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Abstract: In this work, entropy generation and flame transfer function investigations are conducted on a hydrogen-

burnt diffusion flame in a longitudinal combustor with acoustic waves present. For this, a time-domain 2D numerical 

model of a jet diffusion flame is developed to gain insights on its dynamic response to acoustic disturbances at either 

resonant or non-resonant frequencies. The model is validated first by comparing the numerical results such as 

turbulence intensities, pressure and velocity mode shape and flame shapes with the experimental data available in the 

literature. The model is then applied to evaluate the effects of the frequencies and amplitudes of the forcing acoustic 

waves, and the flame-holder/nozzle axial positions on entropy generation of both hydrogen- and propane-fueled 

flames. It is found that the entropy generation rate is sensitive to acoustic forcing frequencies, amplitudes and the 

nozzle axial positons. Furthermore, entropy produced from the heat conduction and the chemical reaction processes 

is shown to be dominant and secondary respectively. However, the mass diffusion is found to play a negligible role 

on entropy generation. As the acoustic forcing frequency is set to 385 Hz near resonance, the total entropy generation 

rates are minimized, and the mass diffusion contribution is maximized with the flame being placed at velocity node 

locations in comparison with other flame-holding locations. Finally, flame transfer function (FTF) analysis is 

performed by using two different methods. It is shown that the flame responds strongly to low-frequency acoustic 

disturbances, acting like a band-pass filter. Increasing the acoustic intensity leads to the flame being more sensitive to 

the acoustic disturbances over more frequency bands. 
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1. Introduction 

Increasing concern about global energy and environmental issues leads to a resurgence of 

intensive research on hydrogen production and hydrogen-involved premixed or diffusion 

combustion in recent decades [1]. Compared to conventional hydrocarbon fuels, such as gasoline, 

diesel and fuel oil, hydrogen is relatively environmentally friendly [2, 3]. The full combustion of 

hydrogen leads to zero emissions of CO2 and CO in theory. Thus, greenhouse gas emission 

produced is minimized [4, 5]. Due to these attractive features, hydrogen has great potential to be 

applied in modern power generation or propulsion systems, such as gas turbines and aero-engine 

[6, 7]. However, these modern systems are more susceptible to combustion instability [8],  also 

known as thermo-acoustic instability [9]. When such an instability occurs, it can lead to flame 

extinction, overheating, engine structural vibration and even cause system failure [10, 11]. This 

undesirable instability phenomenon is believed to result from the dynamic interaction between 

acoustic waves and heat release perturbation in a combustion system [12, 13].  

Extensive experimental, theoretical and numerical research on premixed and non-premixed 

flames under the acoustic excitation have been carried out in order to better understand and solve 

thermoacoustic instability problems [14-16]. Lieuwen [17, 18] provided an excellent review on 

premixed flame-acoustic wave interactions via the investigation of acoustic wave interactions with 

turbulent, premixed flames. Hwang et al. [19] performed experimental measurements on a dump 

combustor to study axial lengths and center lengths of a premixed ethylene-air flame affected by 

oncoming inlet velocity, equivalence ratio, and acoustic forcing. Kim et al. [20] conducted an 

experiment on a swirl-stabilized combustor to study combustion instability via examining the 

recirculation zones and vortex interaction. Fichera et al. [21] conducted both linear and non-linear 

analyses of thermo-acoustic instability on a methane-fueled lab-scale combustor. Khalil et al. [22] 
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examined heat release perturbation from a methane-burnt flame under the acoustic wave excitation 

in a swirl combustor. The flame stability and noise emission were the focus of their studies, which 

are important concerns for gas turbine applications. Singh et al. [23] performed both experimental 

and numerical studies on a swirl stabilized diffusion flame to study the thermo-acoustic behavior. 

Farhat et al. [24] performed experimental tests on a propane-burnt flame under the acoustic wave 

excitation in a longitudinal tube to study the flame characteristics. They showed that the diffusion 

propane-burnt flame could be involved with different structures and color, as the acoustic 

frequencies and nozzle positions changed. Chen et al. [25, 26] conducted detailed experimental 

research on the flame acoustic interaction of both premixed and diffusion propane-burnt flame. 

Experimental measurements were achieved by using Particle Image Velocimetry (PIV) to shed 

light on flow characteristics and the flame response to acoustic excitation.  

Previous studies on flame-acoustics interaction attempt to reveal the relationship between heat 

release rates and velocity disturbances [27]. It has been shown that the unsteady heat release rates 

and velocity fluctuation are related and can be characterized by using flame transfer function s(FTF) 

[28, 29] or flame describing functions (FDF) [30]. These functions have been shown to be an 

effective tool to predict the flame response in an acoustically resonant combustor [31, 32]. 

Numerous researchers have performed FTF/FDF studies [33, 34]. For example, Balachandran et 

al. [31] studied the ethylene-air premixed experimentally and also measured the flame transfer 

function.  Durox et al. [32] measured the flame transfer functions of different flame geometries 

experimentally. Karimi [33] also measured the flame transfer function through experiments in 

which a laminar premixed flame was studied under low amplitude acoustic excitation. Sabatino et 

al. [34] experimentally investigated the effect of acoustic pressure on the response of methane–air 

and propane–air swirl flames via determining the flame transfer functions (FTF). There are also a 
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number of numerical investigations on flame transfer function.  Krediet et al. [35] identified the 

flame describing function (FDF) from a large eddy simulation (LES) of a swirled flame 

combustion system, in which the nonlinear response of a premixed flame was studied. Similar 

LES simulations are conducted in Ref. [36] to study the turbulent premixed flame in a swirl burner, 

in which the boundary conditions of combustion chamber wall are considered. Silva et al. [37] 

studied the thermoacoustic instability of a premixed flame via DNS (Direct Numerical 

Simulations). Chen et al. [38] numerically determined the FTF of a propane-fueled jet fusion flame 

in a longitudinal standing-wave combustor by applying acoustic disturbance consisting of a 

number of superimposed acoustic tones. However, this superimposition method could lead to 

‘numerical error’ such as round off in comparison with the classical means of applying single-tone 

disturbances to excite the flame. However, previous studies did not provide comparison and 

validation of the FTF by using these two different methods.  This was partially motivated the 

present work.  

Entropy analysis is an alternative but effective approach to evaluate combustion processes and 

thermodynamics second-law performance of a thermal-fluid system [39]. In order to understand 

the exergy loss of  the flame-acoustic interaction process, it is important to investigate the local 

entropy generation. There are many previous studies concerned with entropy generation. Nishida 

et al. [39] analyzed local entropy generation and exergy loss of both premixed and diffusion flames 

using the CHEMKIN program. Briones et al. [40] conducted a theoretical–numerical analysis to 

investigate the entropy generation of a laminar H2-enriched CH4–air flame. Jiang et al. [41] studied 

the entropy generation of H2/air combustion processes effected by CO addition. Wang et al. [42] 

investigated a premixed flame with methane fuel but with hydrogen addition in a micro-planar 

combustor, in which multistep kinetics was used. Jiang et al. [43] performed numerical simulations 
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with the commercial software Fluent to analyze the entropy generation of a hydrogen-air premixed 

flame in micro-combustors. The effects of the baffles height, the inlet mass flow rate and the 

equivalence ratio was examined. The entropy generation and second law efficiency of turbulent 

non-premixed flame was numerically investigated in Refs. [44, 45] on a hydrogen- or methane-air 

combustor. The effects of the equivalence ratios and swirl numbers were examined. E et al. [46] 

performed a 3D simulation to investigate the effect of inlet pressure on the entropy destructive and 

exergy efficiency of a hydrogen-air premixed flame in a micro-combustor with a step. However, 

to the best knowledge of the authors, there is a lack of investigation in analyzing the entropy 

generation of hydrogen-fueled diffusion flame under the acoustic excitation in a longitudinal 

combustor. This was also partially motivated the present study. 

In this work, numerical simulations are conducted to analyze the entropy generation and flame 

transfer function of a hydrogen-fueled diffusion flame under acoustic excitation. Comparison is 

then made between the hydrogen- and propane-fueled results. Emphasis is placed on evaluating 

the roles of 1) heat conduction, 2) mass diffusion and 3) chemical reaction processes in 

contributing the total entropy generation, as the acoustic frequencies and amplitudes, and the 

nozzle axial position are varied. The flame dynamic response is quantitatively examined by 

evaluating the flame transfer functions over a given frequency range. Two different numerical 

methods are applied and compared. The paper is organized as follows: the numerical model and 

governing equations are described in Sect. 2. Validation and benchmarking the model are 

conducted in Sect. 3. The entropy generation and flame transfer function results are discussed in 

Sect. 4. Key findings are summarized in Sect. 5. 
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2. Description of Numerical Model  

 

2.1 Numerical model  

The hydrogen-fueled combustion system with acoustic disturbances present is schematically 

illustrated in Fig. 1(a). This is consistent with the experimental rig (see Fig. 1(b)) on which flame 

dynamics measurements are conducted in Refs. [24, 38]. The combustion system involves 4 key 

components: a square tube, a jet nozzle to anchor the diffusion flame, a loudspeaker to produce 

acoustic disturbances and a cone-shaped connector between the square tube and the loudspeaker. 

The axial length of the square tube is 800 mm. Its upper end is acoustically open with cross-

sectional dimensions of 114 (L) ×114 (W) mm whilst the connecting cone height is approximately 

300 mm. The detailed dimensions of the combustion system are included in the caption of Fig. 1. 

Fig. 1(c) shows a structured mesh generated by using the Ansys workbench meshing (V18.2). The 

geometry is assumed to be axisymmetric and a graded mesh is applied in the neighborhood of the 

flame nozzle. 
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Fig. 1. (a) Drawing of the experimental setup [24, 38]. (b)  Schematic of the numerical 

model (c) numerical mesh with a zoom-in graph near the nozzle. The dimensions of the 

modelled combustor are given as D1=114.0 mm, D2=207 mm, D3=5.0 mm, D4=1.8 mm, 

L1=800.0 mm, L2=300.0 mm, and L3=15.0 mm. 
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2.2 Governing equations  

The governing equations consist of: 

Mass conservation:      
𝜕𝜌𝜕𝑡 + 𝜌 𝜕𝑢𝑖𝜕𝑥𝑖 = 0 (1) 

Momentum conservation: 𝜌 𝜕(𝑢𝑗)𝜕𝑡 + 𝜌 𝜕(𝑢𝑖𝑢𝑗)𝜕𝑥𝑖 = − 𝜕𝑝𝜕𝑥𝑗 + 𝜕𝜕𝑥𝑖 (𝜏𝑖𝑗 − 𝜌𝑢𝑖′𝑢𝑗′) (2) 

Species continuity:        
𝜕(𝑋𝑛)𝜕𝑡 + 𝜌 𝜕(𝑢𝑖𝑋𝑛)𝜕𝑥𝑖 = − 𝜕𝜕𝑥𝑖 𝐽𝑛 + 𝜔�̇� (3) 

Energy conservation:     
𝜕(𝜌ℎ)𝜕𝑡 + 𝜕(𝜌𝑢𝑖ℎ)𝜕𝑥𝑖 = 𝑑𝑝𝑑𝑡 + 𝜕𝜕𝑥𝑖 [(𝜆 + 𝜆𝑡) 𝜕𝑇𝜕𝑥𝑖]  

 − ∑ 𝜕𝜕𝑥𝑖 ℎ𝑛𝑁
𝑛=1 𝐽𝑛 + 𝜕(𝑢𝜏𝑖𝑗)𝜕𝑥𝑖 + �̇� (4) 

where, p is instantaneous pressure,  𝜏𝑖𝑗 is viscous stress, t denotes time. 𝜌, 𝑢𝑖  are density, and 

velocity in 𝑥𝑖 direction respectively. h is the enthalpy of the mixture,  𝑋𝑛 , 𝐽𝑛 and ℎ𝑛 are the mass 

fraction, diffusion flux and enthalpy of the species"𝑛" and 𝜔�̇� is the species source term due to 

chemical combustion. T is temperature,  𝜆 is thermal conductivity and Q  is the heat source term 

due to combustion. A standard 𝑘 − 𝜔 model is selected in the present simulations. The turbulence 

model was validated and applied in previous literature [47-49], since it is more robust to simulate 

low Reynolds number flows [50, 51]. The chemical reaction mechanism of either hydrogen- or 

propane-fueled combustion is assumed to be a one-step reaction as:   

 2H2+(O2+3.76N2)→2H2O+3.76N2 (5a) 

 𝐶3H8+5(O2+3.76N2)→3C𝑂2+4H2O+18.8N2 (5b) 

In our model, a turbulence-chemistry interaction model is set to be the eddy-dissipation (ED) 

model. The net rate of production of species n due to chemical reaction r is given as: 
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 𝑅𝑛,𝑟 = min (𝐴𝜐𝑛,𝑟′ 𝑀𝑤,𝑛𝜌 𝜀𝜅 𝑚𝑖𝑛 ( 𝑌𝑅𝜐𝑅,𝑟′ 𝑀𝑤,𝑅) , 𝐴𝐵𝜐𝑛,𝑟′ 𝑀𝑤,𝑛𝜌 𝜀𝜅 ∑ 𝑌𝑃𝑃∑ 𝜐𝑚,𝑟′′ 𝑀𝑤,𝑚𝑁𝑚 ) (6) 

where A =4.0 and B=0.5,  𝜐𝑛,𝑟′  is the stoichiometric coefficients of reactants and  𝜐𝑛,𝑟′′  represents 

those of chemical products.   and 𝑀𝑤 are density and the molecular weight. 𝜀/𝑘 represents the 

turbulent mixing time scale. In the 𝑘 − 𝜔 model, turbulence time scale can be calculated by =𝛽∗ 𝜔, where usually 𝛽∗= 0.09 [52, 53]. Subscripts R and P represent the reactants and products 

respectively. It can be seen from Eq. (6) that the final chemical reaction rate is determined by the 

minimum value of the source term on the right-hand-side. 

 

2.3 Entropy generation analysis  

The volumetric entropy generation rates are calculated by: 

 S𝑡𝑜𝑡𝑎𝑙 = 𝜏∙∇𝕍𝑇 + 𝜆∇𝑇∙∇𝑇𝑇2 + 𝑅0 ∑ 𝜌𝐷𝑛−𝑚𝑖𝑥𝑋𝑛𝑛 ∇𝑌𝑛 ∙ ∇𝑋𝑛 − ∑ 𝜇𝑛𝑅𝑛𝑇𝑛            (7) 

Eq. (7) shows the volumetric entropy generation rates by various irreversible processes. The 

first term on the right-hand side of Eq. (7) is related to the fluid flow friction (Svis). The second 

term is due to the effect of energy flux, in which only the effect of heat conduction is considered 

(Scond). Then the third term describes the mass diffusion contribution (Sdiff).  In addition, the 

chemical reaction on entropy generation rate is represented by the last term (Schem).  

The detailed expressions of these four contributions to the entropy generation are given as: 

     𝑆𝑣𝑖𝑠′ = 𝜇𝑇 [2 {(𝜕𝑣𝜕𝑥)2 + (𝑣𝑥)2 + (𝜕𝑣𝜕𝑦)2}  

               + (𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥)2 − 23 (1𝑥 𝜕(𝑥 · 𝑢)𝜕𝑥 + 𝜕𝑣𝜕𝑦)2
 (8) 
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      𝑆𝑐𝑜𝑛𝑑′ = 𝜆𝑇2 [(𝜕𝑇𝜕𝑥)2 + (𝜕𝑇𝜕𝑦)2] (9) 

 𝑆𝑑𝑖𝑓𝑓′ = 𝑅0𝜌 𝐷𝑛−𝑚𝑖𝑥𝑋𝑛 [𝜕𝑌𝑛𝜕𝑥 𝜕𝑋𝑛𝜕𝑥 + 𝜕𝑌𝑛𝜕𝑦 𝜕𝑋𝑛𝜕𝑦 ] (10) 

 𝑆𝑐ℎ𝑒𝑚′ = − ∑ 𝜇𝑛𝜔𝑛𝑇𝑛  (11) 

In Eqs. (8) - (11), μ is viscosity. u and v are flow velocity in the x and y directions, 𝜌 is the 

density and 𝜆  is the effective thermal diffusivity. 𝑌𝑛  , 𝑋𝑛  , 𝐷𝑛−𝑚𝑖𝑥 ,  𝜔𝑛  ,𝜇𝑛  and  are the mass 

fraction, mole fraction, diffusion coefficient, reaction rate and the chemical potential of the species 

n respectively. 𝑅0is the gas constant (8.314 J/mol·K). For an ideal gas mixture, 𝜇𝑛 is given as 

 𝜇𝑛 = ℎ̅𝑛0(𝑇) − 𝑇 ∙ �̅�𝑛0(𝑇) + 𝑅0𝑇𝑙𝑛(𝑌𝑛𝑃𝑃𝑟𝑒𝑓) (12) 

Where 𝑃𝑟𝑒𝑓= 101325.0 Pa. ℎ̅𝑛0(𝑇) and �̅�𝑛0(𝑇) is the reference enthalpy and entropy at 𝑃𝑟𝑒𝑓of the 

species “n”. 

It has been confirmed in previous studies [54, 55] that the contribution of the viscous process 

on the entropy generation is relatively low. Thus, the entropy generation due to the viscous effect 

is assumed negligible in this work. The total entropy generation rate can be then approximated as: 

 S𝑡𝑜𝑡𝑎𝑙 ≈ 𝑆𝑐𝑜𝑛𝑑 + 𝑆𝑑𝑖𝑓𝑓 + 𝑆𝑐ℎ𝑒𝑚 = ∭(𝑆𝑐𝑜𝑛𝑑′ + 𝑆𝑑𝑖𝑓𝑓′ + 𝑆𝑐ℎ𝑒𝑚′ )𝑑𝑉 (13) 

The second law efficiency η𝐼𝐼 can be written as: 

 η𝐼𝐼 = 1 − 𝑇0∙𝑆𝑄    (14) 

where T0 is the ambient temperature (T0 = 300K) and  Q is the heat release rate of the combustor. 
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2.4 Boundary Conditions 

The velocity fluctuation excited by acoustic waves is generated by User Defined Function 

(UDF). The unsteady velocity is described as:  

 𝑢𝑦(𝑡) = |�̅�| [1 + |𝑢′𝑢 | · sin (𝜔𝑡 + 𝜃0)]   (15) 

where 𝑢𝑦(𝑡) is the velocity in axial direction, 𝑢 ̅is the flow mean velocity at the bottom inlet of the 

combustor. 𝑢′ represents the fluctuating velocity, 𝜔 and t are angular frequency and time. 𝜃0 is the 

initial phase. In our studies, the initial phase is set as 𝜃0=0 rad，the mean flow velocity is set as �̅�= 0.15 m/s. The flow perturbation intensity is set as |𝑢′/�̅�| = 20% or 10%. Gaseous hydrogen 

(H2) is supplied as the fuel in the current modelled combustor. To obtain the same heat release in 

combustor with the experimental tests, the hydrogen injection velocity is 2.4 m/s. The top outlet 

boundary is set as a pressure outlet. The boundary condition of sidewalls of the modelled 

combustor is set as no-slip, adiabatic and no chemical reaction.  

3. Validation of numerical model 

3.1 Mesh- and time-independence study 

For completeness, mesh- and time-independent studies are conducted first. Three different 

number of meshes are generated by Ansys workbench meshing (V18.2). The axial velocity at 

40mm above the nozzle (y = 440mm) is recorded and compared along the centerline of the tube. 

Fig.2 (a) shows the axial velocity u(t), as the three meshes are applied. It can be seen that there is 

a negligible difference of the predicted velocities between the medium and fine meshes. The coarse 

mesh leads to a slightly larger-amplitude velocity fluctuation. Thus the medium mesh with 20580 

cells is selected for the following simulations. Fig. 2(b) shows the time-independent study results, 

as the time step is set to Δt =0.0002 s, 0.0001 s, and 0.00005 s. It can be seen that there is little 

difference of the recorded axial velocity between the time steps of 0.0001 s and 0.00005 s. Thus 
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the time step Δt =0.0001 s is chosen in the current studies to save computing time, whilst achieving 

an acceptable accuracy.  

 

Fig. 2. (a) Variation of the axial velocity with time, as the number of the meshes is set to 3 

different values, (b) variation of the axial velocity with time, as the time step is set to 3 

different values.  

3.2 Validation of Numerical Model 

With the mesh- and time independent studies completed, the numerical model needs to be 

validated, before it is used to study the flame-acoustics interaction in the longitudinal tube with a 

loudspeaker implemented. Note that the simulations are conducted in a time domain by applying 

acoustic disturbances consisting of a single frequency at a time. The interested frequency range is 

between 40 and 600 Hz where incremental frequency step is set to 5 Hz. Fig. 3(a) shows the 

normalized pressure fluctuation varying with frequency. Comparison is made between the 

numerical and the experimental results [25, 26]. It can be seen that there are four resonant 

frequencies: 65 Hz, 220Hz, 385 Hz and 525Hz over the interested frequency range. These 

frequencies are in good agreement with the experiment measurements by Chen et al. [25]. In 

addition, their experimental measurements on the turbulence intensities via applying PIV are 

compared with the present numerical simulations. This is shown in fig. 4. Here three different 
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frequencies, i.e. 90, 150 and 200Hz are considered with the fuel injector placed at y= 400 mm. It 

can be seen that the feature of turbulence intensities in the tube calculated by simulation have the 

same trend of experiment results as frequencies varying.  

 

Fig. 3 Validation with the experimentally measured mode shape in terms of (a) Normalized prms (b) 

Normalized urms [24], (c) the resonance frequencies [25].Here the root mean square values of 

pressure and velocity are defined as:  

 𝑝𝑟𝑚𝑠 = √1𝑁 ∑ (𝑝(𝑖))2𝑁 , 𝑢𝑟𝑚𝑠 = √1𝑁 ∑ (𝑢(𝑖))2𝑁 . 
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Fig. 4. Validation with the experimental results: turbulence intensities: (a) CFD results (b) 

Experiment results, as the propane is injected with a velocity of 0.32m/s. [25] 

 

Further validation is conducted by modifying the model and comparing with the experimental 

measurements obtained by Farhat et al. [24]. In their experiment, the fuel nozzle is centrally placed 

at y= 330 mm. Propane is supplied as fuel and the mass flow rate is 80 ml/min which corresponds 

to an injecting velocity of 0.52m/s. In addition, experimentally measured mode shapes are 

illustrated in Fig. 3(b) and (c) respectively in terms of pressure and velocity RMS values which 

are normalized with their maximum values for a clear comparison. Fig. 5 shows the comparison 

of the measured flame behaviors and shapes with the predicted ones, as the flame is placed at 

different axial locations but the same acoustic disturbances (375 Hz and 10 volts) are applied. The 

node and antinode of mode shape has been successfully predicted in the numerical results. The 
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flames in the experiments are obtained by using an intensified CCD camera (Lavision) and the 

simulation flames are presented as contours of temperature. It is clear that the flame behavior and 

shape depends on the nozzle position. In addition, the flame structures, shapes and colors are 

consistent between the numerical predictions and the experimental measurements, no matter 

whatever the supplied fuel is propane or hydrogen. When hydrogen is applied, the flame has a low-

temperature inner core due to the high-speed low-density hydrogen injection. This is 

fundamentally different from the propane-fueled flame. In the experiments, there is a lift-off 

distance for the jet diffusion flames, but this feature does not occur in simulation, probably caused 

by the simplified combustion model and chemical reaction. Apart from the lift-off distance, the 

general features of the jet diffusion flame predicted by our numerical simulations match well with 

the ones observed in experiments. 
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Fig. 5. Comparison of the experimentally measured flame with the numerically predicted 

one (a) experimental propane flame [24] (b) numerical propane flame (c) numerical 

hydrogen flame, as the fuel nozzle is placed at 4 different axial locations. 
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4. Results and Discussion 

4.1 Entropy generation and thermodynamic second law efficiency  

4.1.1 Effects of fuel 

The effect of different fuels, i.e. H2 and C3H8 on entropy generation is compared by placing the 

nozzle at y = 400 mm and the acoustic forcing frequency is set as 385Hz. In order to keep the heat 

release rates of both hydrogen and propane the same in the combustor, propane is injected with a 

velocity of 0.32m/s and hydrogen is injected with a velocity of 2.4 m/s. Fig.6 (a) and (b) illustrate 

the entropy generation of the hydrogen- and propane-fueled diffusion flame respectively. It can be 

seen that the hydrogen-produced entropy contours involves a continuous wave pattern propagating 

upwards. However, a mushroom-like contour is observed on the propane-fueled flame. In addition, 

less toroidal vortices around the nozzle are seen on the propane flame in comparison with the 

hydrogen-fueled one. This is most likely due to the lower inject velocity. Finally, the entropy 

generation from either hydrogen- or propane-fueled flames are periodically evolved. Table.1 

shows the volumetric entropy generation rate (S) and the second thermodynamic law efficiency 

(η𝐼𝐼), as C3H8 and H2 are fueled. It can be seen that the dominant contribution of entropy generation 

depends on the heat conduction process, while the diffusion process contributes the minimum, no 

matter the fuel is hydrogen or propane. When propane is burnt, Stotal is less than that of hydrogen. 

However, η𝐼𝐼 is higher.  



 18 

 

Fig. 6. Contour comparison of entropy generation as (a) H2 is fueled (b) C3H8 is fueled, and �̅� = 𝟎. 𝟏𝟓 𝒎/𝒔, 𝒖′ �̅�⁄ = 𝟐𝟎%, 𝝎 ⁄ 𝟐𝝅 = 𝟑𝟖𝟓𝑯𝒛 . 

Table 1. Comparison of volumetric entropy generation rate (S) and the second law 

efficiency (𝛈𝑰𝑰) , as propane and hydrogen are fueled. 

Types of fuel Scond/Stotal Sdiff/Stotal Schem/Stotal Stotal(W/K) ηⅡ (%) 

Hydrogen(H2) 80.3% 2.7% 17% 0.02894 83.68 

Propane(C3H8) 95.4% 1.9% 2.7% 0.02666 88.27 
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4.1.2 Effects of acoustic frequency and amplitude 

The effect of acoustic perturbations on entropy generation is examined by placing the nozzle at 

y = 400 mm and the acoustic forcing frequency is set to 90Hz, 200Hz and 385Hz. These 

frequencies selections are consistent with the experimental measurements in Refs. [25，26]. 

Before the entropy generation is examined resulting from 1) heat conduction, 2) mass diffusion 

and 3) chemical reaction, it would be interesting to reveal the periodic changes of the acoustic 

fluctuation imposing on the hydrogen-fueled flame.  Fig.7 shows the variation of the axial velocity 

at 40 mm above the fuel injector with phase ωt under three different frequencies excitation. It can 

be seen that 385Hz acoustic fluctuations are associated with the maximum amplitude axial velocity 

perturbations. The 200 Hz acoustic disturbances lead to a minimum axial velocity fluctuation.  

 

Fig. 7. Variation of the axial velocity at 40 mm above the fuel injector over an acoustic 

period. 

Eq. (9) reveals that effective thermal conductivity and temperature gradient are two important 

influencing factors on entropy generation. This could be described as heat conduction entropy 
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denoted by  𝑆𝑐𝑜𝑛𝑑′ . Fig.8 shows the Scond distributions in the combustor with the excitation 

frequency within an acoustic period. When the acoustic frequency is 200 Hz, the distribution of 

entropy generation is conical shape and high entropy generation area stay at the two sides of 

downstream of nozzle where the combustion takes place in jet diffusion flame. The distribution 

region almost have no change in a period. Wave shape can be found at the distribution of 

volumetric entropy generation at 90Hz, which because the velocity disturbance increases. The 

velocity perturbation is highest under the excitation of 385Hz. Under the excitation of 385Hz, the 

height of entropy generation rate is shorter, mushroom-like appearance can be seen and the 

distribution region of entropy generation move up and down in a period. The peak value of entropy 

generation rate at the excitation frequency of 385 Hz can reach 2.077×106 W/m3·K which is 

higher than 2.943×104 W/m3·K at 90 Hz and 2.788×104 W/m3·K at 200Hz.  The integration of 

volumetric entropy generation induced by thermal conduction has the same trend, which can be 

seen at Fig. 11(a). Integration of heat conduction entropy Scond at 385Hz is 0.02324 W/K, which is 

higher than at other two frequencies, 0.0181 W/k at 90Hz and 0.01781 W/k at 200Hz. This is 

because the flame surface area increases under the high velocity disturbance, which can enhance 

the heat transfer.  
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Fig. 8. Contour comparison of volumetric entropy generation resulting from heat 

conduction Scond over an acoustic period: (a) 𝝎 𝟐𝝅⁄ = 𝟗𝟎𝐇𝐳 (b) 𝝎 𝟐𝝅⁄ = 𝟐𝟎𝟎𝐇𝐳 (c) 𝝎 𝟐𝝅⁄ = 𝟑𝟖𝟓𝐇𝐳, as  �̅� = 𝟎. 𝟏𝟓 𝒎/𝒔, and  𝒖′ �̅�⁄ = 𝟐𝟎%. 
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It has been shown in Eq. (11) that the volumetric entropy generation could result from mass 

diffusion. This is classified as mass diffusion entropy denoted by 𝑆𝑑𝑖𝑓𝑓′ . It depends on the gradient 

of mass fraction and mole fraction. Fig.9 depicts the 𝑆𝑑𝑖𝑓𝑓′ distributions in the combustor with the 

excitation frequency within a period of oscillation. As depicted in Fig.9, the area of high entropy 

generation decreases with the increasing distance from nozzle because the chemical rate of 

diffusion combustion is fast near the nozzle outlet position. As the disturbance increase, wave 

shape can be seen at 90Hz and toroidal vortices are observed at 385Hz. The distribution region of 

volumetric entropy generation at 385 Hz is quite short. This is because the strong velocity 

disturbance make the reaction fiercer and faster. The peak value of mass diffusion entropy 

generation at the excitation frequency of 385 Hz can reach 2.533×106 W/m3·K which is higher 

than 7.173×104 W/m3·K at 90 Hz and 1.021×105 W/m3·K at 200Hz.  The integration of mass 

diffusion entropy generation Sdiff is shown at Fig. 11(a). Integration of mass diffusion entropy at 

385Hz is 7.89239×10-4 W/K that is lower than at other two frequencies, 0.00142W/K at 90Hz 

and 0.00153W/k at 200Hz. This is because the high reversal velocity make the diffusion of fuel 

slow. 
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Fig. 9. Contour comparison of volumetric entropy generation resulting from mass diffusion 

Sdiff over an acoustic period: (a) 𝝎 𝟐𝝅⁄ = 𝟗𝟎𝐇𝐳 (b) 𝝎 𝟐𝝅⁄ = 𝟐𝟎𝟎𝐇𝐳 (c) 𝝎 𝟐𝝅⁄ = 𝟑𝟖𝟓𝐇𝐳, as  �̅� = 𝟎. 𝟏𝟓 𝒎/𝒔, and 𝒖′ �̅�⁄ = 𝟐𝟎%. 

 

Fig.10 illustrates the entropy generation due to the chemical reaction 𝑆𝑐ℎ𝑒𝑚′ over an acoustic 

period. It can been seen from the distribution of entropy generation due to chemical reaction that 
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the high entropy generation region locates at the flame edge area. This is because the chemical 

reaction in the diffusion flame mainly occurs in the maximum temperature region [39]. When the 

acoustic frequency is set to 200Hz, the distribution shape is conical and stable ove a period. Wave 

shape can be found at the distribution of volumetric entropy generation and necking was found to 

occur at the tip at 90Hz. Under the excitation of 385Hz, the distribution of entropy move up and 

down and toroidal vortices occur. The peak value of entropy generation caused by chemical 

reaction at the excitation frequency of 385 Hz can reach 5.053×105 W/m3·K, which is higher than 

at 90 Hz  1.147×104 W/m3·K  and at 200Hz 9.723×103 W/m3·K. The integration of entropy due 

to chemical reaction Schem is shown Fig. 11(a). Integration of chemical reaction entropy Sdiff  at 

385Hz is 4.915×10-3 W/K which is higher than at other two frequencies, at 90Hz 3.648×10-3 

W/K and W/K at 200Hz 3.576×10-3. This is because the high velocity causing the combustion 

instability phenomenon. 
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Fig. 10. Contour comparison of volumetric entropy generation resulting from chemical 

reaction Schem over an acoustic period: (a) 𝝎 𝟐𝝅⁄ = 𝟗𝟎𝐇𝐳 (b) 𝝎 𝟐𝝅⁄ = 𝟐𝟎𝟎𝐇𝐳 (c) 𝝎 𝟐𝝅⁄ =𝟑𝟖𝟓𝐇𝐳 as �̅� = 𝟎. 𝟏𝟓 𝒎/𝒔, and 𝒖′ �̅�⁄ = 𝟐𝟎%. 
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Fig.11 (a) and (b) show integrated entropy generation rates and entropy generation induced by 

three effects at three frequencies. It is found that, among three physical processes, thermal 

conduction is playing a dominant role on total entropy generation, while mass diffusion contributes 

the lowest. With the acoustic excitation at 385Hz, the total entropy generation is maximized and 

the second law efficiency is minimized. 

 

Fig. 11 Comparison of (a) volumetric entropy generation rate (S) and the second law 

efficiency (𝛈𝑰𝑰) , (b) entropy generation contribution, as acoustic frequency is set to 3 

different values 
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Table.2 illustrates the effect of acoustic amplitude on the entropy generation. Two different ratios | 𝑢′ �̅�|⁄ = 20% and | 𝑢′ �̅�⁄ | = 10% are selected. It is clear that the contribution due to the Schem 

remains almost unchanged. However, Scond and Stotal are increased slightly with increased | 𝑢′ �̅�⁄ |. 
η𝐼𝐼 and Sdiff is decreased with more intensified acoustic disturbances, illustrating that increased 

amplitude improves heat transfer but slows down the diffusion of hydrogen due to  higher reversal 

velocities.  

 

Table 2. Volumetric entropy generation rate (S) and the second law efficiency (𝛈𝑰𝑰), as the 

acoustic disturbances are set to two different amplitudes 

Amplitude Scond/ Stotal  Sdiff/Stotal  Schem/ Stotal Stotal(W/K) ηⅡ (%) 

| 𝑢′ �̅�|⁄ = 20% 80.3% 2.7% 17% 0.02894 83.68 

| 𝑢′ �̅�⁄ | = 10% 79.1% 3.9% 17% 0.02524 87.34 

 

4.1.2 Effects of the nozzle axial location  

The nozzle axial location effect on entropy generation is evaluated the acoustic frequency is 

chosen 385 Hz, which corresponds to the 3rd resonant frequency. As shown in Fig. 12, the mode 

shape has two velocity nodes along the combustion tube. The effect of fuel nozzle location is 

evaluated, being placed at 3 different locations, y=120 mm, 400 mm and 550 mm. The location of 

y=120 mm and 550 mm are quite close to the velocity nodes, whilst y=400 mm is near the velocity 

anti-node.  
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Fig. 12. Predicted mode shape in terms of urms in axial direction, as the acoustic 

disturbances at 385Hz are applied.  

 

Fig.13 shows the volumetric entropy generation resulting from heat conduction, as the nozzle 

is placed at these 3 different nozzle positions.  It can be seen that at y=120 and 550 mm, a steady 

V-shaped entropy contour is produced. This is most likely due to the acoustics-induced stagnation 

effect. Over the acoustic period, there is almost no change in terms of the entropy contours.  

However, when the nozzle is placed at y=400 mm, a spatially wavy entropy contour is observed 

and the entropy generation is greatly increased.  In addition, the entropy contour near the nozzle 

outlet is found to change dramatically over the acoustic period. This is quite different from what 

happened when the nozzle is placed at velocity node locations i.e. y=120 and 550 mm.  
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Fig. 13. Contour comparison of volumetric entropy generation resulting from heat 

conduction Scond over an acoustic period: nozzle is placed at (a) y=120mm (b) y=400mm (c) 

y=550mm, as �̅� = 𝟎. 𝟏𝟓 𝒎 𝒔⁄ , 𝒖′ �̅�⁄ = 𝟐𝟎%, and 𝝎 𝟐𝝅⁄ = 𝟑𝟖𝟓𝐇𝐳. 
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Fig. 14 illustrates the entropy generations from mass diffusion over an acoustic period, as the 

nozzle is placed at different locations. It can be seen that The U-shape distributions of entropy are 

found at y=120mm. It shrinks into a V-shaped at y=550m. Over the entire acoustic period, the 

entropy configurations are found to be almost the same. However, dramatic changes are observed 

as the nozzle is placed at y=400 mm.  This is because the nozzle positions y=120mm and 550mm 

are near the velocity node where the acoustic velocity fluctuation is a minimum. The combustion 

and flame are stable. When y=400 mm, the nozzle is placed at velocity anti-node, the fluctuations 

are maximized. Comparing Fig. 14 with Fig. 13 reveals that the mass diffusion entropy generation 

is less than the heat conduction entropy. 
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Fig. 14. Contour comparison of volumetric entropy generation resulting from mass 

diffusion Sdiff over an acoustic period: nozzle is placed at (a) y=120mm (b) y=400mm (c) 

y=550mm, as �̅� = 𝟎. 𝟏𝟓 𝒎 𝒔⁄ , 𝒖′ �̅�⁄ = 𝟐𝟎%, and 𝝎 𝟐𝝅⁄ = 𝟑𝟖𝟓𝐇𝐳. 
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Fig.15 illustrates the entropy generations resulting from chemical reaction over an acoustic period. 

The M-shape distributions of entropy are found, when nozzle positions are at 120mm and 550m. 

The shape is quite different from that of mass diffusion. The entropy generation rate almost do not 

change in a period. Similar findings are obtained, when the mass diffusion entropy generation is 

considered as shown in Fig. 14.   
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Fig. 15. Contour comparison of volumetric entropy generation resulting from chemical 

reaction Schem over an acoustic period: nozzle is placed at (a) y=120mm (b) y=400mm (c) y= 

550mm, as �̅� = 𝟎. 𝟏𝟓 𝒎 𝒔⁄ , 𝒖′ �̅�⁄ = 𝟐𝟎%, and 𝝎 𝟐𝝅⁄ = 𝟑𝟖𝟓𝐇𝐳.  
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Fig.16 (a) and (b) show integrated entropy generation rates and entropy generation induced by 

these three effects at three frequencies. It is found that the thermal conduction is the dominant 

player contributing to the total entropy generation. However, the mass diffusion process makes the 

lowest contribution. When the fuel nozzle is placed axially at y=400mm, the total entropy 

generation is maximum and the second law efficiency ηII is minimum. 

 

Fig. 16 (a) Volumetric entropy generation rate (S) and the second law efficiency (𝛈𝑰𝑰); (b) 

entropy generation contribution, as the nozzle is placed at three different axial positions. 
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4.2 Flame transfer function  

The flame transfer function is an important description of flame-acoustic interaction [56, 57]. 

It is widely applied in analyzing thermo-acoustic instability in practical combustors [58-60]. FTF 

can characterize the relationship between the heat release and the unsteady flow disturbances 

imposed on the flame [61, 62]. The FTF can be written as: 

 𝑇𝐹(𝜔) = �̂�(𝜔)/𝑄�̂�(𝜔)/𝑢 = ‖𝑇𝐹(𝜔)‖ · 𝑒𝑗Φ𝐹  
(18) 

where �̂�(𝜔), 𝑄 ,  �̂�(𝜔) and 𝑢 are heat release and velocity in axial direction in frequency domain. 

Their mean values are denoted by an overbar. ‖𝑇𝐹(𝜔)‖ represents the gain of FTF and ФF is the 

phase difference between the heat release and oncoming velocity fluctuation. The unsteady 

velocity is recorded at the location of y = 375 mm. The frequency range is from 40 to 600Hz. In 

addition, the incremental frequency step is 20 Hz. 

 



 36 

Fig. 17. Variation of the gain and phase of FTF with forcing frequency (40–600 Hz), as |𝒖′ �̅�|⁄  is set to 3 different values. (a) variation of ‖𝑻𝑭(𝝎)‖ (b) phase ФF, (c) comparison of 

FTF determined by using the current method and the superimposed sine wave method [38]. 

 

The gain of the flame transfer function is shown in Fig.17 (a). The dominant peak of the FTF 

gain are at 200Hz under three amplitudes. As |𝑢′ �̅�|⁄  is increased to 30%,  local dominant peaks 

are also found at 400Hz, 540 Hz and 580Hz. Under all three different amplitudes, the minimum 

gains are found at 220Hz. The peak value of the gain is also varied with increased |𝑢′ �̅�|⁄ . The 

maximum gain at |𝑢′ 𝑢|̅⁄ = 0.5%, is approximately 1.76, and decreases with increased |𝑢′ �̅�|⁄ .  

Fig.17 (b) illustrates the corresponding phase of FTF. It presents the lag between the heat release 

and oncoming velocity fluctuation. The phase difference is distributed between – π and + π. The 

calculated flame transfer function shows that the velocity fluctuations at the upstream area near 

nozzle is sensitive to the acoustic frequencies and amplitudes. Fig. 17(c) compares the flame 

transfer function calculated by using a current single-tone method and superimposition method 

proposed by Chen in Ref [38]. It can be seen that there is a reasonably good agreement on the 

predicted dominant peak at approximately 185 Hz by using these two methods. However, there 

are more FTF non-harmonic peaks being predicted above 200 Hz. This is quite different from the 

current prediction. These peaks are most likely due to the round off error of the superimposed sine 

waves.  The classical single-tone acoustic excitation method should be applied in determining FTF 

in numerical investigations.  

5. Conclusions 
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The present studies consider the entropy generation and flame transfer functions of a jet 

diffusion flame in a longitudinal standing-wave combustor. 2D time-domain numerical 

simulations are conducted to gain insights on the dynamic propane- and hydrogen-fueled flame-

acoustics interaction in an acoustically resonant tube. The effects of acoustic disturbances 

frequencies and amplitude, the nozzle axial position are investigated one at a time. 

 3 physical processes: 1) mass diffusion, 2) heat conduction and 3) chemical reaction are 

identified to contribute to the entropy generation. The dominant player is found to be 

heat conduction. The mass diffusion is found to play a negligible role on entropy 

generation. 

 As the nozzle axial location is fixed, varying the acoustic frequency does not lead to a 

dramatic change of the entropy contour over an acoustic period, which results from 

either mass diffusion, heat conduction or chemical reaction. However, wavy entropy 

contours at 90 Hz revealing that the acoustic disturbances at a lower frequency strongly 

distort the flame shape. 200 Hz acoustic disturbances leads to almost the same U-shaped 

entropy contours. Total entropy generations are maximal and minimal at 385 Hz and 

200 Hz respectively, due to the different velocity perturbations as frequencies varying.  

 As the acoustic forcing frequency remains unchanged, varying the nozzle location is 

shown to lead to the entropy contour shapes being changed dramatically from V to U to 

M. When the nozzle is placed near velocity node, there is minimum total entropy 

generation. Contour of entropy generation is found to be almost unchanged over an 

acoustic period and the total entropy generation is minimum. However, when the flame 

is placed near the velocity anti-node, total entropy generation is maximum. The entropy 

contour is observed to change dramatically over the period (see Fig. 14(b)).   
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 Entropy generation can be increased by larger amplitude acoustic excitation. Flame 

transfer function (FTF) show that the gain of FTF ‖𝑇𝐹(𝜔)‖ depends strongly on both 

acoustic excitation amplitude and frequency. Increasing the amplitude of acoustic leads 

to the flame being more sensitive to the acoustic disturbances over more frequency 

bands. 
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