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Abstract

Standard setting is an inherent part of pass/fail decisions in assessment. Although various standard setting methods are available,

they all have their limitations and no method provides a golden solution to all our standard setting headaches. Somemethods require

potentially labor-intensive standard setting panels of judges who have specific knowledge. Other methods require student cohorts of

‘sufficient’ size. However, small cohorts are quite prevalent in medical programs across the globe, and standard setting panels are

not always feasible due to logistic or financial constraints or may result in inadequate judgments due to bias or a lack of specific

knowledge. This manuscript presents a new standard setting method, which is based on the Bayesian principle of updating our

knowledge or beliefs about a phenomenon of interest with incoming data, uses information that is not considered in methods

already available and can be applied to both small and larger cohorts regardless of whether standard setting panels are available. As

demonstrated in this manuscript through a worked example, the new method is easy to implement and requires only a minimum of

calculations which can be done in zero-cost, user-friendly Open Source software. Options for future research comparing different

standard setting methods are discussed.

© 2020 King Saud bin Abdulaziz University for Health Sciences. Production and Hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Standard setters do not have it easy. Although we

have quite a variety of standard setting methods at our

disposal, there is no gold standard method that pro-

vides a solution for all standard setting problems.

Whichever method we choose, we face problems. For

example, the Angoff method and modifications thereof

(e.g.,1e6) require potentially labor-intensive standard

setting panels of judges who have a clear understand-

ing of the concept of ‘borderline student’. Beuk's

method7 assumes that each judge has an opinion of

what the cut-off score or pass mark should be and what

pass rate should be expected. The Hofstee method8

assumes that judges have specific knowledge of mini-

mum and maximum acceptable cut-offs and fail rates

and in practice cut-off scores do not always fall within

the defined boundaries. Other methods require suffi-

ciently large cohorts9,10 and/or the assessment in

question to be organized in a very particular way and to

result in outcomes that reasonably meet specific
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features.11 However, small cohorts are quite prevalent

in medical programs across the globe, standard setting

panels are not always feasible due to logistic or

financial constraints or may result in numbers that have

no real empirical basis, and assessment data do not

always adhere to specific features required for other

standard setting methods to be used.

This manuscript presents a new standard setting

method, which is based on Bayesian statistics,12 uses

information that is not considered in methods already

available and can be applied to both small and larger

cohorts regardless of whether standard setting panels

are available. As demonstrated in this manuscript

through a worked example, the new method is easy to

implement and requires only a minimum of calcula-

tions which can for example be done in zero-cost, user-

friendly Open Source software called JASP.13

Although the example focusses on setting a standard

with multiple-choice or other single best answer

questions (SBAQs) that can be coded as either ‘correct’

or ‘incorrect’ (i.e., a dichotomous decision for each

question) for the ease of introduction, this new method

can be generalized to other types of assessments as

well.

Bayesian statistics in a nutshell

Just like in everyday life, Bayesian statistics is

about updating our knowledge or beliefs about a phe-

nomenon of interest, say X, as data is coming in. At

any given point in time, our knowledge or beliefs about

X are expressed in a probability distribution of possible

outcomes of X. In the absence of any empirical data,

quite a variety of outcomes of X may be likely, but

with more data coming in, some outcomes become

more likely while other outcomes become less likely.

Very simply put, Bayesians refer to the probability

distribution of X before seeing the data as the prior

distribution, which is then updated with data coming in

to obtain the posterior distribution or the probability

distribution of X after seeing the data. However, as in

everyday life, the Bayesian updating process is

continuous; in the words of Lindley14 (p. 2), “today's

posterior is tomorrow's prior.” In the simplest case, the

outcome of interest is dichotomous, for example

‘Correct’ (success) vs. ‘Incorrect’ (failure) perfor-

mance of a SBAQ. The probability distribution to be

used for updating is then a so-called Beta distribution

with two parameters: the number of successes (a) and

the number of failures (b). We denote this as: Beta(a,b).

In the absence of any knowledge or belief about the

outcome of interest, the appropriate Beta distribution is

Beta(1,1), which is a Uniform (i.e., rectangular)

probability distribution extending from 0 to 1 (i.e.,

from 0% to 100% success). This distribution has a

mean and median of 0.5 (i.e., 50% success) and a 95%

credible interval (the Bayesian counterpart of the

Frequentist confidence interval, which is also called

posterior interval) of [0.025; 0.975]. When we observe

data, outcomes in some areas of the 0e100% range

become more likely while outcomes in other areas of

the 0e100% range become less likely. Let us look at

this with an example of coin tossing, where ‘Heads’

represents success and ‘Tails’ represents failure.

Coin tossing as an example

To assess if coin X is ‘fair’, we toss it several times

and count the number of successes and failures. In the

absence of any data on coin X, we use Beta(1,1) as

prior distribution. Suppose, we throw ten times and

obtain six successes and four failures. The resulting

posterior distribution is Beta(1þ6,1þ4), hence

Beta(7,5). This distribution has a median of 0.588 and

a 95% credible interval of [0.308; 0.833]. Suppose, we

repeat this coin tossing study nine times, meaning that

we end up with a total of 10 sets of 10 tosses, or 100

observations in total. If prior to reading this article you

never heard of Bayesian statistics before, and you find

this process difficult to understand, do not worry, for

Table 1 presents the outcomes for each of ten rounds

along with the prior and posterior distribution for the

different rounds.

Had we considered the 10 times 10 tosses as one

study of 100 tosses, we would have obtained the same

posterior distribution: Beta(1,1) updated with 54 suc-

cesses and 46 failures (our data) results in a

Beta(55,47) posterior distribution. This posterior

Table 1

Prior and posterior distribution for the proportion of success (Heads)

for each of ten rounds in the coin tossing study.

Prior: Beta(a,b) Data Posterior: Beta(a,b)

a (success) b (failure) Successes Failures a (success) b (failure)

1 1 6 4 7 5

7 5 5 5 12 10

12 10 7 3 19 13

19 13 5 5 24 18

24 18 5 5 29 23

29 23 7 3 36 26

36 26 5 5 41 31

41 31 4 6 45 37

45 37 4 6 49 43

49 43 6 4 55 47
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distribution has a median of 0.539 and a 95% credible

interval of [0.442; 0.635]. The median of the posterior

distribution is commonly used as a point estimate of

the outcome of interest and is almost equal to the

observed proportion of success (0.54); it is slightly

pulled towards 0.5 and more so with the observed

proportion approaching either 0 or 1 but more closely

approaches the observed proportion with more

observations.

The rationale behind the latter is that even if our

outcomes are as extreme as 0% or 100%, we will only

gain more confidence in outcomes towards either of

these extremes with increasing amounts of data. If

Lecturer A claims that “all students from this university

got drunk last night”, Lecturer B asks “how did you

estimate this?”, and Lecturer A responds “well I asked

a random sample of three students”, we do not have

much confidence in the estimate of 100% of the stu-

dents being drunk, or any extreme estimate close to

that. This situation would translate in a

Beta(1þ3,1þ0) ¼ Beta (4,1) posterior distribution,

which is a distribution with a median of 0.841 and a

95% credible interval of [0.398; 0.994]. However, if

Lecturer A's random sample comprised 100 students,

all of which got drunk, our confidence in a near-100%

estimate would be much larger; the resulting posterior

distribution would be Beta(101,1), which has a median

of 0.993 and a 95% credible interval of [0.964; 1.000].

These and other numbers from different Beta distri-

butions can be easily obtained in JASP.13

Applying the coin tossing example to item

performance

Mathematically, N number of students responding

to k number of items can e to some extent e be

compared to R rounds of k number of coin tosses. In

other words, the 10 rounds of 10 coin tosses could also

be thought of as 10 students responding to a set of 10

items. While the different rounds of coin tossing all use

the same coin, in the case of items it would be 10

students responding to the same set of 10 items. Just

like the Beta(55,47) distribution constitutes the poste-

rior distribution after the 100 tosses in the coin tossing

study, we can derive a similar Beta distribution for the

set of items answered by the group of students. The

median and 95% credible interval of this Beta distri-

bution can then be used to estimate the proportion of

correct response for a given set of items to be put in an

exam. Under the assumption that there are no large

differences between cohorts of students, we can even

derive a Beta posterior distribution if different items

are used in different cohorts or there is only a partial

overlap in items across cohorts.

Consider the following situation. For a cohort of

N ¼ 23 students, we are creating an exam of 100

SBAQs, drawing from an item bank of SBAQs used in

exams in the previous three cohorts, which were of size

N ¼ 20, N ¼ 25, and N ¼ 30, respectively. Suppose, we

use 25 items that were used only in the cohort of

N ¼ 20, 25 items that were used in the cohort of

N ¼ 20 and in the cohort of N ¼ 25, 25 items that were

used in the cohort of N ¼ 25 and in the cohort of

N ¼ 30, and 25 items that were used only in the cohort

of N ¼ 30. To facilitate the understanding of the cal-

culations below as in the coin tossing study, Table 2

presents the numbers of successes and failures

observed for each of these in total 100 items.

Some may wonder if we cannot just calculate the

proportion of success for each item and take the

average of the 100 proportions calculated. For

instance, for item 1, the proportion of success is 11

successes divided by 20 observations or 0.550, and for

item 28 it is 27 successes divided by 45 observations or

0.600. Using this method results in a total of 59.4

across the 100 items, hence an average of 0.594.

However, one problem with this method is that we

Table 2

Numbers of successes (S) and failures (F) observed for each of 100

items.

Item S F Item S F Item S F Item S F

1 11 9 26 21 24 51 20 35 76 20 10

2 14 6 27 30 15 52 29 26 77 16 14

3 10 10 28 27 18 53 33 22 78 25 5

4 17 3 29 32 13 54 36 19 79 20 10

5 15 5 30 27 18 55 19 36 80 19 11

6 16 4 31 21 24 56 18 37 81 19 11

7 14 6 32 31 14 57 34 21 82 17 13

8 10 10 33 30 15 58 48 7 83 22 8

9 13 7 34 34 11 59 27 28 84 24 6

10 9 11 35 14 31 60 27 28 85 20 10

11 10 10 36 23 22 61 36 19 86 21 9

12 13 7 37 24 21 62 16 39 87 22 8

13 9 11 38 21 24 63 41 14 88 19 11

14 8 12 39 21 24 64 26 29 89 22 8

15 13 7 40 12 33 65 30 25 90 5 25

16 15 5 41 34 11 66 45 10 91 22 8

17 12 8 42 23 22 67 24 31 92 20 10

18 9 11 43 18 27 68 34 21 93 10 20

19 12 8 44 32 13 69 37 18 94 23 7

20 13 7 45 24 21 70 43 12 95 14 16

21 16 4 46 24 21 71 38 17 96 26 4

22 11 9 47 20 25 72 30 25 97 19 11

23 15 5 48 29 16 73 34 21 98 14 16

24 7 13 49 27 18 74 40 15 99 18 12

25 14 6 50 25 20 75 27 28 100 18 12

3J. Leppink / Health Professions Education xxx (xxxx) xxx

+ MODEL

Please cite this article as: Leppink J, In God We Trust, All Others Bring Data: A Bayesian Approach to Standard Setting, Health Professions

Education, https://doi.org/10.1016/j.hpe.2020.01.003



have more observations for some items than for other

items. An easy way to account for the latter is to count

the number of successes across 100 items and divide

that by the total number of observations for the 100

items together: 2197 successes divided by 3750 ob-

servations results in an average of 0.586. Following the

Bayesian procedure, 2197 successes and 1553 failures

results in a Beta(1þ2197,1þ1553) ¼ Beta(2198,1554)

posterior distribution, which is a distribution with a

median of 0.586 and a 95% credible interval of [0.570;

0.602]. Given the large number of observations, the

median of the posterior distribution and the average

obtained when accounting for unequal numbers of

observations across items are about the same.

Accounting for intra-class correlation

There is one problem with the coin tossing analogy.

Differences between students in knowledge of a given

topic contribute to an intra-class correlation (ICC) that

reduces the sample size from N times k to an effective

sample size somewhere in between N and k and should

be accounted for.15 Given N students responding to k

items, and an estimated ICC, the factor of difference

between N times k and the effective sample size (F)

can be calculated as follows:

F¼1þ ½ðk�1Þ* ICC�

Thus, larger values of k and higher ICCs contribute

to a stronger reduction in effective sample size. When

dealing with larger cohorts, ICC can be estimated from

the data using multilevel models,15 but when samples

are small ICC estimates often cannot be trusted and

therefore ICC needs to be estimated in another way. For

series of 100 or more SBAQs, ICC values in the [0.05;

0.10] range are common. Consequently, if we do not

have sufficient data to obtain accurate ICC estimates

from the data, we can use ICC ¼ 0.10 as a conservative

estimate. For k ¼ 100 and ICC ¼ 0.10, F ¼ 10.9. We

can recalculate the ICC-adjusted number of successes

(aICC) and number of failures (bICC) by dividing the

observed number of successes (a) and the observed

number of failures (b), respectively, by F. The resulting

posterior distribution is then Beta(1þaICC,1þbICC).

Doing so for the data at hand, where a ¼ 2197 and

b ¼ 1553, we find aICC ¼ 201.560 and bICC ¼ 142.477,

and a posterior distribution Beta(202.560,143.477),

which is a distribution with a median of 0.586 and a

95% credible interval of [0.533; 0.637].

If we were to deal with a situation where ICC is likely

to be larger than 0.10 (uncommon but nevertheless

possible), F would be larger. For instance, for k ¼ 100

and ICC ¼ 0.20, F ¼ 20.8. The resulting posterior dis-

tribution would then be Beta(106.625,75.663), which is a

distribution with median 0.585 and a 95% credible in-

terval of [0.513; 0.655]. Note that the median of the

distribution remains almost the same, and even the 95%

credible interval is not that different from the one

assuming ICC ¼ 0.10.

Setting the standard

The median of the posterior distribution provides a

straightforward statistic for standard setting purposes,

and the 95% credible interval expresses the degree of

uncertainty around that statistic. However, using the

posterior distribution median itself as a standard is

problematic as it may well result in a substantial pro-

portion of sufficiently competent students failing the

exam. If we agree that the average student is suffi-

ciently competent and we only want not sufficiently

competent students to fail the exam, we need a

multiplier to arrive from the posterior distribution

median to the pass mark that allows for some deviation

downward from the mean but simultaneously mini-

mizes the risk of not sufficiently competent students

passing the exam. If we use 0.8 (i.e., 80%) as multi-

plier, a posterior distribution median of 0.625 results in

a pass mark of 0.500 (50%) and a posterior distribution

median of 0.500 results in a pass mark of 0.400 (40%).

Although these pass marks appear low, pass marks are

calculated in the light of the relative difficulties of

items. Larger proportions of relatively difficult items

result in a lower posterior distribution median and

should therefore result in a somewhat lower pass mark.

Multipliers larger than 0.8 could come at the cost of a

considerable proportion of sufficiently competent stu-

dents failing the exam, whereas multipliers smaller

than 0.8 could come at the risk of a rather substantial

proportion of not sufficiently competent students

passing the exam. Using 0.8 as multiplier, a posterior

distribution median of 0.586 results in a pass mark of

0.469 (46.9%).

Some readers may wonder what we should do if

some of the items in an exam for a new cohort have not

been used before, and we therefore have no perfor-

mance data available. The answer to this is that items

for which we have no performance data add neither

successes nor failures and thus do not contribute to the

posterior distribution. This will result in a wider 95%

credible interval, and especially in the case of small

numbers of observations, a posterior distribution
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median slightly pulled towards 0.5 (e.g., see coin

tossing study). This is reasonable, because we simply

have less information about our set of items if we have

no performance data about some items. If we had only

new items, hence no item performance data at all, the

posterior distribution would be Beta(1,1), which has a

median of 0.500, and hence the standard would be set

at 0.400 (40%).

Although the example used in this manuscript is one

of dichotomous outcomes, the method introduced in

this manuscript can be generalized to other types of

outcome variables; we will need to use different types

of prior distributions (e.g.,15,16), but the basic idea of

updating our prior distribution with data coming in

remains the same. Another implication of this is that,

while the example in this article focusses on knowl-

edge tests, the method can also be applied to skills tests

such as objective structured clinical examinations or

procedural tests in the workplace.

Potential concerns and challenges with this new

method

As for any standard setting method, clear concerns

and challenges can be identified. A great feature of

peer review is that questions and concerns can be

shared by the reviewers of a manuscript. In the case of

this manuscript, which proposes a new method for

standard setting, the reviewers raised a series of very

important questions about, concerns with and argu-

ments against this new method. This paragraph sum-

marizes these questions, concerns, and arguments with

a concise response, which in some cases is a temporary

response because future research will have to shed

more light on the matter as discussed in the next

paragraph.

Point 1/10: Since this method differs from all estab-

lished standard setting methods, is this new method

really a standard setting method?

Some scholars hold the opinion that methods like

the new method proposed in this article do not qualify

as standard setting methods. In their view, standard

setting inherently involves having subject matter ex-

pects provide ratings to determine cut-off scores and

this is generally accomplished using one of three

general categories of methods: reviewing test items or

groups of test items (test-centered methods), reviewing

candidate work or giving ratings on how examinees

would be expected to perform (examinee-centered

methods) or compromise methods which usually

involve providing judgments about the percentage

correct and percentage of examinees expected to pass.

The new method proposed in this article does not fall

into any of these categories, because in the words of

William Edwards Deming (1900e1993), “Without

data, you are just another person with an opinion” and

“In God we trust; all others bring data.”Angoff,

Hofstee, Beuk and variants thereof heavily rely on so-

called ‘expert’ opinions. But who tell us they are ex-

perts? The experts!

Several scholars are against empirical methods such

as Cohen9 or modified Cohen,10 in which the fail/pass

cut-off score is determined by taking a multiplier from

the 95th9 or 90th10 percentile of the score distribution

of a student cohort at hand, because of the normative

character of percentiles. However, contrary to tradi-

tional normative methods, where a fixed proportion of

students can be expected to fail the exam, the pro-

portion of students failing with Cohen or modified

Cohen can vary across exams and can be zero if there

is there relatively little dispersion in scores within the

cohort at hand. Although Cohen and modified Cohen,

like any standard setting method, have their issues as

well, they do not rely on assumptions of so-called

expert judgments resulting in meaningful and accu-

rate cut-off scores. Although contrary to Cohen and

modified Cohen, the new method proposed in this

article uses historical performance data instead of the

performance of a cohort at hand, these methods have in

common that they use actual performance data instead

of data-absent ‘expert’ judgments.

Point 2/10: What is the underlying philosophy of the

paper when it comes to item difficulty and the

appropriate standard?

Every item in an exam can be thought of as a battle

between the student and the item. Using quality items,

(1) given the knowledge level of a student, the more

difficult the item the higher the probability of the item

winning the battle and (2) given the difficulty level of

an item, the more knowledgeable the student the higher

the probability of the student winning the battle. If a

student's knowledge level is the same as the level of

difficulty of an item, both the student and the item have

a probability of winning the battle of 50% (i.e., 0.50).

Usually, exams are composed such that there are more

items responded correctly by 50e70% of the students

than there are items responded correctly by a much

smaller or a much larger percentage of students in a

cohort, and the average proportion of items responded

correctly in a cohort of students lies around 60% (0.6).
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Students performing around the average, at least in

medical schools, are usually students who have suffi-

cient knowledge (or skill, where skill is assessed) and

should therefore be placed above the fail/pass cut-off

score for an exam. Borderline performance is usually

found a standard deviation or so below the average.

Using modified Cohen, in which the fail/pass cut-off

score is 65% of the 90th percentile, we usually find a

cut-off score of nearly 80% of the average perfor-

mance. In programs where cohort differences are

small, the average performance of a new cohort will

not differ much from that averaged across cohorts for

which we have historical data. If a new cohort is much

better than previous cohorts, the fail/pass cut-off

determined using historical data will probably result

in a lower proportion of students (and perhaps even

zero) failing the exam. Simultaneously, if a new cohort

is much worse than previous cohorts, the fail/pass cut-

off determined using historical data will probably

result in a higher proportion of students than usual

failing the exam. This marks an important difference

with Cohen and modified Cohen, where the standard

set entirely depends on the performance of a cohort at

hand and no historical data is used.

Point 3/10: Does the standard exist, but we do not

have much information to go on in small cohorts, or

are we always adjusting the appropriate standard as

expectations of performance/knowledge in different

areas of medicine develop over time?

Our expectations of knowledge and performance in

different areas of medical do develop over time and

empirical performance data serve as an important re-

ality check; if the latter demonstrate that performance

in cohorts of students is not up to standards, we may

want to reflect on the way we are teaching and/or

assessing in our programs, but failing larger numbers

of students just because higher expectations call for a

higher standard would be unfair to our students.

Point 4/10: Where does the 80% multiplier come

from?

The 80% multiplier is in line with the statistical

notion that even though modified Cohen does not use

the average score for setting the standard it normally

results in a fail/pass cut-off score of almost 80% of the

average performance. For the reader who wonders how

to arrive at this conclusion without giving a reference,

this can be easily checked with any statistical software

package by simulating score distributions for a number

of cohorts in line with what we commonly encounter in

exams: fairly symmetric with one fairly clear peak

somewhere around the average performance. Calculate

the 90th percentile, take 65% of that, and the resulting

score (i.e., the fail/pass cut-off in modified Cohen)

should be nearly 80% of the average of the distribution.

Some readers may wonder why if the multiplier of

80% is in line with modified Cohen, why not use

modified Cohen instead of the new method proposed in

this article. The reason for that is that modified Cohen

may be fine if we are okay relying on the current

cohort only and the cohort is sufficiently large, where

we have performance data from multiple previous co-

horts we have much more information about item

performance than we can derive from a current cohort,

we do not depend on the performance of a current

cohort, and the new method can be used in a mean-

ingful manner in smaller cohorts as well.

Point 5/10: What if the assumption about no large

differences between cohorts does not hold?

If among historical cohorts there is considerable

variation in performance, that probably indicates that

some cohorts are somewhat stronger than other cohorts.

Regardless of how much that cohort-to-cohort variation

is, if we carefully sample items used in previous cohorts

for the current cohort, we will use information from all

these cohorts to set an informative standard. If then it

turns out that the new cohort performs much better than

expected based on the historical data, this probably in-

dicates we are dealing with a relatively strong cohort

and it will in that case make sense to fail relatively few

students. Likewise, if the current cohort performs much

more poorly than expected based on the historical data,

this may well indicate that we are dealing with not such

a strong cohort where in that case more students can be

expected to fail. That said, the influence of cohort dif-

ferences and methods of sampling items for an exam for

a new cohort certainly constitute topics for further

research.

Point 6/10: It is widely known that prior distributions

can heavily influence results, and this is especially

problematic in standard-setting contexts because they

can introduce bias to cut scores. How does this new

method deal with this problem?

It is also widely known that prior distributions will

heavily influence estimates only if we have a very

small sample (e.g., three cohorts of five students, or a

statement like “all students from this university got
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drunk last night” being based on just a few students) or

use a much more informative prior distribution than we

should use. Neither is the case with the method pro-

posed in this article. Even though our cohorts are

smaller than what we usually encounter in medical

programs, all items from the different cohorts taken

together we have quite a bit of data (e.g., not three

cohorts of five students). The coin tossing example

shows that even with only 100 tosses the difference

between the posterior median and the observed prob-

ability of success is very small (in the third decimal),

and despite the small cohort sizes the number of ob-

servations we have on our set of items by far exceeds

100. Concerning the prior distribution, the Beta(1,1)

distribution assumes no prior knowledge and is there-

fore widely recognized and used as a default prior

distribution (e.g.,13,17e19), because any kind of bias

introduced is very minimal at most. For that matter, a

biased panel incorrectly assuming good knowledge

about how students should perform (e.g., in Angoff

panels, what percentage of ‘borderline’ students would

be expected to respond item X in exam A correctly)

could be expected to result in much more bias in

standards set than a method that uses actual perfor-

mance data and a default prior distribution that as-

sumes no prior knowledge.

Point 7/10: Should Bayesian methods not only be used

if one has a lot of prior knowledge about examinee

performance and Bayesian methods are also being

used to score the exam?

Researchers have been using Bayesian methods to

practice statistics regardless of how students are taught

or are assessed, regardless of what people eat or how

they sleep, and both in the presence and absence of

prior knowledge about the phenomenon of interest.

Bayesian methods are intuitive because they work like

the human mind: we update our knowledge or beliefs

as new information comes in. The thought that we

could not use Bayesian methods unless we have a lot of

prior knowledge would be like saying that it is point-

less to teach medical students about any kind of

medical topic unless they come to class with a lot of

prior knowledge about the topic already. Reference or

default priors have been agreed exactly to enable

Bayesian analysis where little or even no prior

knowledge about the phenomenon is available, just like

most teaching of new topics in a medical program have

been designed to help students make the transition

from little to no knowledge about the for them new

topic to a state of being more knowledgeable.

Point 8/10: The approach is entirely normative, and

results will change when the test is easier or harder.

How is this defendable or fair?

The approach is neither normative in the sense of

traditional methods in which a fixed proportion of

students can be expected to fail nor in the way Cohen

methods work basing standards entirely on numbers

from a cohort at hand. Like with Cohen methods,

everyone meeting the standard and therefore passing

the exam is possible in this new method, but the

standard set does not depend on any numbers from a

cohort at hand; it uses data from previous cohorts only.

Results will indeed change when a test is easier or

harder, which makes sense. On the contrary, if an

easier and a harder test resulted in the same standard,

that would understandably raise concerns about the

group receiving the harder test being disadvantaged or

the group receiving the easier test being put in an un-

reasonable advantage. Besides, having historical per-

formance data in place, if we carefully sample items

used in previous cohorts for the current cohort, we can

produce exams that in terms of difficulty do not differ

that much from each other. Using judgment without

empirical data to compose exams may more easily

result in substantial exam-to-exam fluctuation in diffi-

culty than careful sampling based on historical data.

Point 9/10: What to do, with software or else, if

ICC ¼ 0.10 is not a realistic assumption?

Especially in sufficiently large exams (e.g., 100 or

more multiple-choice items) that cover a series of only

modestly related topics, ICC ¼ 0.10 is not an unrea-

sonable assumption. However, as the comparison be-

tween calculations assuming ICC ¼ 0, ICC ¼ 0.10 and

ICC ¼ 0.20 indicates, even for samples as small as the

ones in the example discussed in this article the pos-

terior median (from which 80% is taken to set the

standard) is virtually the same. ICCs of 0.20 or higher

are not common in large SBAQ exams, but if assessors

have solid (and preferably empirically supported) rea-

sons to assume that in the context they are working

higher ICCs are common, the formula can be used for

higher ICCs as well and the resulting corrected

numbers of successes and failures can be entered in

JASP or any other software that allows researchers to

obtain a distribution with a posterior median and 95%

credible interval. Generally speaking, the more his-

torical data we have available, either through more

historical cohorts or larger historical cohorts, the less

the posterior median will be affected by higher ICCs.
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That said, the question of the influence of ICC as-

sumptions on the posterior median and standard set

deserves further study.

Point 10/10: What if an exam is very difficult such that

the average student misses most of the questions:

should this student pass?

Especially with the use of historical data, with

which we can carefully sample our items for any new

cohort e or for any individual re-sitting student for that

matter e this scenario should never happen; instead,

we could sample such that we have a paper for which

historical data indicate an average performance of

around 62.5% and hence a standard of 50% (i.e., 80%

of 62.5%) would be defendable.

Future research

Based on the considerations in the previous section,

at least four themes for future research can be identi-

fied: comparisons of the new method with existing

methods, ICC assumptions, the sampling of items for a

new exam especially in the case of considerable cohort

differences, and the multiplier to arrive from posterior

median to a standard.

To start, we would need a series of studies that

would allow for direct comparison between the pro-

posed new method and existing methods that are

commonly used in our field, including Angoff,

Hofstee, Beuk, and (modified) Cohen. Choices of

methods at medical schools may be driven by personal

preference and financial/logistic means more than by

empirical studies comparing methods we can choose

from. Scholars whose opinion is that setting standards

by definition involves panels like in Angoff, Hofstee or

Beuk tend to not be in favor of (modified) Cohen or

other methods that use empirical data rather than

panels and may therefore not be in favor of the new

method proposed in this article either. Series of well-

designed studies involving direct comparisons be-

tween panel-based and data-based methods in different

types of programs, involving different kinds of students

and different types of exams, may help us to identify

conditions under which some methods may be

preferred over other methods. Until we accumulate that

body of research, any preference for one (type of)

method(s) over other (types of) methods may be

entirely based on personal opinion and/or financial/

logistic factors to be taken into account in a given

institution or program, and decisions which methods to

cover in handbooks on standard setting (e.g., to cover

panel-based methods but not Cohen) may be a matter

of sheer preference of the authors as well. Proponents

of panel-based methods may argue that setting a

standard always involves ‘expert’ judgment, but what

evidence have we got really to be confident that in the

absence of empirical data we are not just drawing a

line in the sand but set a standard that is appropriate?

To what extent do panel-based methods really result in

standards that are different from those set with data-

based methods like (modified) Cohen or the new

method proposed in this article? Should one of the

outcomes of future research be that panel-based

methods and data-based methods result in clearly

correlated standards with in individual exams mostly

minor if not trivial differences, that might well raise

the question why invest financial and logistic resources

for panels when we can achieve about the same results

with much less resource-intensive data-based methods?

Comparing calculations under ICC ¼ 0, ICC ¼ 0.1

and ICC ¼ 0.2 for the example discussed in this article

demonstrates that, even in a relatively small-sample

situation, regardless of the ICC we arrive at virtually

the same posterior median and (given a fixed multi-

plier, here 80%) fail/pass cut-off. With increasing

sample/cohort sizes, the influence of different ICC

assumptions on the posterior median and cut-off will

fade further; it is mainly for situations where we have

much less historical data than in the example discussed

in this article and/or with for large exams unrealisti-

cally high ICC values that we may see a substantial

influence of ICC assumptions on the posterior median

and cut-off. Future studies could result in guidelines

about desired minimum amounts of historical infor-

mation and ranges of ICCs for which the newly pro-

posed method works well. ICC values above 0.20 are

not common in large exams on medical knowledge but

may well occur in much smaller exams that focus on

very specific content. Simultaneously, smaller exams

tend to use less historical data than larger exams and

the less data available the more the influence of

different ICC assumptions on the outcomes. Therefore,

exam size may constitute another important factor to

consider in studies on the influence of ICC assump-

tions on the outcomes of the newly proposed method.

Exam size may also constitute an important factor

in studies revolving around any potential impact of

cohort differences on standards set and how item

sampling methods can help to reduce that impact. Until

further research indicates otherwise, one may expect

that carefully sampling items can help to reduce im-

pacts of cohort differences on standards. Besides, for

items that have been used in all or several previous
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cohorts, effects of cohort differences on the outcomes

may well be smaller than for items that have been used

in a single cohort only. Simultaneously, at exam level

e that is: the level at which the standard is set e effects

of cohort differences could be minimised by striving

for a careful balance of items used in different cohorts

in any new exam.

Finally, although 80% provides an intuitive multi-

plier to arrive from a posterior median to a standard,

future research can help to examine if 80% is indeed a

good multiplier or perhaps if there are conditions under

which different multipliers should be considered.

To conclude

The Bayesian method introduced in this manuscript

uses information for standard setting that is not

considered in methods already available and can be

applied to both small and larger cohorts regardless of

whether standard setting panels are available. As

demonstrated in the item performance example, this

new method is easy to implement and requires only a

minimum of calculations which can be done in zero-

cost, user-friendly Open Source software. It provides

a pragmatic approach to standard setting even when

limited performance data is available. The posterior

distribution median multiplied by 0.8 (80%) provides

an intuitive pass mark that can investigated further in

future studies, and the 95% credible interval provides

an indication of the degree of uncertainty around our

posterior distribution median. Future studies could

compare this method with existing methods on past

and future exams to acquire a better understanding of

how the cut-off scores acquired with this new method

correlate with those of existing methods, what are

possible effects of different ICC assumptions and

cohort differences of different magnitudes on the out-

comes, and what is the best multiplier to arrive from

the posterior median to a cut-off score.
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