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Intelligent Data-Driven Model for Diabetes
Diurnal Patterns Analysis

Mohammad R. Eissa, Tim Good, Jackie Elliott, and Mohammed Benaissa, Senior Member, IEEE

Abstract— In type 1 diabetes, diurnal activity routines
are influential factors in insulin dose calculations. Bolus
advisors have been developed to more accurately suggest
doses of meal-related insulin based on carbohydrate in-
take, according to pre-set insulin to carbohydrate levels
and insulin sensitivity factors. These parameters can be
varied according to the time of day and their optimal set-
ting relies on identifying the daily time periods of routines
accurately. The main issues with reporting and adjustments
of daily activity routines are the reliance on self-reporting
which is prone to inaccuracy and within bolus calculators,
the keeping of default settings for daily time periods, such
as within insulin pumps, glucose meters, and mobile ap-
plications. Moreover, daily routines are subject to change
over periods of time which could go unnoticed. Hence,
forgetting to change the daily time periods in the bolus cal-
culator could contribute to sub-optimal self-management.
In this paper, these issues are addressed by proposing
a data-driven model for identification of diabetes diurnal
patterns based on self-monitoring data. The model uses
time-series clustering to achieve a meaningful separation
of the patterns which is then used to identify the daily time
periods and to advise of any time changes required. Fur-
ther improvements in bolus advisor settings are proposed
to include week/weekend or even modifiable daily time
settings. The proposed model provides a quick, granular,
more accurate, and personalized daily time setting profile
while providing a more contextual perspective to glycemic
pattern identification to both patients and clinicians.

Index Terms— K-means clustering, bolus advisor, diurnal
patterns, glycemic patterns, diabetes

I. INTRODUCTION

People with type 1 diabetes are recommended to follow a

multiple daily dose insulin regimen utilizing insulin pens or

insulin pumps. People with diabetes determine the amount of

insulin manually or using bolus advisors. An insulin bolus

advisor (BA) is a decision support tool incorporated in many

commercial insulin pumps, a few glucose meters, and more
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recently some APPs to aid with calculating the required units

of meal-related insulin for injection [1], [2]. Users manually

input the amount of carbohydrate (CHO) they are about to

consume and the device advises a dose of insulin. Studies have

reported the usage of a BA is associated with improvements in

diabetes control as measured by glycated hemoglobin (HbA1c

levels) [2], [3], [4], [5]. Each bolus advisor relies on its settings

for advising the amount of insulin [6], and so improvements

in glycemic control are reliant on the accuracy of the setup

[7]. The settings in a BA involve the number of time-blocks,

periods of time-blocks, insulin sensitivity factor (ISF), insulin

to carbohydrate ratio (ICR) and blood glucose (BG) target

range. In some BAs, the setting up process begins by first

choosing the number of time-blocks (TB) in a day. The length

of each time-block is specified by choosing the start and end

time appropriately. As illustrated in Table I. In other BAs,

the number of time blocks and their periods are preset and

unmodifiable, thus limiting personalization.

TABLE I

EXAMPLE BOLUS ADVISOR TIME-BLOCK SETTINGS. EACH TIME-BLOCK

DEFINES ISF, ICR AND BG TARGET RANGE.

Time Blocks Target range ICR ISF

Start End Lower Upper Insulin CHO Insulin BG
(mmol/L) (mmol/L) (U) (g) (U) (mmol/L)

00:00 05:29 5 9 1 10 1 3
05:30 10:59 4 7 2 10 1 3
11:00 16:59 4 7 3 10 2 3
17:00 21:29 4 7 2.5 10 1 3
21:30 23:59 5 9 1.5 10 1 3

The ICR determines the required units of insulin for the

specified amount of CHO. Whereas the ISF is used for

correcting an out of range blood glucose (BG) reading, the

glucose targets are preprandial glucose levels defined as a

reference for the insulin correction calculation. Default settings

are often an ICR of 1 unit of insulin per 10 grams of CHO,

an ISF of 1 unit of insulin per 3 mmol/L of glucose, and

a blood glucose of target range of 4 mmol/L to 7 mmol/L.

However, any of these parameters and TBs may need to be

altered on an individual basis to achieve optimal glycemic

control. The following equation is a typical bolus insulin

calculation formula, although manufacturers may also include

other factors (e.g. psychological states).

bolus insulin = meal insulin+ correction insulin (1)

bolus insulin =
CHO

ICR
+

Current BG− Target BG

ISF
(2)



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2020

Due to the change in physiological and lifestyle states of

people with diabetes, the use of a BA for optimal benefit

requires attention and close review on a regular basis. Also,

trust in the BA is an important factor in patients’ engagement

with it [8]. If the settings are set correctly, the BA can

perform as a helpful tool for insulin administration; otherwise,

if the settings are inaccurate, the advice given will be sub-

optimal and lead to more episodes of low blood glucose

(hypoglycaemia) and high blood glucose (hyperglycaemia).

The fundamental component of BA settings is the time-

blocks. If the time-blocks are not personalized and modified

based on the diurnal activities of the patient, the remaining

settings of the BA cannot be tuned for optimal usage. A study

of 24 individuals using pumps reported that most BAs were set

on incorrect settings for patients [9]. To be practical, BAs are

constrained in terms of the number of settings and typically

have the same set of time-block based settings applied for

every day of the week. This is a limiting factor in personalizing

the BA for the day to day variations of daily routines that exist

in real life. Additionally to the baseline settings, users would

be expected to make their own adjustments for factors such

as periods of exercise, stress or illness.

The automated bolus advisor control and usability study

(ABACUS), a controlled randomized trial study, showed that

more frequent adjustments of the settings positively con-

tributed to glycemic outcomes [10]. Also, continuous adjust-

ments improved the consistency of the usage of BAs. How-

ever, manual analysis of the large amounts of self-monitoring

blood glucose (SMBG) data to identify time-blocks and their

corresponding settings is time-consuming and cumbersome.

Usually, the applied changes are a reactive intervention at

times where glycemic control is more challenging than normal.

Furthermore, among diabetes complications is progressive

vessel dysfunction, which contributes towards accelerating

physical ageing and over time is influential on diurnal physical

activities [11]. Hence, automatically tracking patients’ diurnal

patterns over time is of considerable importance in achieving

optimal glycemic control, thus reduced risk of complications.

Previous studies have utilized a case-based reasoning tech-

nique to provide adaptability and personalization of BAs [12],

[13], [14] [15]. The advised bolus is calculated based on

previously observed measures. This is achieved by defining

a similarity measure to identify a close match to the currently

inquired insulin dose by comparison to historical data. The

results were tested in a simulation and later as a mobile

application to evaluate acceptance by users. As of any case-

based reasoning system, it requires a huge database of many

variant cases and maintenance otherwise its performance is

lessened [16]. A neural network (NN) approach is proposed

for the personalization of the BAs in [17]. In the NN approach,

continuous glucose monitoring (CGM) and pump data are used

alongside individuals’ information such as weight, glucose rate

of change, and insulin sensitivity to determine the amount of

injected insulin for a meal. The method was examined in an

in-silico experiment under a single meal, single day, and noise

free scenario. In another study [18], various machine learning

techniques are utilized in bolus correction factor calculation.

The study was limited to reducing the postprandial hypo-

Fig. 1. The proposed model to identify diurnal patterns from timestamps
of the measurement events of routinely collected data in diabetes includ-
ing: the data preprocessing, K-means clustering, fitness measurements,
and the optimal suggested number of time-blocks

glycemia occurrences. However, in these proposed methods

for BAs, there is no evidence to show a benefit in comparison

to current BAs.

In this paper, an intelligent data-driven technique is pro-

posed that enables the clustering of the diurnal activities

of people with type 1 diabetes to suggest the number and

periods of time-blocks for BA settings automatically. The

automated aspect of the technique reduces the burden on both

clinicians and patients in terms of effort and time to analyze

and understand diurnal patterns for correct setting of time-

blocks within BAs. In addition, the proposed approach will

allow personalization of the BA settings in real-time based on

data. This to our knowledge is the first attempt at providing

real-time recommended settings of BAs that corresponds to a

patient’s diurnal patterns automatically.

II. METHODOLOGY

Patient daily measurement records such as BG, CHO, bolus

insulin, basal insulin, and ketones are used as inputs to the

system. Only the timestamps of the measurement events are

extracted and then transformed to be features. Therefore, the

methodology adopted in the analysis in this paper corresponds

to that of an unsupervised machine learning problem of uni-

variate time series data which produces clusters in daily time

(hours and minutes), as illustrated in Table II. The proposed

model is depicted in Fig. 1

TABLE II

AN EXAMPLE OF THE UNIVARIATE TIME SERIES DATA OF A PERSON

WITH TYPE 1 DIABETES. THESE DATA ARE RECORDED THROUGHOUT A

DAY AS AN EVENT AT A CERTAIN TIMESTAMP. ONLY THE GLUCOSE

MEASUREMENTS ARE MEASURED USING A GLUCOSE METER AND THE

REST OF THE DATA ARE MANUALLY ENTERED BY THE PARTICIPANT.

ALBEIT USUALLY USING A USER INTERFACE ON THEIR BG METER.

Record No Hour Minutes Result Type

1 0 11 6.3 mmol/L Glucose
2 0 11 40.0 g Carbs
3 0 11 4 U Bolus Insulin
4 10 27 15.5 mmol/L Glucose
5 10 27 3.0 U Bolus Insulin
6 14 18 7.4 mmol/L Glucose

A. Dataset

The data is the timestamp of a combination of everyday

measurements of BG, CHO, bolus insulin, basal insulin and

ketones. Data from 70 anonymized participants with type 1

diabetes enrolled in the DAFNEplus pilot trial (IRAS 208842)

alongside their meter’s BA settings were collected. The par-

ticipants utilized an Accu-Chek Aviva Expert glucose meter
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for data recording and bolus advice. The data recorded in the

glucose meter were used to produce an electronic logbook.

The proposed algorithm generated the equivalent BA time-

block settings for each logbook. For the application validation

of the experiment only two weeks of data was used to match

current clinical practice. For the other parts, exploring beyond

current limitations, a month of data was used.

B. Data preprocessing

Pre-processing is an important aspect of the proposed

technique to transform the time series data accurately and

efficiently. The time series data processed by the algorithm

is only the timestamp at which a measurement event has

occurred. For modeling and inference of timestamp data, a

transformation is needed to be able to apply the common linear

methods. Time has a circular characteristic. Also, the order of

the time is arbitrary, for example, 00:00 can be represented as

24:00. Also, 24:00 and 01:00 are adjacent. It is important to

note that someone can have a bedtime of 01:00 which means

their natural day overlaps to the next calendar day. This can

be a problem when the utilized methods require mathematical

operations such as mean. For example, if an event occurs at

12 am and then again at 2 am, the arithmetic mean of these

events (regardless of the day of the event) is 24+2
2 = 13 rather

than 1 (01:00 AM), which on a circular clock (see Fig. 3a)

has a different direction. In here the clock (i.e. a circle) starts

at 0 (θ = 0◦) and moves clockwise direction on a circle to

equally represent 24 hours (θ = 360◦).

To transform the data the pair (x,y) defined by x2+ y2 = 1
is used for representation. Although it is denoted as a pair, x

and y are not bi-variate on a plane. Therefore, these points are

strictly located on the circumference of the circle defined by

x2 + y2 = 1.

x and y are therefore calculated as such: x = r cos(θ) and

y = r sin(θ) where r is the distance from the origin and θ is

the angle. If the point is on the circumference of a unit circle,

then it can be simplified as: x = cos(θ) and y = sin(θ). The

θ is calculated for timestamp measured in hours as follows:

θ =
2π

24
(hours+

minutes

60
) (3)

It would be naturally incorrect to consider the change of

calendar day as a discontinuous event. For example, the day

finishes at 24:00 and it is equally the start of the next day at

00:00. This periodicity possesses the property of continuity

that exists in the cyclic data. In sine and cosine, the end

of a period is the beginning of a new period. This is the

benefit of using trigonometric sine and cosine predictors for

cyclic data. Additionally, the sine and cosine are orthogonal.

The orthogonality can be expressed as the lack of correlation

between the two functions. In the analysis, it is necessary to

avoid a high correlation among the predictor features.

After the pre-processing, the common linear methods can be

applied to the transformed data. Hence, clustering can be used

to identify meaningful diurnal patterns based on measuring

patterns of the data recorded.

C. Clustering for diurnal patterns

The trigonometrically transformed timestamps of the mea-

surement events of each participant are used individually to

cluster their day to explore their daily patterns. Among the

clustering techniques, K-means is the most popular and it is

widely used in practical applications [19]. The K-means is

highly efficient and scalable which is desirable for time-series

data. The K-means algorithm takes k as an input parameter

and starts with k randomly selected centers in the data [20].

The K-means clusters the data into groups through the process

of iterative update of the cluster centers, see Procedure K-

means(D, k) in Algorithm 1.

Let D be the entire data set for an individual and D =
(d1, d2, ..dt..., dT ) where dt is the transformed timestamp

of the event (i.e. dt is the pair of (xt, yt) calculated in

the preprocessing) for t-th measurement carried out by the

participant. The K-means clustering method is used to find

the time-block intervals by solving for the following problem.

min
(TB)1,(TB)2,...,(TB)k

K∑

i

∑

dt∈(TB)i

||dt − E(dt)||
2 (4)

where (TB)k is the k-th time-block; k is the number of

clusters; (TB)1∪ (TB)2∪ ...∪ (TB)k = D = (d1, d2, ..., dT )
and (TB)p ∩ (TB)q = ∅; || ||2 is l2 norm of a vector

and E is expectation over T measurement events. K-Means

requires the number of clusters to be specified. Usually the

performance of the clustering is evaluated using measures

such as the Akaike information criterion (AIC), Bayesian

information criterion (BIC), Calinski-Harabasz (CH), Davies-

Bouldin (DB), Deviance information criterion (DIC), and sum

of the squared error (SSE). These measures resulted in various

methods to select the optimal number of clusters. Such as

split and merge [19], elbow method [21], and silhouette

method [22]. Considering the range for the possible number

of clusters in our application is always low (≤ 24, i.e. at

most a cluster per hour), it is therefore entirely feasible to

run the K-means exhaustively to obtain measures of fitness

for the given clusters. Then, numbers of the K selected is

based on the measured fitness. In this paper, these measures

of fitness are silhouette (mean ratio of intra-clusters) [21] and

elbow methods (mean sum of the squared distance) [22] which

are combined in a step-wise approach to produce the optimal

number of time-blocks.

The K-means is first used to produce a set of clusters in

the range of 3 to 24 per participant. That is the day is divided

into k∗ periods varying in length, k∗ = (k3, k4, ..., k24). The

elbow method is then deployed to measure the fitness of each

cluster ki , 3 ≤ i ≤ 24.

In the elbow method the mean sum of the squared distances

diminish as extra clusters are added. Therefore, the optimal

number of clusters can be determined by the highest decrease

in the gradient of the sums. This optimal number of clusters

is the suggested number of time-blocks. However, the elbow

method suffers at times to clearly identify the optimal number

of clusters (i.e. not having a clear elbow point). In this paper,

we combine the elbow method with the silhouette measure to

overcome this limitation. The optimal number of clusters, kj ,
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selected in the elbow method, kj−1 and kj+1 is used as a guide

for calculation of silhouette values to generate the optimal

number of time-blocks. For example, if the suggested number

of time-blocks from the elbow method is four, the silhouette

measures for three, four, and five clusters are calculated. Then,

the number of clusters with the highest silhouette value is

chosen as the optimal number of clusters (k̂) for the diurnal

patterns of the participant, thus the optimal number of time-

blocks. The clusters generated by K-means with k̂ as the

parameter are the start-time and end-time of the various time-

blocks during a single day for an individual.

Algorithm 1 Pseudo code of the proposed algorithm for

diurnal patterns

1: Initialize Elbow[]

2: Initialize kmin, kmax

3: Initialize D = {d1, d2..., dT } = {(x1, y1), (x2, y2), ...(xT , yT )}
4: procedure K-MEANS(D, k)

5: Randomly initialize cluster means: µ1, µ2, ..., µk
6: repeat

7: for each i do

8: c(i) := argminj ||d(i) − µ(j)||

9: for each j do

10: µj :=

∑m
i=1{c

(i)=j}d(i)

∑m
i=1

{c(i)=j}

11: until convergence

12: for i in kmin to kmax do

13: Perform K-means clustering on D data,K-means(D, ki)

14: Elbow.append(mean sum of squared distance of ki
clusters)

15:
16: Using elbow method find suggested number of clusters kj

at elbow point

17: Select k̂ where:

18: the Silhouette measure is the highest,

Max-Silhouette(kj−1,kj, kj+1)

19: Find the time-blocks as, (TB) = K-means(D, k̂)

III. APPLICATION VALIDATION

The ground truth of the time-blocks was not available to

confirm the results of the algorithm in the BA application.

Therefore, the validation process was carried out by recruited

experts on real data from participants in the DAFNEplus pilot

trial.

A. Experts

Twelve expert clinicians from the DAFNEplus pilot trial

centers were recruited to validate the algorithm. The experts

included three dietitians, four specialist consultant physicians

and five diabetes specialist nurses. The experts are current

practising clinicians in their centers and have years of experi-

ence in diabetes care.

B. Experiment

The experiment was conducted as a Turing test [23]. The

experts were blind to the source of the time-block settings.

Each expert responded to 25 generated cases (12 participant,

and 13 algorithms). The cases were randomly chosen to avoid

any bias and produced a unique combination of cases for

each clinician. Experts were posed with the question:”Are the

time blocks optimal for the participant; clinically, would you

change any of them?”. Then, they responded with agreement

or disagreement on each case of the survey. If the clinician

disagreed with the presented time-block settings, they were

asked to suggest one.

C. Statistical analysis

The response of the experiment was agreement or disagree-

ment with the presented time-blocks. For this binary outcome,

logistic regression is utilized for the analysis. Each case could

have been assessed multiple times by different experts and

each expert responded to 25 cases assigned to them. Therefore,

to account for these correlations in the response, a generalized

estimating equation (GEE) logistic regression was carried out.

In GEE logistic regression of a binary outcome, empirical ev-

idence shows a nonlinear link function is appropriate. Hence,

the nonlinear S-shaped logistic response function is employed.

This also enables the determination of an odds of agreement.

OR is the odds ratio that expresses the increased chance of

success by an increase of one unit in the predictor. Therefore,

the family distribution for GEE is binomial due to the binary

outcome variable and logit is the link function.

IV. RESULTS

K-Means clustering was used to group the daily data of

participants. The grouping of data produced the time-blocks

setting. The algorithm proceeded to cluster the data into

between three to eight distinctive groups. This range was

chosen based on the settings of the Accu-Chek Expert meter

to produce comparable results. The anonymized data of the

users were processed to develop the algorithm as explained in

part C of the methodology section above.

The algorithm was utilized to search for the periods and

the number of time-blocks in the diary. Fig. 2 shows the

coefficients for silhouette and elbow methods of the suggested

clusters for one participant, as an example. We considered the

highest decrease in gradient (first derivative) of the distance in

the elbow method as a guide for the number of clusters. Using

this process, the threshold distortion difference in the elbow

method was usually < 0.025. The suggested gradient point

(e.g. four clusters) alongside one less and one more cluster

(e.g. three or five clusters) were the suggested number of

clusters which were assessed by the silhouette method. The

highest silhouette coefficient among the suggested number

of clusters in the elbow method was the chosen number of

clusters.

Fig.2a shows the elbow of the distortion graph is significant

at the fourth cluster. Also, it can be confirmed using the highest

silhouette index as shown in Fig.2b. Therefore, four is the ideal

number of clusters for the presented diary.

Fig. 3a shows the histogram of the data in a circular plot.

The red lines divide the graph by the algorithm’s selected time-

blocks. In this example, the graph shows that the data have

four clear peaks at around 7, 12, 16 and 22. The algorithm has

clustered these peaks with nearing data points into a separate

cluster. Also, this can be observed in Fig. 3b. The figure

shows a histogram of the blood glucose tests in a bar chart.

Similarly, the red lines split the time blocks. The peaks and
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(a) Average distortion

(b) Average Silhouette index

Fig. 2. An example of internal index measures to evaluate the suitable
number of clusters using fitness measures of elbow method and silhou-
ette method. Illustrative plots for test case #1. a) Average distortion in
the elbow method resulted from addition of each cluster to the model; b)
Average silhouette index of each cluster using the silhouette method.

the surrounding data form a bell-like curve in each time-block

that can represent a separate pattern in different periods of the

day. Furthermore, the daily routine of the patient ends at past

midnight around 1 am of the next day. Hence, the algorithm

suggests the end of the day be at 01:00 rather than 00:00.

A. Application validation

The validation process was carried out to determine whether

the proposed automated method can substitute the current time

and labor intensive practice that people with diabetes or their

diabetes healthcare professional need to undertake manually.

A Turing test was conducted to validate the suggested time-

blocks. The result of the survey is presented in Table III.

The expert respondents agreed with the algorithm’s generated

time-blocks 39.1% of the time and 36.1% with the participant

generated ones. The percentage of agreement on the algorithm

generated time blocks was 3% higher than the participant

generated time-blocks. The logistic regression analysis shows

that the algorithm’s results were agreed with more by ∼ 0.18
compared to the participant time-blocks. However, the p-value

TABLE III

OVERALL AGREEMENT RESULTS FROM THE TIME-BLOCK SURVEY FOR

TURING TEST

Source True False Total

Algorithm 61 (39.1%) 89 156
Participants 52 (36.1%) 92 144

Total 113 187 300

(a) The circular histogram

(b) The bar chart histogram

Fig. 3. The histogram of a diary. The red lines represent the time
separation between time-blocks. Illustrative plot for test case #2. a) The
circular histogram of the measurement events on a clock that starts at
0 hours (zero degrees) to 24 hours (360 degrees); b) The bar chart
histogram of the frequency of the daily measurement events in an hourly
basis for a nominal day.

is higher than 0.05 which suggests the algorithm is similar

in performance to the clinicians. This can be investigated

by analyzing the odds of the agreements. The odds ratio is

calculated as follows:

OR = exp(0.18) = 1.197

Therefore, experts were ∼ 1.2 times as more likely to

agree with the algorithm’s suggested time-blocks (confidence

interval of [0.69 - 2.07]). However, the confidence interval

of the odds ratio includes one which suggests a similar

odds of agreement between the algorithm and participant

time-blocks. Therefore, the generalization that the algorithm

outperforms the participants generated time-blocks is incon-

clusive. Nonetheless, the analysis of the results shows that the

algorithm suggestion is as good as the participants time-blocks

suggestions. Additionally, the agreement with the proposed

algorithm was 3% higher.

B. Beyond current limitations

The bolus advisor enabled BG meter used, allows only a

single set of time-block based settings for every day of the

week. This is a limiting factor towards personalization of the

BA. Also, this can impact glycemic control greatly if the day

to day routine of the participant is variable.

Incorrect time-block settings can lead to incorrect insulin

doses. The current workaround for a person with diabetes is

to actively remember that their BA settings are not suitable

for that day’s activity or situation, and manually adjust the
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dose accordingly. Our proposed method is a viable solution

to automate more personalized and suitable settings based

on patients’ measured patterns. A filtering is added to the

proposed model in Fig. 1 that can be used to accommodate

the changing nature of day to day activities. In this paper

day to day and weekday to weekend personalization patterns

for people with type 1 diabetes are analyzed, see Fig. 4. The

onward experiments are based on a period of one month of

the collected data.

(a) Weekdays vs. weekend proposed model

(b) Days of the week proposed model

Fig. 4. Addition of filtering into the pre-processing of the proposed
model to facilitate beyond current practices and overcome the limitations
for personalizing the BAs. a) Weekday vs weekend model where data
are filtered to accommodate change of routine between weekdays and
weekends; b) Days of the week proposed model where each day of the
week is personalized for its specific routine patterns.

1) Weekdays vs Weekend: One approach to provide this

flexibility is to accommodate different routines by allowing

different settings between for example work days (Monday

to Friday) and weekends (Saturday and Sunday). Therefore,

a modification to the algorithm was applied to carry out the

experiment.

The modified algorithm is a multi-step operation. First,

the filter categorizes the data to weekdays and weekends.

Then, Algorithm 1 processes each category to identify diurnal

patterns accordingly. This is illustrated in Fig. 4a.

An example of weekend versus weekday of the identified

time-block settings by the modified algorithm is presented in

Table IV. The example shows that a 3.5 hours accumulative

time difference arises between weekdays and weekends time-

blocks; such a significant time-difference would be missed

otherwise, leading to incorrect BA settings and therefore

incorrect insulin doses. For example, if the ICR of TB2 is

2 U:10 g but the ICR of TB3 is 1 U: 10 g, then if the person

uses the weekday setting for the weekend for an injection at 10

am (on weekdays, 10 am is in TB2), the person would inject

twice the insulin dose needed, which is clinically significant

and may be harmful.

Also, the result of the algorithm is shown in Fig. 5. Looking

at the histogram of the graphs, the frequency of data in the

morning time-block (TB2) is similar during the week and the

weekend, with a slight delay in the start of the morning on the

weekends. However, the rest of the day, the frequency of data

TABLE IV

AN EXAMPLE OF TIME-BLOCKS BASED ON WEEKDAYS VS WEEKEND

FOR TEST SUBJECT #3

TB1 TB2 TB3 TB4 TB5 TB6 Silhouette index

Weekends 03:00 06:00 10:00 14:00 19:00 22:00 0.741
Weekdays 03:00 06:30 11:00 14:30 18:00 21:30 0.756

is much lower relative to the TB2 and there is a slight variation

in the start and end of the time-blocks between weekday and

the weekend. These are more apparent in TB3 and TB5. For

the afternoon time-block (TB4), the weekend has a longer span

and relatively more activity in comparison to the weekdays.

(a) Weekends pattern (b) Weekdays pattern

Fig. 5. An example of the circular histogram of the weekdays and
weekends of a diary. The red lines show the separation hours of the
time-blocks suggested by the proposed algorithm for test case #3. a)
Weekends measurement patterns; b) Weekdays measurement patterns.

2) Days of the week: Another approach to provide a more

personalized BA, is to allow different settings for different

days of the week. Similar to the weekday vs weekends’

experiment, a modified algorithm was utilized to cluster the

diary data into time-blocks.

This is a multi-step operation. First, the filter categorizes

the data into days of the week. Then, processes each day

to identify diurnal patterns accordingly. The suggested time-

blocks of the algorithm is shown in Table V. The participant

for one example exhibits a different routine based on their

logbook data. The different days of the week can have a

different number of time-blocks and starting hours.

Fig. 6 shows the circular histogram of the days of the week.

Considering the measuring patterns, the week appears similar

in its relative frequency of measurements between TBs on

each day of the week with the exception of Tuesday (Tue)

and Wednesday (Wed). Especially in the peak hours of those

TABLE V

AN EXAMPLE OF TIME-BLOCKS BASED ON DIFFERENT DAYS OF THE

WEEK FOR TEST CASE #4

Day TB1 TB2 TB3 TB4 TB5 Silhouette index

Mon 05:00 10:00 12:00 15:00 20:00 0.930
Tue 05:00 07:00 12:00 16:00 21:00 0.949
Wed ——– 07:00 12:00 16:00 20:00 0.950
Thu 05:00 10:00 12:00 16:00 21:00 0.978
Fri 05:00 10:00 12:00 16:00 20:00 0.986
Sat 05:00 10:00 12:00 17:00 21:00 0.980
Sun 05:00 09:00 12:00 16:00 21:00 0.981
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days (i.e. 5, 10, 12, and 18). However, by looking at the

relative frequency of measurements between TBs, Tuesdays

show a less active morning routine and more active afternoons.

Whereas Wednesdays show a less active midday period.

Recall that due to limitations of current approaches, the

patient has to actively apply a corrective percentage to ac-

commodate his/her change of routines between days. This

can adversely affect their glycemic control. We can examine

such effects by the provided context from the algorithm’s

recommended time-blocks. For this diary, the presented time-

blocks for Tuesdays and Wednesdays are very different from

other days of the week. By a closer look at the diary, it can

be observed that the person with diabetes manages his/her BG

levels relatively well in the hours of TB2 and TB3 in days

other than Tues and Weds. However, Tues and Weds seem

to be more challenging for the participant with many out of

range BGs. This indicates a possible change in the routine e.g.

less activity on those days. Possibly, different settings for Tues

and Weds would be suitable to accommodate the change in the

routine. As illustrated, such details and context are provided

in seconds using the proposed model. This can be presented to

participants as a recommendation to clarify their routine based

on their data and encourage them to review the diary in such

a context.

V. DISCUSSION

The proposed model in this paper applies a clustering

technique to detect diurnal patterns in the time series data

of the participants. The timestamps of the daily measurements

of BG, CHO, bolus insulin, basal insulin and ketones were

extracted and transformed. Orthogonal and periodic trigono-

metric predictors in terms of sine and cosine were adopted

to transform the univariate time series data. Then, K-means

clustering was utilized to recognize the diurnal patterns and

suggest the numbers and periods of time-block settings of the

BA. The developed method aids to eliminate the error-prone

self-reporting practice and automate the suggestions based on

the real-time change detected in the daily routines. Up to date

and accurate BA settings are crucial in maximizing the benefits

of a BA as a decision support tool.

The results of the proposed method were compared to the

participants’ suggested time-blocks. Blinding the source of

a time-block, the participant-generated time-blocks acted as

the control group in the conducted survey. Furthermore, the

cases were allocated randomly. This enabled investigation of

a higher number of unique cases (Overall 300 cases, 51 unique

cases compared to 25 otherwise).

Our proposed intelligent system of routinely collected data

has similar accuracy to an expert that can automatically

process vast amounts of individual data to efficiently adjust

TBs in real-time. These prompt adjustments can contribute to

the accuracy of the underlying settings and therefore improved

utilization of the BAs, which is known to improve glycemic

control [10].

A. Underlying context of glycemic patterns

The data-driven suggested time-blocks can help to provide

more context to the diabetes data. Diurnal patterns can pro-

vide clues and drive the conversation to specific actions that

influence the glycemic management. For participants, clinical

appointments are limited and time constrained. Maximizing

available contexts to the collected data is time and cost saving.

Manual analysis and pattern finding of a large amount of data

to suggest the BA settings is challenging and time-consuming.

In the conducted survey, it was expected to take the experts

about an hour to analyze the time blocks of 25 examples. This

was to assess two weeks data on an organized diary. However,

many experts feedback said that it required a longer time.

For some respondents, it took about three hours to complete.

Therefore, it accentuates the need for an automatic system to

aid with decision making.

Additionally, the presented method enables daily routines to

be tracked. A study showed that temporal and chronic factors

of diabetes are associated with altered diurnal rest-activity

rhythmicity [11]. The proposed method has the potential to

facilitate a thorough and reliable analysis of changes in the

daily activity of people with diabetes. Therefore, empowering

participants with an insight into their complex and variable

daily routine to use the suggestions as a guide to adapt TB

settings promptly.

Furthermore, our proposed model only uses the timestamp;

therefore, including other data events such as exercise and

circadian rhythms would help the algorithm to divide the day

even more appropriately, especially when the data are closely

dispersed naturally. Recording of such data events can also

contribute to improved contextual information.

B. Do experts agree?

The expert respondents to the survey agreed about 36%

of the time with the participants time blocks and 39% with

the proposed algorithm’s suggestions. The analysis of the

odds of agreement showed a slight favorability in choosing

the algorithm. Nonetheless, in both cases of participant and

algorithm generated time-blocks, the agreement is relatively

lower than expected. This is potentially an indication of

variation in the approach. The respondents to the survey were

asked to present their suggestions of the time-block settings

if they did not agree with the presented ones. Observing the

expert time-block suggestions, one hypothesis for the variation

and low agreement is that the discrepancy stems from the fact

that participants daily routines can change from one day of

the week to the other. More importantly, one generic time-

block setting cannot include all the variations in the diurnal

patterns. The expert respondents had different approaches in

assessing each case. In some cases, a change in the ratios was

accounted as a trigger for a new time-block whereas in other

cases, it was the BG testing pattern. Additionally, glycemic

control at different times of the day can influence the decision.

By looking at a diary through these approaches, it could result

in different settings. If it is the BG, the problematic hours

(frequent hyperglycaemia, or hypoglycaemia) are a possible

time-block. If it is based on glycemic patterns, the change

in the patterns during the day is the separating criteria.

Certainly, a change in ratios necessitates a change in time-

blocks. Experts’ clinical experience seems to have resulted
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(a) Mondays (b) Tuesdays (c) Wednesdays (d) Thursdays (e) Fridays (f) Saturdays (g) Sundays

Fig. 6. Daily cyclic histogram of the diary from test case #4 over one month. The red lines split the time periods based on the suggested time-blocks
for each day of the week.

in a practical approach to the problem of finding the diurnal

patterns and possibly a subjective one. Participants with a more

routine lifestyle are more likely to spot a more generic pattern

in their diary. However, a more variable routine can pose a

challenge and varying decision depending on the approach.

C. Standardized vs weekday settings

In some cases, a person with diabetes might be recom-

mended to replicate glycemic control of their better days of

the week i.e. ”whatever you do on Tuesday and Wednesday,

do on the other days”. This can potentially be from the

limited generic settings of the BA that suits certain days of the

week and not the others. Such recommendations indicate the

need for more flexibility in settings options. Additionally, the

time and resources of the clinicians are limited. The manual

personalization of the BA to more granular settings requires

higher engagement and analysis, which is time-consuming.

The proposed method can process a diary with longer periods

of time and produce personalized daily time-blocks in a matter

of seconds.

This especially applies to the difference between the daily

routines of the weekdays and weekends. In pumps, this can

be accounted for to a certain degree by having different basal

insulin profiles. For those on pen therapy, different amounts

of background insulin (e.g., because more or less active at

weekends) can be utilized. Alternatively, the exercise settings

can be set to reduce the dose (e.g. -33%) to account for

the change in the ratio. These adjustments require active

participation and judgment of the person with diabetes for

every insulin injection. Many people with diabetes do not

have the knowledge or confidence to change their BA settings.

These drawbacks contribute to limiting the uptake of BAs

as an assisting tool for dose calculation. However, utilizing

the proposed method can automate the process by days, or

weekdays and weekends to suggest more suitable time-block

settings.

D. Participant awareness vs data

From the clustered data, many participants’ natural day

overlaps with the early hours (e.g. 2 am) of the next day. This

is rarely observed in the participant time-block settings. It can

be seen in the data that people with diabetes make glycemic

decisions that relate to their last time-block of the day in

the early hours of the next day. Hence, the algorithm usually

includes these data points to the last time-block setting of the

day. In many cases presented in the survey, the respondent

agreed with this overlap. However, this does not seem to be

applied in practice. One explanation can be because most of

the time-blocks are set in consultation with the participant

that might overlook those early hours of the day. This high

precision is one of the benefits of using a clustering technique

for identifying the time-blocks that can be translated into

practice in the clinics to reflect the findings.

E. Other methods and related works

As shown in the Fig. 3b, the divided time blocks of

glucose data represent a combination of bell curves which

suggests a mixture of Gaussian models. Hence, we tested

this hypothesis; in many cases, the Gaussian mixture model

clustering produced identical results to K-means. However,

this model-based clustering has a scalability issue and its

performance suffered when the clusters are close to each other.

To our knowledge, the presented method is the first to

attempt a data-driven model to automate the process of

identifying diurnal patterns for recommending and tracking

time-block settings of BAs in diabetes. The closest work

to partially improve BAs was presented in the case-based

reasoning models. However, these studies are mostly limited to

continuous glucose monitoring. Whereas the proposed method

applies to any diabetes data irrespective of the type (e.g.

glucose, CHO, insulin or a combination of the three). Also, the

previous studies attempt a new approach to the bolus advisor

which is not evident to provide any benefits over current bolus

advisors. From the patient perspective, it is a ‘black box’ that

relies on previous cases to suggest an insulin dose. Hence,

the focus is on the insulin patterns rather than diurnal patterns

that can define patients daily routine. This does not provide

context and the ability to use the settings to review patterns

of glycemic control.

We have used real world data with a panel of experts

to validate our presented model. In-silico can potentially be

used in the future to run simulated results for our proposed

method. Recently Visentine et al. [24] have proposed intra-day

variability for in-silico to partially improve on the engineered

environment and lack of real-world variations that exist in real

patients and their behavior in decision making. Additionally,

other researchers have shown that optimized BA settings

in commercially available BAs lead to improved glycaemic

control [3], [4], [10]. Our method is applicable to such BAs

and can provide as good advice as an expert clinician.

Furthermore, our proposed model can be applied to contin-

uous glucose monitoring data without any modification when

other modalities are recorded. In CGM, BG timestamps are



EISSA et al.: INTELLIGENT DATA-DRIVEN MODEL FOR DIABETES DIURNAL PATTERNS ANALYSIS 9

uniformly spaced and driven by the sensor rather than the

participant’s patterns, thus clustering would only be on the

other recorded data such as carbs, basal insulin, bolus insulin,

and ketone timestamps.

Deep learning has increasingly been applied to the analysis

of medical data [25], [26]. In [27], we adopted deep learning

for HbA1c prediction in type 1 diabetes. Future work could

consider a deep learning approach to exploit our proposed

method in this paper for improved personalization.

VI. CONCLUSION

The proposed K-means based model improves the accuracy

of time-block settings, provides context to data and as it is

an automated process dramatically reduces the reviewing time

and potentially improves the engagement and adherence to

the BA. Furthermore, it could be implemented in pumps,

glucose meters, glucose sensors and APPs to provide an

auto adjustment. We believe the evaluation method utilized

in the study should be the standard for any developed work

related to bolus advisors. Reported works on the developed

bolus advisors have tended to be based on simulators/in-

silico experiments; and the testing of the efficacy of these

advisors with people with diabetes rely on the degree of

their glycemic control and acceptance of the recommended

bolus. Such methodology lacks context and therefore provides

a weaker evidence-based approach to support adoption.
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