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ABSTRACT

In Hückel theory, the bond number is the sum of the orders of the π bonds incident on a given carbon center. From the work of Coulson

and his school, it has been believed for over 70 years that the bond number has a maximum of
√
3 and that this bound is realized by exactly

one conjugated framework, that of the trimethylenemethane radical. Search of published literature and archived correspondence failed to find
any formal proof of these two statements. Here, we provide a new formula for bond number that leads to an easily checked proof of both.
The bond number of graphene is 1.574 597. . . (90.9% of the mathematical limit), and this value appears to act as a separator for the classes of
metallic and semiconducting single-walled nanotubes, as defined within Hückel theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128624., s

I. INTRODUCTION

Electronic properties of π conjugated hydrocarbons and car-
bon nanostructures, from polycyclic aromatics1 and fullerenes2 to
nanotubes,3 nanocones,4 and graphenes,5 can now be calculated at
high levels of sophistication,6 but qualitative models such as Hückel
theory are still giving valuable insights for these systems. Hückel
Molecular Orbital (HMO) theory is a tight-binding model, with
eigenvectors and eigenvalues of the adjacency matrix of the molecu-
lar graph corresponding to the π molecular orbitals and their ener-
gies, respectively. Coulson and his school exploited the HMOmodel
extensively in the middle of the last century to develop concepts of
bonding theory7 that are still used; many of their definitions were
based on exact mathematical results, such as the famous pairing the-
orem.8 Here, we investigate a theorem about the maximum bond
number, which first surfaced in a note-in-proof to a 1948 Coulson
paper9 and enjoyed a shadowy existence over the next 70 years in
papers, reviews, and textbooks. That theorem is finally proved here
and shown to correspond to a universal limit for carbon nanos-
tructures, finite and infinite. For single-walled carbon nanotubes
(SWCNT), for example, bond number turns out to be a natural
separator of metallic and semiconducting behavior at the Hückel
level.

Bond number, Nr , is the sum of mobile π bond orders over
the bonds at a given center, and its deviation from the maximum
possible value is the free valence, an indicator of availability for fur-
ther bond formation by radical addition.10 In its strongest form,

the claim in Coulson’s footnote9 is that, within HMO theory, the
maximum π bond number achievable in an unsaturated framework
by carbon atom r with dr carbon neighbors is

√
dr , and that max-

ima of
√
1,
√
2, and

√
3 for primary, secondary, and tertiary carbon

atoms are realized uniquely in three π systems [ethene, allyl, and
2-methylenyl-1,3-propenyl (trimethylenemethane)]. Coulson had
thought that the global maximum was 1.680. His footnote attributes

recent proof of the higher
√
3 limit to his student Moffitt, whose

thesis11 had not mentioned this number, although it appears in two
sentences added in the journal version,12 in a plausibility argument,
based on presumed dilution of central bonding by second neigh-

bors. The
√
3 maximum was featured in chemistry texts for decades,

where it was variously described as arbitrary, assumed, convenient,
conventional, a definition, obvious, proved, or easily provable. A sec-
ond footnote, this time in a textbook,13 implies that in 1963, Coulson

mentioned that the
√
3 limit could be proved (albeit with difficulty)

using contour integration. This is clearly not the Moffitt “proof”
referred to in 1948. When was it done? Was it ever published? 20
years later, a paper by Gutman14 gives a partial mathematical proof,
valid for acyclic systems only; a footnote concludes that any earlier
proof is probably lost. The main actors in the story are no longer
available for comment,15–17 and search in the Bodleian archive,18

which includes Coulson’s own copies of correspondence with rel-
evant individuals, revealed no discussion of a proof, even during
preparation of a landmark paper on free valence.10 We can now
provide that proof.
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II. METHOD

In the Hückel model, atomic pπ basis functions, χr , on carbon
centers r = 1, . . ., n are used to construct molecular orbitals ϕk as
linear combinations,

ϕk ≙
n

∑
k=1

Urkχr , (1)

where unitary matrix U diagonalizes A(G), the adjacency matrix of
the molecular graph, G,

AU ≙ Uλ with UU
† ≙ U†

U ≙ 1 and
λ ≙ U†

AU with (λ)jk ≙ λkδjk.
(2)

Eigenvalues λk (k = 1, . . ., n) are in nonincreasing order. A has
entries Ars = 1 for pairs r ∼ s of vertices (carbon atoms) connected by
an edge (π bond), and Ars = 0 otherwise. Orbital energies are

ϵk ≙ α + λkβ, (3)

where α and β are Coulomb and resonance integrals, both neg-
ative energy quantities, taken as the zero and unit of the energy
scale, and orbitals of equal energy form a shell. Positive, zero, and
negative eigenvalues are associated with bonding, nonbonding, and
antibonding orbitals, respectively. Orbitals are filled with electrons
according to aufbau, Pauli, and Hund’s rules, to give occupation
numbers nk = 2, 1, 0. In the case of partial occupation, a configu-
rational average assigns equal fractional occupancy to all members
of the shell. Energy, atomic populations, and bond orders of the π
system are calculated from

Eπ ≙
n

∑
k=1

nkλk,

qr ≙
n

∑
k=1

nk∣Urk∣2,

prs ≙
n

∑
k=1

nkUrkU
∗

sk.

(4)

From the secular equations, a local adjacency condition holds at each
vertex,

λkUrk ≙ ∑
s∼r

Usk. (5)

Another relation arising from Eq. (2) is

Arr ≙ (UλU
†)rr ≙

n

∑
k=1

∣Urk∣2λk ≙ 0. (6)

The π bond number for vertex r is therefore

Nr ≙ ∑
s∼r

prs ≙
n

∑
k=1

nk∣Urk∣2λk, (7)

and its maximum value, Ñr , achieved in the “natural” electronic con-
figuration with nk = 2 for λk > 0, nk = 1 for λk = 0, and nk = 0 for
λk ⎡ 0 is, using Eq. (7),

Ñr ≙
n

∑
k=1

∣Urk∣2∣λk∣ ≥ Nr . (8)

For bipartite graphs (alternant molecules), this configuration is the
ground-state configuration of the neutral species, and for all graphs,
it maximizes all bond numbers and π energy. This maximum is the
so-called graph energy,19

EG ≙
n

∑
k=1

∣λk∣ ≥ Eπ . (9)

Energy can be calculated from the electron distribution as7

Eπ ≙ ∑
s∼r

prsAsr + qrArr ≙ ∑
r

Nr and

EG ≙ ∑
r

Ñr

(10)

so that the bond number is the contribution of the conjugated atom
r to total π energy. Our aim here was to prove a bound on Ñr valid
for any G (simple, connected, and unweighted) and any vertex of
finite degree dr . We based the proof on a contour-integral formula
for bond number first given by Coulson,9 but details of the deriva-
tion are immaterial, as once obtained, the formula is self-checking:
it provides a bound that is sharp and can be shown to be uniquely
realized for degrees 1, 2, and 3 by the “chemical stars,” C2H4, C3H5,
and C(CH2)3.

III. THE RESULT

The new formula for the maximum bond number for vertex r
of degree dr ≙ a2r is

Ñr ≙ ar − 1

2ar

n

∑
k=1

(ar − ∣λk∣)2∣Urk∣2, (11)

where {λk} are eigenvalues and {Urk} are eigenvector entries. This is
the cornerstone for the missing theorem, as it immediately gives the
required upper bound for Ñr (and Nr), since the terms under the
summation sign are squares, hence strictly non-negative.

Correctness is easily checked by expanding the summation. By
row normalization,

n

∑
k=1

a
2
r ∣Urk∣2 ≙ a2r . (12)

From Eq. (8),
n

∑
k=1

2ar ∣λk∣∣Urk∣2 ≙ 2arÑr . (13)

Finally, λ = U
†
AU gives a reduction of the third term,

n

∑
k=1

∣λk∣2∣Urk∣2 ≙
n

∑
k=1

λ
2
k∣Urk∣2

≙ [U(U†
AU)(U†

AU)U†]
rr

≙ (A2)rr ≙ dr , (14)

as entries in the squared adjacency matrix count walks of length 2.
Hence, Eq. (11) reduces to the tautology,

Ñr ≙ ar − ar

2
+ Ñr − ar

2
,

and the bound is proved.

J. Chem. Phys. 151, 151101 (2019); doi: 10.1063/1.5128624 151, 151101-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

COMMUNICATION scitation.org/journal/jcp

FIG. 1. Trimethylenemethane; the left panel is the molecular graph (i.e., the star on four vertices); the middle panel gives the Hückel energy-level diagram for the diradical
species, showing eigenvalues and orbital occupancies; the right panel shows the corresponding eigenvectors, with small, medium, and large circles representing entries

1/
√
6, 1/
√
2, and 2/

√
6, respectively, oppositely signed for colors red and blue. The vectors, combined with the occupancies, yield π-bond orders 1/

√
3 for all three edges

of the molecular graph.

The next stage is to check that the bound is sharp. To do this,
we need some definitions. A star graph Sn has central vertex r with dr
= n− 1 neighbors of degree 1 and eigenvalues (±ar , 0dr−1) (see Fig. 1).
The chemical stars are ethene, allyl, and trimethylenemethane, with
graphs K2, P3, and S4, respectively. The central vertex of any star
is core-forbidden. A core-forbidden vertex (CFV) has entry zero in
all eigenvectors in the nullspace (the shell of eigenvectors with zero
eigenvalue).20 In chemical terms, equal occupation of all orbitals
in the nonbonding shell would give zero contribution to charge-
or spin-density on a CFV. The generalization to other shells is the
λk-forbidden vertex (λk-CFV): a vertex that has Urk′ = 0 for every
vector with eigenvalue λk′ = λk. In this language, the kth term in the
sum in Eq. (11) vanishes if either the eigenvalue satisfies |λk| = ar or
the vertex r is a λk-CFV. Hence, the star has Ñr ≙ ar , meeting the
bound.

The final stage is to check that stars are the only graphs that real-
ize the bound. The argument here is slightly more involved. First,
note that every connected graph G has nondegenerate maximum
(Perron) eigenvalue λ1, with a strictly positive eigenvector (Ur1 > 0
for all r).21 Thus, any graph for which λ1 ≠ ar has at least one nonzero
term under the summation in Eq. (11) and cannot meet the bound.
Let H be a graph that meets the bound for vertex r with degree dr . It
must have λ1 = ar .

Suppose first that H is nonbipartite. Then, −ar is not an eigen-
value,21 and r must be a λk-CFV for all k ≠ 1. Row normalization
then gives Ur1 = 1, leaving no room in the Perron eigenvector for
other vertices, so H is an isolated vertex, a contradiction.

Suppose instead that H is bipartite. By the pairing theorem,8

λn = −ar , |Ur1|
2 = |Urn|

2, and, since r is a λk-CFV for the intermedi-
ate eigenvalues, 1 < k < n, we have |Urk|

2 = 0 and hence Ur1 ≙ Urn

≙ 1/√2. The local sum rule Eq. (5) at vertex r gives

λkUr1 ≙ ∑
s∼r

Us1 ≙ ar√
2

(15)

with all Us1 > 0; normalization of the Perron eigenvector gives

∑
s≠r

∣Us1∣2 ≙ 1

2
and ∑

s∼r

∣Us1∣2 ≤ 1

2
. (16)

As Eqs. (15) and (16) define a hyperplane and a ball in the
dr-dimensional space, respectively, a geometrical argument gives a

unique solution as the tangent point where Us1 ≙ (√2ar)−1,
implying degree 1, for all vertices s ∼ r. Hence, H is the bipartite
graph consisting of r and its neighborhood, i.e., the star on dr + 1
vertices.

IV. CONCLUSIONS

Our proof retains the spirit of Moffitt’s intuition12 about dilu-
tion of bonding in the lowest occupied orbital (Fig. 2) but shows
that any molecular graph meeting the bound must obey strict con-
ditions on all eigenvector entries and eigenvalues. Significantly, the
bound is valid for all conjugated carbon nanostructures and can
be applied to 1D, 2D, and 3D infinite systems such as nanotubes,
graphene, and more exotic allotropes22 by taking the band-theory

limit. Graphene falls considerably short of the
√
3 limit with a

value of Ñr of 1.574 597. Progression from the highly curved small-
est fullerene C2+

20 (1.470 820) through C60 (1.552 693) to graphene
changes Ñr from 85%, to 90%–91% of the limit, in line with the
expected trend of reactivity with the curvature.23 Graphene also pro-
vides a separator for conducting behavior in single-walled nanotubes
(Fig. 3). In HMO theory, nanotubes obey a leapfrog-type rule: those
with Hamada25 indices n1 − n2 = 0mod 3 are predicted metallic, and
others semiconducting. This turns out to be an oversimplification,24

but it is notable that the semiconducting and metallic tubes on this
criterion lie, respectively, above and below the graphene limiting
value.

FIG. 2. Moffitt’s intuitive picture of bonding at an unsaturated carbon site. Addition
of second neighbors leads to the depletion of bonding density between the central
atom and its immediate neighbors and lowering of the bond number.
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FIG. 3. Bond numbers of nanotubes calculated using the methods of Ref. 24. The

combinatorial radius of a nanotube with Hamada indices25 (n1, n2) is (n21 + n1n2
+ n22)1/2, convertible to a physical radius by multiplication with RCC/π, where RCC

is the bond length. The broken line is the graphene limit. Symbols above/below
the line represent Hückel semiconductors and metals, respectively. Filled circles
denote zigzag tubes (n1, 0), open circles denote armchair tubes (n1, n1), and dia-
monds denote chiral tubes with unequal nonzero indices (n1, n2). All tubes with
4 ≤ n1 ≤ 13 and combinatorial radius ≤18 are included in the plot.

Finally, we note that, with a few small changes, Eq. (11) can be
extended to graphs with edge and vertex weights, exploiting the def-
inition [Eq. (10)] of the bond number in terms of atomic contribu-
tion to π energy. This allows treatment of finite and infinite systems
with bond alternation, such as polyacetylene, or electronegativity
alternation, such as single-layer hexagonal boron nitride.
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