main questions of VPP (i.e., deciding to act as either risk-
seeker or risk-averse participant in the market and determining 
the level of risk-seeking/averting) are adaptively replied for 
each hour of the scheduling horizon in this paper. 

APPENDIX A 

    For the sake of clarity, the bi-level risk-averse/seeker self-
scheduling models (5)/(6) are written as (A1)-(A5)/(A6)- 
(A10): 𝑀𝑎𝑥𝛯 ∈ {£(�̅�+Δ𝛩) ∪ (𝐴3)}  (�̌�𝜆 , �̌�𝑤 , �̌�𝑙) (A1) 

where 
(5b) (A2) ℱ̌∗(�̅� + Δ𝛩, 𝛯) ≥ (1 − 𝑈𝐵). ℱ̅ (A3) ℱ̌∗(�̅� + Δ𝛩, 𝛯) = 𝑀𝑖𝑛Δ𝛩    ℱ(�̅� + Δ𝛩, 𝛯) (A4) 

subject to:  
(5d)-(5f) (A5) 
 𝑀𝑖𝑛𝛯 ∈ {£(�̅�+Δ𝛩) ∪ (𝐴8)}  (�̂�𝜆 , �̂�𝑤 , �̂�𝑙) (A6) 

where 
(5b) (A7) ℱ̂∗(�̅� + Δ𝛩, 𝛯) ≥ (1 + 𝑈𝐵). ℱ̅ (A8) ℱ̂∗(�̅� + Δ𝛩, 𝛯) = 𝑀𝑎𝑥Δ𝛩    ℱ(�̅� + Δ𝛩, 𝛯) (A9) 

subject to:  
(6d)-(6f) (A10) 

where the constraints (5c)/(6c) are replaced by (A3)-(A4)/ 
(A8)-(A9) in the above formulations to better discriminate the 

upper and lower levels. Based on these formulations, the up-
per/lower-level problems of the bi-level optimization (5) are 
(A1)-(A3)/(A4)-(A5) and the upper/lower-level problems of 
the bi-level optimization (6) are (A6)-(A8)/(A9)-(A10). The 
objectives of the upper-level problem in (5)/(6) are the uncer-
tainty horizons specified in (A1)/(A6). The constraints of the 
upper-level problem in (5)/(6) include the solution space con-
straints (5b) and the admissible profit constraints (A3)/(A8). 
The decision variables of the upper-level problem in (5)/(6) are: 𝛯 = {(𝐼𝑢𝑡 , 𝑥𝑢𝑡 , 𝑦𝑢𝑡, 𝑃𝑢𝑡), ∀𝑢 ∈Ω𝐷; (𝐼𝑢𝑡𝑟 , 𝐼𝑢𝑡𝑠 , 𝑃𝑢𝑡𝑟 , 𝑃𝑢𝑡𝑠 ), ∀𝑢 ∈ Ω𝑆} 
 ∀𝑡 (A11) 

    The objective and constraints of the lower-level problems in 
(5)/(6) are the VPP profit specified in (A4)/(A9) and the 
bounded intervals of the uncertain parameters given in 
(A5)/(A10). The decision variables of the lower-level problems 
in (5)/(6) are the deviations of the uncertain parameters: Δ𝛩 = {Δ𝜆𝑏𝑡 , ∀𝑏; Δ𝑃𝑢𝑡 , ∀𝑢 ∈ Ω𝑊; Δ𝑃𝑙𝑡 , ∀𝑙} ∀𝑡 (A12) 

APPENDIX B 

The technical and economic parameters of dispatchable units 
are given in Table B1. The expected values of LMP, wind 
speed, and load of the generated scenarios for the ex-ante per-
formance evaluation method are given in Table B2. Also, the 
standard deviations of LMP, wind speed, and load in the gen-
erated scenarios are 0.15, 0.25, and 0.05 of their hourly forecast 

values. Determination of the balancing prices 𝜆𝑏𝑡𝜁,+
/𝜆𝑏𝑡𝜁,−

 depends 

on the electricity market regulation. For instance, the determi-

nation of 𝜆𝑏𝑡𝜁,+
/𝜆𝑏𝑡𝜁,−

 in the Iberian Peninsula electricity market 

and Iran's electricity market has been described in [35] and 

[36]. As discussed in [35], there should be 𝜆𝑏𝑡𝜁,+ ≤ 𝜆𝑏𝑡𝜁
 and 𝜆𝑏𝑡𝜁,− ≥ 𝜆𝑏𝑡𝜁

. Here, in the generated scenarios for the ex-ante per-

formance evaluation method, 𝜆𝑏𝑡𝜁,+ = 0.5𝜆𝑏𝑡𝜁
 and 𝜆𝑏𝑡𝜁,− = 2𝜆𝑏𝑡𝜁

 

are considered. 
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