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Abstract 

MAX phase composite Ti3SiC2–TiSi2–TiC based on the Tin+1SiCn system was synthesized by 

spark plasma sintering (SPS) under vacuum sintering conditions. The microstructural 

evolution upon synthesis and Vickers indentation contact damaged were characterized using 

scanning electron microscopy (SEM) and optical microscopy (OM). Tribological behaviour 

of the SPSed MAX phase composite was investigated under dry sliding ambient conditions 

for evidence of intrinsic lubricity as well as to understand the influence of second phase TiC 

particles on the wear behaviour of this composite system. Further, the underlying wear 

mechanisms was elucidated via detailed analyses of the worn surfaces using Raman 

spectroscopy, SEM-EDS and transmission electron microscopy (TEM). Exhaustive analyses 

of the worn surface revealed evidence of solid lubrication. Transition in friction and wear is 

attributed to change in wear mechanism from tribo-oxidative to deformation-induced wear 

due to the disruption of the tribofilm architecture. 

Keywords: Dry sliding; Microhardness; Frictional heating; Transmission electron microscopy 

1. Introduction 

Early transition-metal ternary metalloceramics composed of hexagonal nanolaminated 

layered structure with a chemistry M(n+1)AX(n) configuration have attracted a lot of attention 

[1, 2]. Since first discovered in the late 1960s, MAX phases have been recently further 

explored to investigate their synthesis and structure-property relation owing to their unusual 

set of metals (machinability, stiffness, electrical and thermal conductivities) and ceramics 

(damage tolerance, thermal stability, oxidation resistance) properties [3, 4]. The MAX phases 

are so-called because of their general formula where M are mainly group-4, group-5, and 

group-6 transition metals (mainly Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo), while A is mainly an A-

group element from groups 9 (Ir), 10 (Pd), 11 (Cu, Au), 12 (Cd, Zn), 13 (Al, Ga, In, Tl), 14 



(Si, Ge, Sn, Pb), 15 (P, As, Sb, Bi), X is either C or N and n = 1 – 3 and possibly higher [1, 5, 

6]. Fig. 1 shows some of the elements in the periodic table that forms the Mn+1AXn phases. 

 

Fig. 1. The periodic table of the M, A, and X elements forming the MAX phases and associated solid-

solution MAX phases. 

These ternary phases (80 +) crystallize in a hexagonal structure (P63/mmc symmetry) with 

two formula units per unit cell, where Mn+1Xn layers are interleaved with pure A-group atoms 

thus resulting in a characteristic (Mn+1Xn)A(Mn+1Xn)A(Mn+1Xn) crystal structure [7]. The 

nature of their characteristic layered structure composed of stacking of n “ceramic” 

interposed with a “metallic” layer [8], coupled with the mixed covalent-metallic nature of the 

M–X bonds which are exceptionally strong and the relatively weak M–A bonds, endows the 

MAX phases with their signature mechanical, chemical, and electrical properties [4, 9, 10]. 

They represent the only class of ceramic-like material that deforms plastically via the 

nucleation and slip of basal dislocations (BDs) [11, 12] incorporating a series of energy 

absorbing micro-scale events such as buckling of individual grains, diffuse micro-cracking, 

delamination of individuals grains, kink and shear band formation followed by eventual grain 

push-outs and pull-outs [4, 10, 13-20].  

Ti3SiC2, a 312 compound, is the most studied representative member of the MAX phase 

family. It possesses unique metalloceramic properties such as low hardness, low density, high 

modulus, excellent thermal and electrical conductivity, high fracture toughness, damage 

tolerance and easy machinability [4, 21-23]. Its hexagonal layered crystal structure similar to 

graphite and MoS2 [24]  suggests it might be an excellent solid lubricant material with a low 



friction and wear properties suitable in a range of high-temperature structural engineering 

applications [25, 26]. This is supported by the fact that Ti3SiC2 felt lubricious during 

machining as reported by Barsoum et al. [21]. Numerous research have since been conducted 

on the tribological behaviour of MAX phases for evidence of lubricity [27]. However, some 

researchers have reported that albeit Ti3SiC2 possessing layered hexagonal crystal structure 

similar to graphite, it is not intrinsically self-lubricating [28]. This was attributed to a three-

body abrasive wear that stems from the fracture and pull-out of the Ti3SiC2 grains — 

representing the dominant wear mechanism at room temperature [27, 29, 30]. The ease of 

grain fracture and pull-outs has  been linked to the weak grain boundary force of the Ti3SiC2 

grains [31]. In addition, some other authors have highlighted the low hardness and oxidation 

resistance as the main factors deteriorating the friction and wear properties of monolithic 

Ti3SiC2 [32]. These observations have led to new studies focussing essentially on the 

incorporation of a second phase hard material in the soft matrix of Ti3SiC2 as an effective 

way to mitigate these weaknesses [32, 33]. Some possible reinforcing materials are TiC and 

TiB2 as they possess high hardness, excellent oxidation resistance and close coefficient of 

thermal expansion with Ti3SiC2 [32, 34].  

Nevertheless, little is known on the exact wear mechanism(s) as well as the intrinsic self-

lubricating behaviour of monolithic Ti3SiC2 and Ti3SiC2-based material due to the lack of 

detailed investigation undertaken on the worn surface irrespective of the varying testing 

conditions reported to date. The scope of this work is to determine comprehensively the wear 

mechanism sequence of this solid and its associated composites during dry sliding friction at 

ambient conditions in order to establish the existence of intrinsic self-lubricating behaviour as 

speculated [30, 35] and to further elucidate their wear mechanism.  

2. Experimental procedure 

2.1. Powder preparation 

Commercially available titanium powder (100 mesh, 99.7 % purity, Aldrich), silicon powder 

(200 mesh, 99 % purity, Acros organics) and graphite powder were used as starting elemental 

powders. 5.53 g of titanium powder and 0.98 g of graphite powder were dry-milled in a  

SPEX 8000 mill continuously for 2 h, which was then subsequently mixed with 1.08 g silicon 

powder according to a 3:1:2 stoichiometry.  

2.2. Consolidation by spark plasma sintering (SPS) 



The stoichiometric powder mixture was poured into an electrically and thermally conductive 

cylindrical graphite mould with an inner diameter of 20 mm. The powder was isolated from 

the graphite mould and punches by applying a graphite paper previously sprayed with boron 

nitride (BN) to ease the removal of the sintered sample from the tooling and to further protect 

graphite dies and punches from possible chemical reaction with the specimen at high 

temperature. The die was then subsequently covered with graphite felt and tied with graphite 

wire in order to reduce heat dissipation during the sintering. The sintering cycle was carried 

out in-situ in vacuum (10-2 Pa) in a SPS furnace unit (HP D 25, FCT Systeme GmbH, 

Rauenstein, Germany). Details of the SPS synthesis, resulting composition and density of the 

bulk sample is shown in Table 1. 

Table 1. Composition, sintering parameters and density of sample sintered by SPS 

 

2.3. Microstructure characterization 

The as-synthesized SPSed disc (Ø = 20 mm) was ground and polished down to 0.5 µm using 

a diamond paste to ensure the complete removal of the graphite layer surrounding the surface 

after the SPS synthesis. The resultant polished disc surface was analysed by x-ray 

diffractometry using a Bruker diffractometer (D2 Phaser Bruker AXS, Karlsruhe, Germany) 

with a Cu Kα radiation source using a step size of 0.02° and time per step of 3 sec with 

diffractometer angle range between 2Ө = 5° to 2Ө = 80°. Analysis of the XRD pattern was 

done with Diffract EVA software. Apparent density was measured by employing the 

Archimedes water immersion technique. The relative density was determined as a percentage 

of theoretical density upon determination of the phase fractions by Rietveld refinement of the 

X-ray diffraction data using GSAS and EXPGUI. The residual values of the refinement (R-

weighted pattern (Rwp); residual of least-squares (Rp); goodness-of-fit (χ2)) were evaluated. 

Scanning electron microscopy (SEM) coupled with an EDS detector (Inspect F50, FEI 

Company, The Netherlands / X-Max AZtec-Nanoanalyis, Oxford Instruments, UK) and 

transmission electron microscopy (TEM) (Philips EM420 operating at 120 kV/JEOL JEM-

F200) were used for microstructural characterization of the pristine sample as well as the 

 Sintering Parameters Density (g/cm3) 
Sample Pressure Temperature Heating Rate Hold Time Actual Relative 

 (MPa) (°C) (°C/min) (min.)   
80 % Ti3SiC2 / 14% TiC / 6% TiSi2 50 1350 50 15 4.437 98 % 



post-mortem worn surfaces of the disc. Electron transparent TEM samples were prepared in 

situ by focused ion beam (FIB) (FEI Helios NanoLab G3 UC, FEI Company, The 

Netherlands). TEM samples were obtained from the worn surface by preparing FIB cross-

sections perpendicular to the sliding direction (across the wear track). Furthermore, point 

analysis of the evolved chemistry at the worn surface was investigated ex situ by employing a 

Si-calibrated inVia Renishaw Raman spectrometer (Renishaw plc, UK) with an Ar laser (λ = 

514.5 nm, laser output power 20 mW and spot size of 2 µm). 

2.4. Hardness and Tribological Testing 

Vickers microhardness was measured by indenting the polished surface (Ra = 0.020 µm) of 

the sintered sample with a  microhardness tester (DuraScan 50, ecos Workflow, EMCO-

TEST, GmbH) using an indentation load of 4.9 N and a dwell time of 10 s. The indentation 

load was further increased in order to analyse the resulting change in the indentation zones 

deformation microstructure. Tribological investigation was undertaken by employing Al2O3 

ball (99 % GD-25 Alumina Spheric Trafalgar, UK) as counterface using a ball-on-disk 

tribometer (Model CETR UMT-1, USA) under dry sliding ambient test condition (25 °C/22% 

RH). An Al2O3 ball was used as the counterface due to its relative inertness, as it would not 

be expected to react with the bulk sample. Normal load was kept constant at 0.5 N and disc 

rotational speed varied at 50 rpm for 60 min and 100 rpm for 30 min, respectively for each 

test. Low sliding speed and normal load were used to minimize frictional heating due to the 

dry sliding test condition. Furthermore, the chosen load is in agreement with an earlier work 

by Souchet et al. [30] and ensures that the test falls within the friction transition region. A 

schematic diagram of the ball-on-disc rotational wear test configuration is shown in Fig. 2. 

The coefficient of friction values reported were continuously recorded by the tribometer 

during the entire duration of the test. Profiles of the wear scars were measured by taking 

several profilometric scans and the average taken, so as to determine the wear volume as 

� = �� (where A refers to the wear scar area determined by its profile and L is the length of 

track (2ℼR). The specific wear rate, which is the measure of wear volume per unit distance 

and per unit load was then determined thus: 

� = � ��. 	
⁄  

Where K = specific wear rate (mm3/Nm), V = wear volume (mm3), Fn = load (N) and Sd = 

sliding distance (m), respectively. 



 

Fig. 2. Schematic of the ball-on-disc rotary configuration employed for the wear test. 

2.5. Mechanical and chemical property characterization 

The indentation prints created on the pristine surface after Vickers indentation were further 

analysed by optical microscopy (OM) and scanning electron microscopy (SEM). This was 

undertaken to characterize the indentation-induced deformation microstructure and crack 

deflection toughening of this MAX phase composite. The evolved chemistries at the sliding 

surface was probed by SEM-EDS elemental mapping in order to elucidate the evolution 

sequence of the tribofilms.  

3. Results and Discussion 

3.1. SPS sintering cycle 

Fig. 3 shows the variation of temperature, applied force (pressure), punch displacement 

(piston movement) and sintering speed during the SPS cycle. As shown, the punch 

displacement has been divided into distinctive segments (I – IV) to represent the respective 

sintering stages and corresponding sintering events. In segment I, particle rearrangement 

initiated by the applied force resulted in positive punch displacement due to powder 

compression. A corresponding increase in sintering speed (~ 1.2 mm/min) due to the pistons 

moving together (compaction) is observed in segment I. In segment II, the densification 



stage, a slight positive piston displacement at a sintering speed ~ 0.3 mm/min in the 

temperature range 450-900 °C is observed. This is then followed by a sharp positive piston 

displacement from 900 °C up to the requisite sintering temperature 1350 °C at an increased 

sintering speed (~ 0.6 mm/min) owing necking and plastic deformation of the powder 

particles. In segment III, the requisite sintering temperature, the piston displacement is 

relatively constant at this stage as all the pores have been eliminated. The last segment (IV),  

the cooling stage, further positive piston displacement (~ 1.2 mm/min) due to thermal 

induced contraction is observed.    

 

Fig. 3. SPS  shrinkage profile during the synthesis of Ti3SiC2 metalloceramic under vacuum.  

3.2. Phase analysis and quantification 

The XRD phase identification of the polished disc is shown in Fig. 4. Ti3SiC2 is the main 

phase whilst TiC and TiSi2 exist as the minor phases. The TiSi2 ancillary phase is a 

compulsory intermediate phase leading to the formation of Ti3SiC2 [36]. The phase fractions 

as determined by Rietveld refinement (χ2 2.504, Rp 0.0732, Rwp 0.0942) indicated 80 wt.% 

Ti3SiC2, 14 wt.% TiC and 6 wt.% TiSi2, respectively.  



 

Fig. 4. XRD pattern obtained from the polished surface of the MAX phase composite disc. Inset 

shows the punch-powder-die set-up. 

3.3. Microstructural evolution 

A backscattered SEM micrograph obtained from the polished unetched SPSed disc surface is 

shown in Fig. 5. The bulk sample appears almost fully dense albeit some number of pores 

were observed. In agreement with XRD phase identification, EDS analysis (Fig. 6 and 7) 

showed the bulk sample contained the main phase Ti3SiC2 (bright contrast) as well as TiC 

(dark contrast) and TiSi2 (medium contrast (red arrow)) as ancillary phases. According to 

Sato et al. [37], eutectic Ti-Si liquid forms around the eutectic temperature 1630 K; a 

compulsory intermediate phase from which Ti3SiC2 grows due to the coexistence of the 

eutectic liquid phase and TiC [38, 39] as follows [40]:  

TiSi���� � 2TiC��� → Ti�SiC���� � Si���  

The presence of Ti-Si liquid phase and TiC as ancillaries in the bulk sample may be attributed 

to incomplete synthesis reaction as the Ti-Si liquid phase has not been fully consumed during 

the synthesis [41]. It is noteworthy to mention that beside the incomplete reaction that might 



have led to the formation of ancillary phases, the reactions leading to the formation of Ti-Si 

and Ti3SiC2 are exothermic [42, 43]. This implies that the local temperature may have 

exceeded the melting point of Si (Tm =1414 °C), thus leading to possible Si evaporation. The 

loss of Si will cause a shift in the overall phase composition of the bulk sample to the 

Ti3SiC2–TiC–TiSi2 three-phase region according to the Ti-Si-C equilibrium phase diagram 

[38, 44]. 

 

Fig. 5. A backscattered SEM micrograph of the unetched polished bulk sample. Note: white contrast 

are artefacts from colloidal silica used to reveal the microstructure without etching.  



 

Fig. 6. EDS map showing the TiC regions (dark phase) in the bulk sample. TiC appears to form 

clusters in some region and moderately distributed in the Ti3SiC2 matrix. 

 

Fig. 7. EDS point spectrums showing the Ti-Si intermediate phase liquid region (spectrum 1) from 

which the growth of Ti3SiC2 (spectrum 2) occurred. 

 



 

Fig. 8 shows typical transmission electron micrographs revealing the microstructural 

evolution of the pristine bulk sample. In agreement with the XRD phase analysis and SEM 

observation, the majority of the grains were Ti3SiC2 (Fig. 8(a)) with some TiC grains (white 

arrow) distributed in the Ti3SiC2 matrix as well as intergranularly (Fig. 8(d)). The in situ 

intergranular formation of TiC particles at the Ti3SiC2 grain boundaries is beneficial partly 

because it introduces a reinforcement at the TiC-Ti3SiC2 interface [33, 45]. The grain 

boundaries are the weakest point in the MAX phase matrix [31], as such, cracks easily 

nucleate at the grain boundaries, thus expediting grain pull-outs [33]. In addition, some few 

mobile dislocations (dash circle Fig. 8(c)) can be seen in the Ti3SiC2 grains; however, no 

other planar defects such as stacking faults were evident.  

 

Fig. 8. Bright-field (BF) TEM micrographs showing microstructural evolution in the as-synthesized 

bulk sample. Fig. 8(d) is a higher magnification of Fig. 8(c) highlighting in situ intergranular 

formation of TiC particle (white arrow).  

3.4. Densification and hardness 



The relative density of the as-synthesized polished disc was ~ 98 % upon considering the 

phase fractions and theoretical densities of Ti3SiC2, TiC and TiSi2 in the bulk sample using 

the mixture rule. Although some pores were seen in the as-synthesized disc as shown in Fig. 

5, the bulk sample is nonetheless nearly fully dense. Vickers microhardness obtained from 

the polished surface of the disc was 7.8 ± 0.9 GPa. The measured bulk hardness is 

significantly higher than the reported theoretical hardness of monolithic Ti3SiC2 (~ 4 GPa) 

[46]. This increase can be ascribed solely to the TiC and TiSi2 second phase particles in the 

bulk sample and is consistent with observations reported elsewhere [44, 45, 47]. 

Fig. 9 is an optical micrograph of the Vickers indentation prints and deformation pattern 

created using different indentation loads. An interesting feature from the observed deformed 

microstructure is the existence of extensive grain pile-ups and pull-outs around the 

indentation zones. These microscale plasticity events are examples of some of the typical 

energy absorbing deformation modes observed in MAX phases [46] contributing to their 

signature damage tolerance property [4, 48]. Furthermore, no radial cracks were seen at the 

indent diagonals, except for ring cracks around the indents. Such annular ring cracks suggest 

plastic deformation might be enabled by shear sliding in the bulk sample as reported 

elsewhere [49]. It is noteworthy to mention that the extent of grain pile-ups and grain push-

outs around the indents were different for the same indentation load (Fig. 9) at different 

points. This asymmetry in the damage zones around the indents for the same indentation load 

is linked to the anisotropic behaviour of Ti3SiC2 [13]. During Vickers indentation, favourably 

oriented grains parallel to the surface are easily pushed out in the vicinity of the indentation 

towards the surface as they are relieved of compressive stresses [13, 46]. 



  

Fig. 9. Optical micrographs taken from the indentation damage prints made by (a) 25 N and (b) 30 N 

indentation loads, respectively.  

Further, some other microscale plasticity events around the indentation damage zone not 

visible by optical microscopy were observed using scanning electron microscopy. Secondary 

electron (SE) micrographs (Fig. 10) shows a range of damage mechanisms such as grain pile-

ups (Fig. 10(b)), grain delamination and buckling (black arrow), kink band (KB) formation 

(red arrow), and eventual cavitation (Fig. 10(e)). The nature of the damage in the 

neighbourhood of the indentation indicates that Ti3SiC2 exhibits microscale plasticity at room 

temperature [13] albeit lacking the five independent slip systems required for ductility [50], 

thus the observed cavitation. 



 

Fig. 10. SEM micrographs revealing the damage micromechanisms around the neighbourhood of the 

indentation prints created in the Ti3SiC2 – TiSi2 – TiC composite. Note: In Fig.10(e) cavities are seen 

to have opened up between layers after extensive kink band formation. 



Fig. 11 shows the morphology of crack propagation within the fractured section contained in 

the indentation zone (Fig. 10). A propagating crack was deflected extensively as it met an 

elongated Ti3SiC2 grains. Taking into account the microscale deformation mechanisms 

around the indentation, as well as the energy consuming crack propagation path within the 

damage zone, these observations reinforce the conclusion that the Ti3SiC2-TiSi2-TiC 

composite is damage tolerant. 

 

Fig. 11. Secondary electron (SE) SEM micrograph revealing the energy consuming crack propagation 

path in this composite system. 

4. Tribological behaviour  

4.1. Friction and wear 



The evolution of friction coefficient as a function of time for the contact condition [0.5 N/50 

rpm/60 min] and [0.5 N/100 rpm/ 30 min] are shown in Fig. 12. The noticeable features of 

these plots are the friction transition(s) and mild stick-slip phenomenon. The friction plots 

have been divided into three regimes (I, II, and III). In regime I, the friction was initially very 

low with no visible wear scar. This was then followed by a transition in friction to a high 

friction regime II, where the wear scar became visible. For the test condition [0.5 N/50 

rpm/60 min], a later transition from high friction (regime II) to a low friction (regime III) is 

further observed. The transition in friction is consistent with observations reported elsewhere 

[27, 30]. The reason for the transition in friction and wear is not fully understood, however, it 

may be linked to a possible tribofilm formation and/or spallation taking place at the sliding 

surface. The stick slip event, on the other hand, may be attributed to possible adhesion 

between the ball and disc at the friction transition point due to the transfer of oxidized wear 

debris and/or spalled tribofilm to the ball. The wear rate for the entire test cycles were (0.74 ± 

0.20)x10-4 mm3N-1m-1 for the test condition [0.5 N/50 rpm/60 min] and (0.15 ± 0.35)x10-3 

mm3N-1m-1 for the test condition [0.5 N/100 rpm/30 min], respectively. Several attempts were 

made to measure the wear rate of the disc in regime I, however, the wear track could not be 

measured using the conventional stylus profiler. Analysis of the disc surface prior to friction 

transition (regime I) by SEM indicated that the polished surface had remained relatively 

unchanged. This is possibly because the tribolayer observed at the sliding surface prevented 

the ball-to-disc contact in this regime leaving the sliding surface relatively undamaged. 



 

Fig. 12. Evolution of  the friction coefficients as a function of sliding time for the test conditions. 

4.2. Worn surface analyses 

The worn surface from the test conducted at 50 rpm for 60 min was characterized 

preferentially for evidence of intrinsic lubricity and underlying wear mechanism in the 

following sections since it exhibited 3 distinct wear regimes (I-III). 

4.2.1 Scanning and transmission electron microscopy characterization 

SEM micrographs of the deformed microstructure obtained from the worn surface are shown 

in Fig. 13. Tribofilm formation (Fig. 13(a)) as well as tribofilm mixed with oxidized wear 

debris (Fig. 13(b)) were evident at the sliding surface. In agreement with the deformation 

microstructures upon Vickers indentation, grain delamination and kink band formation were 

also observed from the SEM micrographs of the worn disc surface. A cavity created upon 

grain pull-outs (Fig. 13(e)) served as a wear debris reservoir for the pulverized fractured 

grains (Fig. 13(f)). 



 

 

Fig. 13. Secondary electron (SE) SEM micrographs obtained from the worn surface of the disc. 



Fig. 14 shows the cross-sectional bright-field (BF) STEM electron image obtained from 

inside the wear track alongside with associated EDS map analysis employed to identify the 

phases. The plate-like grains are all Ti3SiC2 grains whilst the equiaxed-like grains are the TiC 

grains. 

 

Fig. 14. STEM/EDS chemical mapping of the cross-sectional FIBed section from the worn surface. 

A collection of TEM images from the worn surface of the Ti3SiC2-TiSi2-TiC composite 

revealing various shear-induced deformation microstructures are presented in Figs. (15-18). 

Extensive stacking faults (SFs) running parallel across the Ti3SiC2 grains is shown in Fig. 15. 

The absence of stacking faults in as-SPSed bulk sample supports the reasoning that they are 

not linked to stacking errors in the layer sequence i.e., the lack of an A-layer and/or  insertion 

of an MX-layer during the SPS synthesis. The stacking faults appears to be a planar defect 

initiated during the sliding contact in agreement with observation reported elsewhere [3]. 

According to Barsoum et al. [51], the deformation leading to kink band formation will cause 

the re-orientation of the basal plane in the kinked region, thus bringing about lattice rotation. 

This lattice distortion due to kink band (KB) formation possibly led to missing atomic planes 

and consequently leading to stacking faults in the worn sample. Fig. 15(e) is a bright field 

STEM image of the deformed Ti3SiC2 grain and the corresponding SAED patterns. 

Corresponding HRTEM image of Fig. 15(e) shows basal plane stacking faults induced by the 

distortion of the lattice structure and are marked as white arrow in Fig. 15(f). 



 

Fig. 15. Bright-field (BF) TEM micrographs showing extensive stacking fault (SF) propagation across 

the Ti3SiC2 grains: (b) is a higher magnification of (a), (d) is a higher magnification of (c), (e) bright-

field (STEM) revealing stacking faults across a Ti3SiC2 grain with inset showing corresponding 

SAED pattern and (f) HRTEM image taken from the Ti3SiC2 grain. 



Fig. 16 shows a range of mechanisms leading to eventual crack formation in the Ti3SiC2 

matrix. The deformation of the Ti3SiC2 matrix as the resolved shear stress exceeds a critical 

value during sliding contact will result in Ti3SiC2 grains shearing away relative to each other. 

As a consequence, there will be crack formation at the grain boundary such as those observed 

in Fig. 16 (a and b) [52]. Fig. 16(c) shows an open crack formed owing to continuous shear 

stresses that have led to the separation of dislocation walls, thus the evolution of kink bands 

(KBs) in consistent with observations elsewhere [52]. It is not surprising that wear induced 

deformation of Ti3SiC2 led to cavity formation (Fig. 16(c)) as this is consistent with 

indentation-induced cavitation (Fig. 10(e)) seen around the Vickers indentation prints. Some 

cracks propagating across the grains such at that shown in Figure 16(d) were also observed. 

 

Fig. 16. Bright-field (BF) TEM images showing (a-b) grain boundary cracks, (c) kink band (KB) 

containing crack along the kink boundary and (d) crack propagating across the Ti3SiC2 grain. 

Fig. 17 is bright-field TEM micrograph of an area where both the Ti3SiC2 and TiC phases 

coexist in the worn section. As shown, defect clusters in the form of dislocation debris are 

evident in some of the TiC grains (white arrow) and indicates the deformation of TiC phase 



during the sliding action. It appears the TiC particles shielded the Ti3SiC2 matrix by acting as 

the load-bearing elements. In addition, the TiC particles tends to reinforce the grain boundary 

in areas where TiC formed intergranularly as no cracks were observed in these worn regions 

(Fig. 17 (e and f)) in contrast to grain boundary regions where TiC particles are absent such 

as in Fig. 16 (a and b).  

 

Fig. 17. Bright-field TEM micrographs of the worn surface of the composite showing: (a and b) load-

bearing TiC particles (white arrow), (c and d) higher magnification of the TiC particles (white arrows) 



in (b), and (e and f) shows the absence of grain boundary fracture at the Ti3SiC2/TiC deformed grain 

boundary.  

Fig. 18(a) shows the evolution of dislocation walls across the Ti3SiC2 grain. The formation 

and eventual separation of dislocation walls due to shear stresses has been linked to 

delamination cracks in Ti3SiC2 [52, 53]. High dislocation density due to dislocation pile-ups 

can be seen in the Ti3SiC2 grain (Fig. 18 (b)), indicating stress concentration prior to grain 

fracture. It is conceivable that, the observed crack propagation across the Ti3SiC2 grains (Fig. 

16(d)) is as a result of stress nucleation, concentration and eventual crack formation. 

 

Fig. 18. Bright-field TEM images showing the evolution of: (a) dislocation wall and (b) dislocation 

multiplication in the Ti3SiC2 grains. 

4.2.2. Raman and EDS analyses 

Raman spectrum collected from the pristine sample (Fig. 19) displayed peaks corresponding 

to Raman vibrational modes of Ti3SiC2 [54-56] and TiSi2 [57], respectively. It is worthy to 

mention that TiC peaks were not detected as stoichiometric TiC does not possess Raman-

active vibrational modes [54]. Also, the absence of non-stoichiometric TiCX which possesses 

Raman active vibrational modes supports the fact that; Ti3SiC2 neither decompose at the 

SPSed requisite sintering temperature (1400 °C) due to Si evaporation nor the possible 

carbon diffusion from the graphite tooling and subsequent reaction with Ti3SiC2 (i.e., 

carburization) that might have led to TiCX formation as follows [58]: 

Ti�SiC� → 3TiC�.���s� � Si�↑�																																								�1� 

Ti�SiC� � �3x # 2�C = 3TiC$	�x % 0.8� � Si														�2� 

 



 

 

 

Fig. 19. Raman spectrum collected from the pristine surface of the Ti3SiC2–TiSi2–TiC composite. 

Peaks at 206 cm-1 and 245 cm-1 corresponds silicide vibrational modes. 

Raman spectra were further collected from the pre and post-transition worn surface (Fig. 20) 

in order to elucidate the transition in friction. Raman spectrum collected from the pre-

transition worn surface containing an iridescent tribofilm displayed the presence of evolved 

graphitic carbon at the sliding surface. On the other hand, the post transition worn surface 

chemistry showed that in addition to the graphitic carbon evolved at pre-transition worn 

surface, anatase (TiO2) and titanium oxycarbide (TiCXOY) later evolved at the post-transition 

sliding surface. 



 

Fig. 20. Raman spectra collected from the pre and post-transition worn surfaces of the disc. In set 

shows iridescent tribofilm at the pre-transition sliding surface. 

SEM-EDS analysis undertaken to further probe local changes in chemical structure of the 

wear track is presented in Fig. 21. Oxidation of the worn surface was evident in agreement 

with Raman analysis. The EDS map further showed depletion of carbon in the oxidized 

region whilst the Ti and Si-regions were heavily oxidized. A pool of graphite rich material 

was seen within the wear track which is again consistent with the Raman analysis pre-

transition (Fig. 20) which revealed evidence of graphitization. This wear-induced oxidation 

can be linked to the flash temperature developed at the asperity contact as well as frictional 

heating due to the dry sliding condition. Further, evidence of material transfer (Al onto the 

sliding surface) was seen in the wear track and signifies possible localized adhesive wear. 

The adhesion between the ball and disc may be responsible for the stick slip events observed 

at the transition point.   



 

Fig. 21. SEM-EDS chemical map and spectrum taken from inside the wear track of Ti3SiC2–TiSi2– 

TiC/Al2O3 tribo-pair for the test condition at 50 rpm. 

4.3. Friction transition surface evolution and ball analysis 

Fig. 22 shows the evolution of surface microstructures corresponding to regime I – III from 

the friction plot of the test conducted at 50 rpm for an hour. As shown in Fig. 22(a), in regime 

(I) a very thin layer of graphitic tribofilm evolved across at the sliding surface, preventing 

ball-to-disc contact, as such, the sliding surface was largely undamaged. Regime (II) revealed 

extensive damage at the sliding surface due to the tribofilms being worn off. The depletion of 

tribofilm at the sliding surface consequently led to contact between the tribocouple in regime 

II. In addition, cavities left behind as a result of grain pull-outs upon ball-to-disc contact act 

as reservoirs for wear debris as highlighted in Fig. 13(e). In regime III, surface smoothing 

and/or surface healing due to repeated sliding can be seen. This helped create a smooth 

surface for stable re-graphitization. Fig. 22(b) further highlights the details of the tribofilm 

architecture leading to friction transition from regime I – II. As shown, smearing of tribofilms 

along the sliding surface took place as the anatase and oxycarbide tribofilms evolved. The 



smeared layer is then spalled off over time leading to the eventual ball-to-disc contact, thus 

the generation of abrasive wear debris. 

  

Fig. 22. (a) evolution of surface microstructures corresponding to regimes I – III, and (b) details of 

surface microstructure leading to transition from regime I – II as observed in the friction plot for the 

test conducted at 50 rpm. 

The morphology of the Al2O3 ball was observed at the end of the sliding time (that is, test 

conducted at 50 rpm for 60 min) using an optical microscope and a surface profiler. Evidence 

of transfer film from the disc to the ball surface is shown in Fig. 23(a). In addition, mild wear 

grooves (Fig. 23(b)) and scratches (Fig. 23(c)) were observed. This explains the presence of 

Al in the wear track as revealed by EDS analysis. The presence of hard TiC particles in the 

Ti3SiC2 matrix is possibly responsible for the wear of the Al2O3 ball. 



 

Fig. 23. Optical micrograph (a and b) and (c) 2D – to – 3D ContourGT optical surface profile of the 

worn surface of the Al2O3 ball. 

5. Wear mechanisms 

Following microstructural and chemical analyses before and after the wear tests, the wear 

mechanisms (Fig. 24) of this MAX phase composite for the test conditions are designated 

oxidative–deformation–reoxidation as explained thus: 

5.1. Oxidative mechanism 

At the beginning of the sliding contact the evolution of graphitic carbon (D and G-bands) at 

the sliding surface prevented the ball–to–disc contact at the asperities, thus the reduction in 

friction and wear in regime I. After a certain sliding time required for sufficient surface 

temperature build-up, oxidation of the surface induced by frictional heat further led to the 

subsequent evolution of anatase (TiO2) and titanium oxycarbide (TiCXOY) at the sliding 

surface. 

 5.2. Deformation mechanism 



Upon repeated sliding contact, both the anatase and titanium oxycarbide tribofilm layers 

continues to grow until a critical thickness for spallation is reached. Since the anatase (TiO2) 

part of the tribofilms is non-adherent and brittle [27], it is easily worn off. The spalled 

tribofilm at the sliding surface then act as abrasives to the initially formed graphitic layer, 

thus exposing the underlying bulk surface to wear. The contact between the ball and the disc 

results in grain pull-outs at the grain boundary. Consequently an abrasive three-body wear 

dominates the wear process, thus the transition in friction and wear (regime I– II). 

5.3. Re-oxidation mechanism 

As the sliding contact continues, the fractured grains originating from grain pull-outs are 

crushed and pulverized at the sliding surface. Over time, the pulverized grains become 

compacted and smooth enabling the reformation of the graphitic layer. Thus, a further 

transition from a high friction and wear regime (II) to a low friction and wear regime (III).  

 

Fig. 24. Schematic presentation (1 to 6) showing the sequence of wear of the Ti3SiC2–TiSi2–TiC 

MAX phase composite.  



6. Conclusions 

Dense polycrystalline MAX phase composite Ti3SiC2–TiSi2–TiC was successfully 

synthesized by spark plasma sintering via the elemental powder route. The following 

conclusions can be drawn upon exhaustive characterization of the deformation microstructure 

and tribological behaviour of this MAX phase composite system: 

1. Deformation microstructure revealed evidence of room temperature plasticity, toughening 

and anisotropy in mechanical response. 

2. Evidence of intrinsic solid lubrication was observed due to the evolution of easy shear 

graphitic carbon alongside with frictional heating induced formation of anatase and titanium 

oxycarbide tribofilms that lubricates the sliding surface. 

3. Second phase TiC particles introduce a pinning effect on the Ti3SiC2 grains which helps 

inhibit grain pull-outs as well as acting as load bearing elements— shielding the Ti3SiC2 

grains from extensive deformation. 
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HIGHLIGHTS: 

•  Spark plasma sintering (SPS) was used to synthesize fully dense MAX phase 
composite Ti3SiC2-TiSi2-TiC from elemental powders  

•  Dry-sliding friction and wear test was carried out using a pin-on-disc configuration 
and room temperature. 

•  The MAX phases exhibited intrinsic self-lubricity owing to the evolution TiC, 
TiCXOY, and graphitic carbon at the sliding surface. 

•  Microscale events such as grain ripplocations, kink band (KB) formation, 
delamination, cavitation and grain buckling played an important role in the wear 
process. 

•  TiC acts as a load bearing element by decentralizing the sliding load via plastic 
deformation, as well as introducing pinning effect of the Ti3SiC2 grains to inhibit 
deformation and grain pull-outs 
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