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A Robust Coordinated Expansion Planning Model for

Wind Farm-Integrated Power Systems with Flexibility

Sources Using Affine Policies
Shahab Dehghan, Senior Member, IEEE, Nima Amjady, Senior Member, IEEE, and Petros Aristidou, Member, IEEE

Abstract—This paper presents a two-stage adaptive robust co-

ordinated generation and transmission expansion planning model

for a wind farm-integrated power system. Also, dynamic thermal

rating (DTR) systems, energy storage (ES) systems, and optimal

line switching (OLS) maneuvers are considered as various flexible

sources to enhance the flexibility of the power system in response

to uncertain variations of net system demand. The proposed

approach characterizes the uncertainty of demands, wind power,

and DTRs in each representative day by a polyhedral uncertainty

set. Additionally, the k-means clustering technique is used to obtain

upward/downward variations of correlated uncertain parameters

in each representative day and to construct the uncertainty set.

The proposed model is inherently intractable as it includes infinite

constraints modeling enforced techno-economic limitations for all

realizations of uncertain parameters. To resolve this limitation,

the proposed intractable model is recast as a tractable mixed-

integer linear programming (MILP) problem using affine policies.

The proposed approach is implemented on the Garver 6-bus and

IEEE 73-bus test systems. Simulation results illustrate its flexibility,

practicality, and tractability.

Index Terms—Dynamic Thermal Rating, Energy Storage, Plan-

ning, Robust Optimization, Switching, Wind Power.

NOMENCLATURE

A) Indices

b Index of buses.

d Index of demands.

l Index of lines.

line(r) Index of line for installing DTR system r.

o Index of representative days.

os Index of simulated daily profiles.

r Index of DTR systems.

r(l)/s(l) Index of receiving/sending bus of line l.
s Index of ES systems.

t/t′ Index of hours.

u Index of thermal units.

w Index of wind farms.

B) Parameters

eoco Expected operation costs of representative day o
($).

emax
s /emin

s Maximum/minimum capacity of ES system s
(MWh).

e0s Initial stored energy of ES system s (MWh).

icl Annualized installation cost of line l ($).

icr Annualized installation cost of DTR system r
($).

ics Annualized installation cost of ES system s ($).
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icu Annualized installation cost of thermal unit u ($).

icw Annualized installation cost of wind farm w ($).

ml A sufficiently large positive number.

nE Number of constraints in (2b).

nU Number of elements in U .

ocu Operation cost of thermal unit u ($/MWh).

ocw Operation cost of wind farm w ($/MWh).

pcmax
s /pdmax

s Maximum charging/discharging rate of ES sys-

tem s (MW).

p̄dto Forecasted demand d in hour t of representative

day o (MW).

p̂−dto/p̂
+
dto Downward/upward variation range of p̃dto (MW).

pmax
l Capacity (i.e., static rating) of line l (MW).

∆p̄lto Forecasted increase in capacity of line l in hour

t of representative day o.

∆p̂−lto/∆p̂+lto Downward/upward variation range of ∆p̃lto
(MW).

pmax
u Capacity of thermal unit u (MW).

p̄wto Forecasted power production of wind farm w in

hour t of representative day o (MW).

p̂−wto/p̂
+
wto Downward/upward variation range of p̃wto

(MW).

rdu/ruu Ramp-down/ramp-up limit of thermal unit u
(MW/h).

tic Total investment costs ($).

tocos Total operation costs of simulated daily profile

os for demands, wind power, and DTRs ($).

volb Value of lost demand at bus b ($/MWh).

yl Susceptance of line l (mho).

ρo Weighting factor of representative day o.

ςcs/ς
d
s Charging/discharging efficiency of ES system s.

θmax Maximum permitted value of θbto.

Υ Budget of uncertainty.

C) Sets

ΩB Set of buses.

ΩD Set of demands.

ΩDb Set of demands connected to bus b.

ΩL Set of lines.

ΩO Set of representative days.

ΩR Set of DTR systems.

ΩS Set of ES systems.

ΩSb Set of ES systems connected to bus b.

ΩT Set of hours of each representative day.

ΩU Set of thermal units.

ΩUb Set of thermal units connected to bus b.

ΩW Set of wind farms.

ΩWb Set of wind farms connected to bus b.

ΩΓ Polyhedral uncertainty set.
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ΩΓD Polyhedral uncertainty set of uncertain demands.

ΩΓR Polyhedral uncertainty set of uncertain wind

power.

ΩΓR Polyhedral uncertainty set of uncertain DTRs.

D) Variables

pbto Loss of demand at bus b in hour t of representa-

tive day o (MW).

p̃dto Uncertain demand d in hour t of representative

day o (MW).

plto Power flow of line l in hour t of representative

day o (MW).

∆p̃lto Uncertain increase in maximum capacity of line

l in hour t of representative day o.

pcsto/p
d
sto Charging/discharging power of ES system s in

hour t of representative day o (MW).

puto Power production of thermal unit u in hour t of

representative day o (MW).

pwto Power production of wind farm w in hour t of

representative day o (MW).

p̃wto Uncertain power production of wind farm w in

hour t of representative day o (MW).

xlto Switching status of line l in hour t of represen-

tative day o (1: closed; 0: otherwise)

xc
sto/x

d
sto Charging/discharging status of ES system s

in hour t of representative day o (1: charg-

ing/discharging; 0: otherwise).

zl Binary variable indicating installation status of

line l (1: installed; 0: otherwise).

zr Binary variable indicating installation status of

DTR System r (1: installed; 0: otherwise).

zs Binary variable indicating installation status of

ES system s (1: installed; 0: otherwise).

zu Binary variable indicating installation status of

thermal unit u (1: installed; 0: otherwise).

zw Binary variable indicating installation status of

wind farm w (1: installed; 0: otherwise).

θbto Phase angle of bus b in hour t of representative

day o (rad).

θrefto Phase angle of reference bus in hour t of repre-

sentative day o (rad).

σ,
∆plto,
p+dto, p

−
dto, Continuous auxiliary variables.

p+wto, p
−
wto,

∆p+lto,∆p−lto
E) Vectors and Matrices

E, J , Q Vectors of coefficients/requirements.

F , G, H , I , Matrices of coefficients.

q

U Vector of second-stage continuous independent

variables (i.e., ∀pcsto, ∀pdsto, ∀puto, ∀pwto).

Ua Matrix of adjustable second-stage independent

variables.

Un Vector of non-adjustable second-stage indepen-

dent variables.

V Vector of second-stage continuous dependent

variables (i.e., ∀pbto, ∀plto, ∀θbto).

Z Vector of first-stage binary variables (i.e., ∀xlto,

∀xc
sto, ∀xd

sto, ∀zl, ∀zr , ∀zs, ∀zu, and ∀zw).

γ Vector of uncertain parameters (i.e, ∀p̃dto, ∀p̃wto,

and ∀∆p̃lto).

I. INTRODUCTION

A. Motivation and Background

T
HE need for a more flexible power system has been

intensified in recent years due to the increasing integration

of intermittent renewable energy sources (RES) (e.g., solar

and wind parks) [1]. “Flexibility” refers to the capability of

optimally utilizing generation and transmission facilities in

power system aiming at adequately responding to any uncertain

variation in net system demand (i.e., any portion of system

demand not supplied by RES) [2]. Specifically, the power

system flexibility can be increased by providing higher ramp-

rates/ramp-ranges for power generations (e.g., by installing

energy storage (ES) systems) and providing higher ratings

for power flows (e.g., by installing dynamic thermal rating

(DTR) systems) [1], [3], [4]. Also, optimal line switching (OLS)

maneuvers may enhance power system flexibility. Hence, it is

viable to proficiently expand the existing power system and to

appropriately characterize uncertain variations in net system

demand aiming at attaining a higher flexibility.

Robust optimization (RO) is a proficient non-deterministic

optimization method recently used in the literature to charac-

terize different types of uncertain parameters and to obtain a

robust expansion plan for generation system [5], transmission

system [6]–[11], and both generation and transmission systems

[12], [13]. However, to the best of the authors’ knowledge, there

is no two-stage adaptive robust coordinated planning model for

flexible investment in new lines, DTR systems, ES systems,

thermal units, and wind farms considering OLS maneuvers.

B. Contributions

The main contributions of this paper are as follows:

• A coordinated generation and transmission planning

(G&TP) model is introduced for flexible investment in

new lines, DTR systems, ES systems, thermal units, and

wind farms considering OLS maneuvers.

• A two-stage adaptive robust approach is presented for the

proposed G&TP model to characterize the uncertainty of

demands, wind power, and DTRs within a polyhedral un-

certainty set. In addition, the k-means clustering technique

is used in this paper to obtain upward/downward variations

of uncertain parameters in each representative day based

on correlated daily patterns of uncertain parameters.

• The proposed two-stage adaptive robust model is reformu-

lated into a tractable mixed-integer linear programming

(MILP) problem by introducing proficient affine polices.

• A structural analysis as well as an out-of-sample analysis

are carried out to evaluate the flexibility and the robustness

of the proposed G&TP model, respectively.

C. Paper Organization

The rest of this paper is organized as follows. In Section

II, the main characteristics of the proposed G&TP model are

presented. In Section III, the deterministic G&TP (DG&TP)
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model is introduced. In Section IV, the two-stage adaptive robust

G&TP (RG&TP) model and its affine policies are presented. In

Section V, the DG&TP and RG&TP models are implemented

on the Garver 6-bus and the IEEE 73-bus test systems. Finally,

the main conclusions of the paper are summarized in Section

VI.

II. PROBLEM DESCRIPTION

The main characteristics of the proposed model are:

• The planning horizon is single period to attain a compro-

mise between accuracy and tractability.

• The patterns of hourly demands, wind power, and DTRs

are characterized by representative days to more accurately

evaluate the impact of ramp-rates/ramp-ranges on the

operation of ES systems, thermal units, and wind farms.

• The uncertainties pertaining to the patterns of demands,

wind power, and DTRs in each hour of every representative

day are characterized by a polyhedral uncertainty set. The

lower, nominal, and upper estimates of the uncertain param-

eters are obtained by the k-means clustering technique [14]

to consider the inter-temporal correlations of the uncertain

parameters.

• For the sake of brevity in presentation, all existing

and candidate equipment are considered as installation

candidates where the installation costs and binary status

variables for all existing equipment are set to 0 and 1,

respectively.

Note that the DG&TP model only incorporates the nominal

estimates of the uncertain parameters while the RG&TP model

incorporates the bounded intervals of the uncertain parameters.

III. THE PROPOSED DG&TP MODEL

The proposed DG&TP model is formulated as an MILP

optimization problem given below:

min
∑

l∈ΩL

icl · zl +
∑

r∈ΩR

icr · zr +
∑

s∈ΩS

ics · zs

+
∑

u∈ΩU

icu · zu +
∑

w∈ΩW

icw · zw

+
∑

o∈ΩO

∑

t∈ΩT

∑

u∈ΩU

ρo · ocu · puto

+
∑

o∈ΩO

∑

t∈ΩT

∑

w∈ΩW

ρo · ocw · pwto

+
∑

o∈ΩO

∑

t∈ΩT

∑

b∈ΩB

ρo · volb · pbto

(1a)

s.t.

pbto −
∑

s∈ΩSb

pcsto +
∑

s∈ΩSb

pdsto −
∑

l∈ΩL|s(l)=b

plto

+
∑

l∈ΩL|r(l)=b

plto +
∑

u∈ΩUb

puto +
∑

w∈ΩWb

pwto

=
∑

d∈ΩDb

p̄dto b ∈ ΩB , t ∈ ΩT , o ∈ ΩO

(1b)

0 ≤ puto ≤ pmax
u · zu u ∈ ΩU , t ∈ ΩT , o ∈ ΩO

(1c)

−rdu ≤ puto − pu(t−1)o ≤ ruu u ∈ Ω
U , t ∈ Ω

T , o ∈ Ω
O

(1d)

0 ≤ pwto ≤ p̄wto · zw w ∈ ΩW , t ∈ ΩT , o ∈ ΩO
(1e)

0 ≤ pbto b ∈ ΩB , t ∈ ΩT , o ∈ ΩO
(1f)

emin
s · zs ≤

t∑

t′=1

(

ςcs · pcst′o −
1

ςds
· pdst′o

)

+ e0s · zs ≤ emax
s · zs s ∈ ΩS , t ∈ ΩT , o ∈ ΩO

(1g)

24∑

t′=1

(

ςcs · pcst′o −
1

ςds
· pdst′o

)

= 0 s ∈ Ω
S , o ∈ Ω

O (1h)

0 ≤ pcsto ≤ pcmax

s · xc
sto s ∈ ΩS , t ∈ ΩT , o ∈ ΩO

(1i)

0 ≤ pdsto ≤ pdmax

s · xd
sto s ∈ ΩS , t ∈ ΩT , o ∈ ΩO

(1j)

0 ≤ xc
sto + xd

sto ≤ zs s ∈ ΩS , t ∈ ΩT , o ∈ ΩO
(1k)

plto
yl

−
(
θs(l)to − θr(l)to

)
≤ ml · (1− xlto)

l ∈ ΩL, t ∈ ΩT , o ∈ ΩO
(1l)

plto
yl

−
(
θs(l)to − θr(l)to

)
≥ −ml · (1− xlto)

l ∈ ΩL, t ∈ ΩT , o ∈ ΩO
(1m)

−pmax
l · xlto −∆plto ≤plto ≤ pmax

l · xlto +∆plto

l ∈ ΩL, t ∈ ΩT , o ∈ ΩO (1n)

0 ≤ ∆plto ≤ ∆p̄lto·zr|line(r)=l

l ∈ ΩL, t ∈ ΩT , o ∈ ΩO (1o)

0 ≤ ∆plto ≤ ∆p̄lto · xlto l ∈ ΩL, t ∈ ΩT , o ∈ ΩO
(1p)

xlto ≤ zl l ∈ ΩL, t ∈ ΩT , o ∈ ΩO
(1q)

− θmax ≤ θbto ≤ θmax b ∈ ΩB , t ∈ ΩT , o ∈ ΩO
(1r)

θrefto = 0 t ∈ ΩT , o ∈ ΩO
(1s)

The objective function (1a) minimizes: 1) the total installation

costs of new lines, DTR systems, ES systems, thermal units,

and wind farms, 2) the total operation costs of thermal units

and wind farms, and 3) the total costs of loss of demands.

Constraint (1b) ensures the nodal production-consumption

balance during the planning horizon. Constraint (1c) limits

the power production of every thermal unit between zero

and its maximum capacity. Also, constraint (1d) enforces

the ramp-limits of thermal units. Constraint (1e) limits the

power production of every wind farm between zero and its

available capacity (i.e., p̄wto) considering the wind farm spillage.

Constraint (1f) ensures the non-negativity of loss of demands.

Constraint (1g) limits the stored energy of each ES system

in every hour of each representative day within the allowable

limits. Also, constraint (1h) ensures that the stored energies

of each ES system at the initial and final hours of each

representative day are identical. Constraints (1i) and (1j) limit

the charging and discharging rates of ES systems, respectively.

Constraint (1k) is used to avoid simultaneous charging and

discharging of each ES system considering its installation

status. Constraints (1l)-(1m) and constraints (1n)-(1p) enforce

the power flow and the capacity of each line in every hour of

each representative day, respectively, where ml is a sufficiently

large positive number (i.e., |ml| ≥ 2 · θmax [15]). The dynamic

thermal capacity of any line equipped with DTR system is

typically higher than its static thermal capacity [16] and thus

the auxiliary variable ∆plto and the constraints (1n)-(1p) are

used to model this property. If any switchable line is closed (i.e.,

xlto = 1), constraint (1l)-(1m) and constraints (1n)-(1p) lead
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to plto = yl ·
(
θs(l)to − θr(l)to

)
and |plto| ≤ pmax

l + ∆plto,

respectively; otherwise, constraints (1l)-(1m) are neutralized

and constraints (1n)-(1p) lead to |plto| = 0. Also, if any

closed switchable line is equipped with DTR system (i.e.,

zr|line(r)=l = 1 and xltb = 1), constraints (1o) and (1p) lead

to 0 ≤ ∆plto ≤ ∆p̄lto; otherwise, ∆plto = 0. Constraint

(1q) avoids considering non-built lines closed. Constraint (1r)

bounds the permitted variation ranges of phase angles [15].

Also, constraint (1s) sets the phase angle of the reference bus

to zero. For notational brevity, the proposed DT&GP model in

(1a)-(1s) can be compactly rewritten in epigraph form as:

min
σ,Z,U

σ (2a)

s.t.

E · σ ≥ F ·Z +G ·U +H · V + I · γ + J (2b)

where the objective function (1a) and the constraints (1b)-(1s)

are represented as constraints (2b). For the DG&TP model, the

vector of uncertain parameters γ (i.e., p̃dto, p̃wto, ∆p̃lto) is

fixed on the forecasted values of the uncertain demands, wind

power, and DTRs (i.e., p̄dto, p̄wto, ∆p̄lto).

IV. ROBUST PLANNING MODEL

A. Uncertainty Characterization

In practice, the forecasted demands, wind power, and DTRs

(e.g., p̄dto, p̄wto, ∆p̄lto) are subject to uncertainty. Although

different types of uncertainty sets (i.e., box, polyhedral, and

ellipsoidal) can be considered in the proposed RG&TP model,

a polyhedral uncertainty set is used in this paper aiming at [17]–

[19]: 1) controlling the conservatism of the optimal solution, 2)

retaining the linearity of the robust counterpart, 3) using duality

in linear optimization to obtain a tractable robust counterpart by

means of affine policies. Accordingly, similar to other research

works in the area that use a polyhedral uncertainty set [5]–[14],

a polyhedral uncertainty set is presented here to characterize

the uncertainties pertaining to the patterns of demands, wind

power, and DTRs in each representative operating day by means

of the lower, nominal, and upper estimates of each uncertain

parameter:

ΩΓ =
{

ΩΓD ,ΩΓW ,ΩΓR

}

(3)

where

ΩΓD =







p̃dto = p̄dto + p+dto − p−dto ∀d, t, o
0 ≤ p+dto ≤ p̂+dto
0 ≤ p−dto ≤ p̂−dto






(4a)

ΩΓW =







p̃wto = p̄wto + p+wto − p−wto ∀w, t, o
0 ≤ p+wto ≤ p̂+wto

0 ≤ p−wto ≤ p̂−wto






(4b)

ΩΓR =







∆p̃lto = ∆p̄lto +∆p+lto −∆p−lto ∀l, t, o
0 ≤ ∆p+lto ≤ ∆p̂+lto
0 ≤ ∆p−lto ≤ ∆p̂−lto






(4c)

Also, constraint (5) can be added to the polyhedral uncertainty

set ΩΓ to control the conservatism of the optimal solution:

∑

d∈ΩD

(
p+dto
p̂+dto

+
p−dto
p̂−dto

)

+
∑

w∈ΩW

(
p+wto

p̂+wto

+
p−wto

p̂−wto

)

+

∑

l∈ΩL

(
∆p+lto
∆p̂+lto

+
∆p−lto
∆p̂−lto

)

≤ Υ t ∈ ΩT , o ∈ ΩO

(5)

The budget of uncertainty Υ in (5) can vary from zero to

the total number of uncertain parameters in each hour of every

representative day. By means of the budget of uncertainty Υ,

the size of the polyhedral uncertainty set can be controlled. For

notational brevity, ΩΓ can be compactly rewritten as follows:

ΩΓ = {γ ≥ 0 | q · γ ≤ Q} (6)

B. Robust Model Based on Affine Policies

The proposed RG&TP model can be compactly presented as

given below:

min
σ,Z,U

σ (7a)

s.t.

∀γ ∈ ΩΓ : ∃U ≥ 0 : E · σ ≥ F ·Z +G ·U

+H · V + I · γ + J
(7b)

Unlike the DG&TP model in (2a)-(2b) which only considers

the forecast values of the uncertain parameters γ (i.e., p̄dto,

p̄wto, ∆p̄lto), the proposed RG&TP model in (7a)-(7b) is

immunized against any realization of the uncertain parameters

γ belonging to ΩΓ. However, this optimization problem is

intractable since it includes infinite constraints because of

the universal quantifier in (7b) (i.e., ∀γ ∈ ΩΓ). To come up

with a tractable optimization problem, the following three-step

procedure is presented:

First Step: It is assumed that the independent operation

decisions are affine in γ as given below [19]:

U(γ) = U
n +U

a · γ (8)

Hence, the proposed RG&TP model in (7a)-(7b) can be

rewritten as:

min
σ,Z,Ua,Un

σ (9a)

s.t.

∀γ ∈ ΩΓ : E · σ ≥ F ·Z +G · (Un +U
a · γ)

+H · V + I · γ + J ; U
n +U

a · γ ≥ 0
(9b)

Second Step: This optimization problem with affine policies

in (9a)-(9b) is still intractable because of including infinite

constraints for all realizations of uncertain parameters. Thus,

it is reformulated to obtain a tractable optimization problem

immunized against the worst-case realization of the uncertain

parameters. It is noteworthy that the reformulated optimization

problem is feasible for all realizations of the uncertain parame-

ters as it is feasible for the worst-case realization of the uncertain

parameters. Hence, each constraint k for k = 1, ..., nE + nU

in (9b) (i.e., Ek · σ ≥ F k ·Z +Gk · (Un +Ua · γ) +Hk ·
V + Ik · γ + Jk for k = 1, ..., nE and Un

k +Ua
k · γ ≥ 0 for
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k = nE + 1, ..., nE + nU ) can be rewritten to be immunized

against the worst-case realization of γ as given below:

Ek · σ − F k ·Z −Gk ·Un −Hk · V − Jk−

ΘE

k
︷ ︸︸ ︷

max
∀γ∈ΩΓ

[(Gk ·Ua + Ik) · γ] ≥ 0 k = 1, ..., nE

(10a)

U
n
k −

ΘU

k
︷ ︸︸ ︷

max
∀γ∈ΩΓ

[−U
a
k · γ] ≥ 0 k = nE + 1, ..., nE + nU

(10b)

where the protection function ΘE
k in constraint (10a) and the

protection function ΘU
k in constraint (10b) find the worst-case

realization of γ by a maximization problem over ∀γ ∈ ΩΓ.

Therefore, this reformulation guarantees feasibility against any

realization of γ belonging to ΩΓ.

Third Step: Given a specific (Gk ·Ua + Ik) for k =

1, ..., nE , ΘE
k = max

∀γ∈ΩΓ

[(Gk ·Ua + Ik) · γ] with ΩΓ =
{
γ ≥ 0 | q · γ ≤ Q : Ψk

}
can be recast by duality theory

[20] as a minimization problem given in (11):

ΘE
k = min

∀Ψk∈ΩΨk

Q
′ ·Ψk

(11)

with

ΩΨk

=
{

Ψ
k ≥ 0 | q

′ ·Ψk ≥ (Gk ·Ua + Ik)
′ : γ

}

(12)

where Ψ
k and γ represent the vector of dual variables

corresponding to the constraints of ΩΓ in (6) and the constraints

of ΩΨk

in (12) for k = 1, ..., nE , respectively. Also, the symbol

(′) denotes the transpose of a matrix/vector. Consequently, each

constraint k for k = 1, ..., nE in (10a) can be rewritten as:

Ek · σ − F k ·Z −Gk ·Un −Hk · V − Jk−

Q
′ ·Ψk ≥ 0 k = 1, ..., nE

(13a)

q
′ ·Ψk ≥ (Gk ·Ua + Ik)

′ k = 1, ..., nE (13b)

where superscript/subscript k represents the kth column/row

of a matrix. Similarly, given a specific −Ua
k for k =

nE + 1, ..., nE + nU , ΘU
k = max

∀γ∈ΩΓ

[−Ua
k · γ] with ΩΓ =

{
γ ≥ 0 | q · γ ≤ Q : Λk

}
can be recast by duality theory

as a minimization problem given in (14):

ΘU
k = min

∀Λk∈ΩΛk

Q
′ ·Λk

(14)

with

ΩΛk

=
{

Λ
k ≥ 0 | q

′ ·Λk ≥ −U
a
k
′ : γ

}

(15)

where Λ
k and γ represent the vector of dual variables

corresponding to the constraints of ΩΓ in (6) and the constraints

of ΩΛk

in (15) for k = nE + 1, ..., nE + nU , respectively.

Consequently, each constraint k for k = nE + 1, ..., nE + nU

in (10b) can be rewritten as follows:

U
n
k −Q

′ ·Λk ≥ 0 k = nE + 1, ..., nE + nU (16a)

q
′ ·Λk ≥ −U

a
k
′ k = nE + 1, ..., nE + nU (16b)

By reformulating every constraint k for k = 1, ..., nE + nU ,

the RG&TP problem in (9a)-(9b) can be presented as an MILP

problem given below:

min
σ,Z,Ua,Un,Ψ≥0,Λ≥0

σ (17a)

s.t.

E · σ − F ·Z −G ·Un −H · V − J −
(
Q

′ ·Ψ
)′

≥ 0

(17b)

q
′ ·Ψ ≥ (G ·Ua + I)′ (17c)

U
n −

(
Q

′ ·Λ
)′

≥ 0 (17d)

q
′ ·Λ ≥ −U

a′
(17e)

where Ψ and Λ represent the matrices of dual variables. The

problem of infinite constraints is resolved by the reformulated

MILP form given in (17a)-(17e). Due to space limitations,

the extended formulation of the proposed RG&TP model is

presented as a separate supplementary document in [21].

V. CASE STUDIES

In this section, the proposed DG&TP and RG&TP models are

applied to the Garver 6-bus [22] and the IEEE 73-bus [23] test

systems. The patterns of demands and wind power in electric

reliability council of Texas (ERCOT) during 2016 [24], [25]

are used to derive representative days by means of the k-means

clustering technique [14]. Also, the pattern of DTR systems is

simulated by means of the weather data of Texas state during

2016 [25] and the IEEE standard 738 [26] and is used to derive

appropriate representative days. In all case studies, the values

of lost demands are obtained zero in the final solution, where

the penalization cost at each bus is equal to 1000 $/MWh (i.e.,

volb = 1000 $/MWh). All data sets are available online on [21].

Also, the CPLEX solver in general algebraic modeling system

(GAMS) is used to run all case studies on a windows-based

server with 120 Intel Xeon processors and 102 GB RAM.

A. Garver 6-Bus Test System

The modified Garver test system [22] includes 8 existing

lines, 10 existing thermal units, and 2 existing wind farms

connected to buses 1 and 2 as depicted in Fig.1. Moreover, 15

candidate lines, 15 candidate DTR systems, 12 candidate ES

systems, 12 candidate thermal units, and 12 candidate wind

farms are considered. Note that 2 identical candidate ES systems

and 2 identical candidate wind farms are considered at each bus.

Also, the uncertainty set includes 5+2+12+15 = 34 uncertain

parameters as there are 5 buses with uncertain demands, 2

existing and 12 candidate wind farms with uncertain power

productions, and 15 candidate DTR systems with uncertain

ratings. Hence, the budget of uncertainty Υ can vary between

[0,34]. In addition, the penetration level of wind farms is

assumed to be 30% of the installed capacity.

1) Structural Analysis: To highlight the impact of DTR

systems, ES systems, and OLS on enhancing the flexibility

of the power system and reducing the total expansion and

operation costs, a structural analysis is carried out here. In this

study, 12 representative days are considered for demands, wind

power, and DTRs. Also, identical patterns are considered for

representative days of power productions in both 100-MW and

200-MW wind farms as well as representative days of ratings

in 100-MW and 200-MW lines. For the sake of simplicity, the
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TABLE I
OPTIMAL SOLUTIONS IN THE STRUCTURAL ANALYSIS FOR THE GARVER 6-BUS TEST SYSTEM

Case
#

Built Lines
(From/To Bus)

Built DTR Systems
(From/To Bus)

Built ES Systems
(Bus)

Built Thermal
Units (Bus|Type)

Built Wind
Farms (Bus)

OLS
(From/To Bus)

Costs (M$)
Expansion Operation

1 (1-6),(5-6) - -
(1|1),(2|1),(3|1),

(4|1),(5|1)
2×(3),(4),2×(5) -

200.16 111.65
Total Costs: 311.81

2 (1-6),(3-6),(5-6) - (5)
(1|1),(2|1),(4|1),

(5|1)
(3),(4),2×(5) -

172.08 111.33
Total Costs: 283.41

3 (3-6),(5-6) (2-6),(4-6),(5-6) (5)
(1|1),(2|1),(4|1),

(5|1)
2×(1),(2),(5) -

169.40 112.22
Total Costs: 281.63

4 (3-6),(5-6) (2-6),(4-6),(5-6) (5)
(1|1),(2|1),(4|1),

(5|1)
(1),(4),2×(5)

(1-2),(1-4),(1-5),
(2-3)

169.40 111.85
Total Costs: 281.25

TABLE II
OPTIMAL SOLUTIONS VS. BUDGET OF UNCERTAINTY FOR THE GARVER 6-BUS TEST SYSTEM

Υ
Built Lines

(From/To Bus)
Built DTR Systems

(From/To Bus)
Built ES Systems

(Bus)
Built Thermal

Units (Bus|Type)
Built Wind

Farms (Bus)
OLS

(From/To Bus)
Costs (M$)

Expansion Operation

0 (3-6),(5-6) (2-6),(4-6),(5-6) (5)
(1|1),(2|1),(4|1),

(5|1)
(1),(4),2×(5)

(1-2),(1-4),(1-5),
(2,3)

169.40 111.85
Total Costs: 281.25

1 (2-3),(3-5),(3-6),(5-6)
(2-6),(3-5),(4-6),

(5-6)
(2),(4),(5)

(1|1),(2|1),(4|1),
(5|1)

(1),(4),2×(5) (1-2),(1-4),(1-5)
189.01 122.10
Total Costs: 311.11

2 (1-5),(1-6),(5-6)
(2-3),(2-6),(3-5),

(4-6),(5-6)
-

(1|1),(2|1),(3|1),
(4|1),(5|1)

(1),(2),(4),
2×(5)

(1-4),(1-5)
201.02 136.65
Total Costs: 337.67

3 (1-3),(1-6),(5-6)
(2-3),(2-6),(3-5),

(4-6),(5-6)
(5)

(1|1),(2|1),(3|1),
(4|1),(5|1)

(2),(3),(4),
2×(5)

(1-4)
210.74 152.57
Total Costs: 363.30

4
(1-5),(1-6),(2-3),

(3-5),(5-6)
(2-3),(2-6),(3-5),

(4-6),(5-6)
(2),(4),(5)

(1|1),(2|1),(3|1),
(4|1),(5|1)

(2),(3),(4),
2×(5)

-
229.62 169.59
Total Costs: 399.21

5 (3-4),(3-6),(5-6)
(1-5),(2-3),(2-6),
(3-5),(4-6),(5-6)

-
(1|1,2),(2|1),(3|1),

(4|1),(5|1)
2×(1),(2),2×(5) (1-4)

250.79 179.62
Total Costs: 430.40

Bus 3

Bus 2

Bus 5 Bus 1

Bus 4

TU

Bus 6

TU

TU

Thermal Unit

WF

Wind Farm

2×60 MW

2×120 MW

3×30 MW

1×60 MW

1×120 MW

1×480 MW

L2

L3

L4

TU

L1L5

WF

1×100 MW

WF

1×100 MW

Fig. 1. The modified Garver 6-bus test system.

budget of uncertainty Υ is set to zero. Accordingly, the optimal

solutions of the DG&TP and RG&TP models are identical.

Four different cases are considered in the structural analysis as

given below:

Case 1) Lines, thermal units, and wind farms are considered

as expansion candidates.

Case 2) Lines, thermal units, wind farms, and ES systems

are considered as expansion candidates.

Case 3) Lines, thermal units, wind farms, ES systems, and

DTR systems are considered as expansion candidates.

Case 4) Lines, thermal units, wind farms, ES systems, and

DTR systems are considered as expansion candidates with OLS.

The results of the structural analysis are given in Table I.

According to Table I, the total costs are decreased from 311.81

M$ in Case 1 to 281.25 M$ in Case 4 (i.e., 30.56 M$ decrease),

thanks to increasing flexibility from Case 1 to Case 4 by adding

ES systems in Case 2, DTR systems in Case 3, and OLS in

Case 4. The optimal expansion plans in both Case 3 and Case

4 are identical except for four 200-MW wind farms installed

at buses 1, 2, and 5 in Case 3 and buses 1, 4, and 5 in Case

4. Hence, the total expansion costs in both Case 3 and Case

4 are equal to 169.40 M$ while the total operation costs in

Case 4 are reduced by 0.37 M$ in comparison with Case 3 as a

result of OLS. In Case 4, OLS opens line (1-2) in representative

days 1 and 9, line (1-4) in representative days 6 and 8, line

(1-5) in days 2 and 7, and line (2-3) in representative day 4,

respectively.

2) Optimal Solution vs. Budget of Uncertainty: The proposed

RG&TP model is capable of controlling the robustness of the

optimal expansion plan by means of the budget of uncertainty.

Therefore, to evaluate the impact of varying the budget of

uncertainty on the optimal expansion plan, Υ is increased

in this study from 0 to 34 as its minimum and maximum

values, respectively. Similar to Case 4 in Section V-A1, lines,

DTR systems, ES systems, thermal units, and wind farms

are considered as expansion candidates with OLS. Also, 12

representative days are considered for demands, wind power, and

DTRs. According to Table II, increasing the value of Υ from 0

to 5 provides higher robustness for the optimal expansion plans

where the total expansion and operation costs are increased

from 281.25 M$ for Υ = 0 to 430.40 M$ for Υ = 5. However,

increasing the value of Υ from 5 to 34 has no effect on the

optimal expansion plan and its total costs as the robustness
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level are saturated. Hence, the effective variation range of Υ in

this study is from 0 to 5. A similar issue is discussed by other

robust planning tools in the literature [5], [11].

To further evaluate and compare the robustness/conservatism

level of the optimal expansion plans in Table II, the expected

total costs (i.e., ETC) during a one-year period is calculated

for every expansion plan by an out-of-sample analysis. The

out-of-sample analysis for every expansion plan simulates 365

chronological daily profiles for demands, wind power, and

DTRs using proficient autoregressive moving average (ARMA)

time series and calculates the total costs for 365 simulated daily

profile using a linear programming (LP) problem. In this study,

the ARMA models are derived using the profiles of demands,

wind power, and DTRs of Texas state in 2016, respectively

[24], [25]. Also, the Akaike information criterion (AIC) and

the Bayesian information criterion (BIC) are used to find the

optimal degrees of autoregressive (AR) and moving-average

(MA) lag parameters for ARMA models pertaining to demands,

wind power, and DTRs [27], [28]. Accordingly, ARMA(4,3),

ARMA(4,4), and ARMA(3,4) are found by AIC and BIC for

demands, wind power, and DTRs, respectively. It is worthwhile

to note that both AIC and BIC return identical optimal degrees

for AR and MA lag parameters. The out-of-sample analysis is

outlined in the Appendix. In Fig. 2, ETC versus Υ is illustrated.

Although the total expansion and operation costs in Table II are

monotonically increased by increasing Υ from 0 to 5, ETCs

are decreased by increasing Υ from 0 to 2 and increased by

increasing Υ from 2 to 5. Therefore, the optimum value of Υ,

leading to minimum ETC, is equal to 2 as depicted in Fig. 2.

In addition, it is seen that the ETC of the RG&TP model with

Υ = 2 is significantly lower than the ETC of the DG&TP

model which is obtained when Υ = 0.

3) Optimal Solution vs. Number of Representative Days: To

evaluate the impact of varying the number of representative days

(i.e., |ΩO|) on the optimal solution, the number of representative

days are increased from 1 to 12 where expansion candidates are

similar to Case 4 in Section V-A1 and the budget of uncertainty

is set to its maximum effective value (i.e., Υ = 5 as indicated

in Section V-A2). According to Table III, the total expansion

and operation costs are decreased by increasing the number

of representative days from |ΩO| = 1 to |ΩO| = 12 at the

expense of higher computation times. Its reason is that the

modeling accuracy of various operation conditions and the

characterization accuracy of uncertain parameters are increased

by increasing the number of representative days.

B. IEEE 73-Bus Test System

To evaluate the tractability of the proposed planning tool in a

larger test system, it is also implemented on the modified IEEE

73-bus test system [23] including 120 existing lines, 96 existing

thermal units, and 9 existing wind farms. Moreover, 30 candidate

lines, 30 candidate DTR systems, 14 candidate ES systems, 30

candidate thermal units, and 9 candidate wind farms are taken

into account for expansion. In addition, 30 different lines are

considered as candidates for switching maneuvers. Also, the

uncertainty set includes 51+9+9+30 = 99 uncertain parameters

as there are 51 buses with uncertain demands, 9 existing and 9

candidate wind farms with uncertain power productions, and

Fig. 2. Expected total costs versus the budget of uncertainty in the
Garver 6-bus test system.

30 candidate DTR systems with uncertain ratings. Hence, the

budget of uncertainty Υ can vary between [0,99]. In addition,

the penetration level of wind farms is assumed to be 10% of

the installed capacity. In this study, 4 representative days for

demands, wind power, and DTRs are considered. Moreover,

the budget of uncertainty Υ is increased from 0 to 99 as

its minimum and maximum values, respectively. The optimal

solutions for the IEEE 73-bus test system and its corresponding

expansion and operation costs versus the budget of uncertainty

are illustrated in Table IV. According to Table IV, increasing

the value of Υ from 0 to 15 provides higher robustness for the

optimal expansion plans where the total expansion and operation

costs are increased from 871.49 M$ for Υ = 0 to 1630.05
M$ for Υ = 15. Similar to Table II for the Garver 6-bus test

system, increasing the value of the budget of uncertainty after

its maximum effective value (i.e., Υ = 15) in Table IV has no

effect on the optimal solution. Also, the CPU time for this case

study is about 1 hour justifying the tractability of the proposed

planning model in larger test systems.

VI. CONCLUSION

In this paper, a two-stage adaptive robust planning tool based

on affine policies is introduced for optimal installation of new

lines, DTR systems, ES systems, thermal units, and wind

farms considering OLS maneuvers. The proposed approach

characterizes the uncertainty of demands, wind power, and

DTRs by means of a polyhedral uncertainty set. Also, a

structural analysis as well as an out-of-sample analysis are

performed to highlight the flexibility and the robustness of the

proposed planning tool. The structural analysis evaluates the

impact of utilizing DTR systems, ES systems, and switching

maneuvers on increasing the flexibility of the power system

and reducing the total cost while the out-of-sample analysis

evaluates the impact of varying the budget of uncertainty on the

robustness of the power system. Moreover, simulation results

justify the tractability of the proposed model on both small

and large test systems. In future works, the proposed planning

tool can be extended to model network losses and evaluate the

impact of DTR systems, ES systems, and OLS on them.

VII. APPENDIX

A. The Clustering Algorithm

Given 365 vectors of historical observations pertaining to 365
daily 24-hour patterns of demands, wind power productions,
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TABLE III
OPTIMAL SOLUTIONS VS. NUMBER OF REPRESENTATIVE DAYS FOR THE GARVER 6-BUS TEST SYSTEM

|ΩO|
Built Lines

(From/To Bus)
Built DTR System

(From/To Bus)
Built ES System

(Bus)
Built Thermal

Units (Bus|Type)
Built Wind

Farms (Bus)
OLS

(From/To Bus)
Costs (M$) CPU

Time (s)Expansion Operation

1
(1-5),(1-6),(3-4),

(3-6),(5-6)
(2-3),(2-6),(3-5)

(1),(2),(4),
2×(5)

(1|1),(2|1),(3|1),
(4|1),(5|1)

2×(1),(3),
(4),(6)

-
232.27 266.51

67
Total Costs: 498.78

4 (1-6),(5-6)
(2-3),(2-6),(3-5),

(4-6),(5-6)
-

(1|1),(2|1),(3|1),
(4|1),(5|1,2)

2×(2),2×(4),(5) (1-5)
249.22 195.52

183
Total Costs: 444.74

8 (3-4),(3-6),(5-6)
(1-5),(2-3),(2-6),
(3-5),(4-6),(5-6)

-
(1|1,2),(2|1),(3|1),

(4|1),(5|1)
2×(1),(2),2×(5) (1-2),(1-4)

250.79 180.28
427

Total Costs: 431.07

12 (3-4),(3-6),(5-6)
(1-5),(2-3),(2-6),
(3-5),(4-6),(5-6)

-
(1|1,2),(2|1),(3|1),

(4|1),(5|1)
2×(1),(2),2×(5) (1-4)

250.79 179.62
871

Total Costs: 430.40

TABLE IV
OPTIMAL SOLUTIONS VS. BUDGET OF UNCERTAINTY FOR THE IEEE 73-BUS TEST SYSTEM

Υ
Built Lines

(From/To Bus)
Built DTR Systems

(From/To Bus)
Built ES Systems

(Bus)
Built Thermal

Units (Bus|Type)
Built Wind

Farms (Bus)
OLS

(From/To Bus)
Costs (M$)

Expansion Operation

0 (2-6),(7-8) (16-17),(36-47),(56-58) - 3×(15|12),(55|100),(63|12) (8),(46) -
51.42 820.07
Total Costs: 871.49

3 (2-6),(7-8),(7-27)
(16-17),(35-37),(36-47),

(56-58),(60-61)
-

(2|20),(7|100),3×(15|12),
(61|197)

(7),(8) (2-4)
93.52 913.36

Total Costs: 1006.88

6 (2-6) (16-17),(36-47),(56-58) -
(1|20),(2|20),(13|197),

3×(15|12),(55|100),(61|197)
(7),(8),(45) (2-4)

147.69 1011.03
Total Costs: 1158.72

9 (2-6) (16-17),(26-28) -
(2|76),2×(13|197),(15|12),

(55|100),(61|197)
(7),(8),(45) -

193.73 1114.70
Total Costs: 1308.43

12 (2-6)
(16-17),(26-28),(36-47),

(56-58)
-

(2|76),2×(13|197),(15|12),
(55|100),2×(61|197),(63|12)

(7),(8),(45),(46) -
242.55 1223.75
Total Costs: 1466.30

15
(1-5),(2-6),(7-8),
(7-27),(11-13)

(11-13),(15-16),(16-17),
(26-28),(35-37),(36-37),
(36-47),(39-48),(40-41),

(56-58),(60-61)

(9)
(1|20),(2|20),(2|76),

(7|100),2×(13|197),5×(15|12)
(55|100),2×(61|197),(63|12)

(7),(8),(45),
(46)

-
297.62 1332.43

Total Costs: 1630.05

and DTR systems, the application of the k-means clustering

algorithm to obtain representative days can be summarized as

follows:

Step 1) Define the number of clusters to obtain representative

days.

Step 2) Initialize the centroid of all clusters by randomly

adding one historical observation to each cluster.

Step 3) Calculate the distance between the centroid of each

cluster and all historical observations. In this paper, similar to

[29] and [30], a quadratic distance is utilized.

Step 4) Add each historical observation to its nearest cluster

using distances calculated in Step 3.

Step 5) Update the centroid of all clusters using historical

observations added to each cluster in Step 4.

Step 6) Iterate between Steps 3-5 until all clusters remain

unchanged in two successive iterations.

After clustering all historical observations, the centroid

of each cluster represents nominal estimates for uncertain

parameters in one representative day. Additionally, the σ-

quantile and (1 − σ)-quantile of the empirical cumulative

probability distribution of historical observations in each cluster

represent the lower and upper estimates of uncertain parameters,

respectively. In this paper, it is assumed that σ = 0.05.

B. The Out-of-Sample Analysis

The out-of-sample analysis, calculating the expected total

costs (i.e., ETC), can be summarized as follows:

Step 1) Solve the RG&TP problem for a specific budget

of uncertainty value, find its total investment costs (i.e., tic),

and simulate 365 chronological daily profiles by means of the

ARMA models pertaining to demands, wind power, and DTRs.

Step 2) Set o = 1.

Step 3) Set os = 1, ignore investment costs in (1a)-(1s), and

fix its binary variables to their optimal values obtained from

Step 1 for the representative day o. Accordingly, the MILP

problem in (1a)-(1s) is recast into an LP problem minimizing

the total operation costs for every simulated daily profile of

demands, wind power, and DTRs.

Step 4) Solve the LP problem obtained from Step 3 and find

the total operation costs for the simulated daily profile os (i.e.,

tocos ) where p̄dto in (1b), p̄wto in (1e), and ∆p̄lto in (1o) and

(1p) are fixed on the realized values of demands, wind power,

and DTRs for the simulated daily profile os obtained from Step

1 (out of 365 chronological daily profiles).

Step 5) If os < 365, set os = os + 1 and go to Step 4.

Otherwise, calculate eoco =
365∑

os=1

tocos and go to Step 6.

Step 6) If o < |ΩO|, set o = o + 1 and go to Step 3.

Otherwise, calculate ETC = tic+
|ΩO|∑

o=1

eoco/|Ω
O| and report

its value.
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