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Abstract11

The response of the Antarctic ice sheets to future warming is uncertain. The12

IPCC are predicting minimal melt from Antarctica while others suggest in-13

creased meltwater contributions are possible. The Pliocene period (5.333 Ma14

to 2.58 Ma) may provide insights into future ice sheet response, because at-15

mospheric CO2 concentrations were similar to today (350 - 450 ppmv) and16

the earth surface was between 2◦C an 4◦C warmer than the preindustrial con-17

ditions. Geological records indicate that Antarctica’s ice sheets were smaller18

and more dynamic at this time and many sea-level estimates require melt-19

water input from the Greenland, West (WAIS) and East Antarctic Ice sheets20

(EAIS). However, only a few records exist proximal to the Antarctic ice sheet21

which allow for reconstruction of the Pliocene climate state. We present a22

multiproxy climate reconstruction from a sedimentary succession that was23

deposited in an ancient fjord within the Transantarctic Mountains, covering24

discrete intervals between the early Pliocene and the late Pleistocene. In25
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contrast to modern frigid conditions, our records indicate sea surface tem-26

peratures of about 5.6◦C at c. 4.1 Ma, the presence of a plant community27

at the fjord margins and evidence of soil formation. Simulations of potential28

vegetation cover in the Pliocene indicate our reconstruction is most compat-29

ible with a complete collapse of the WAIS and a large scale retreat of the30

EAIS from the subglacial basins with atmospheric CO2 levels of less than 45031

ppmv. Our study indicates that under present day atmospheric CO2 condi-32

tions, in the early Pliocene, the Antarctic ice sheets retreated significantly.33

Understanding the mechanisms driving this large-scale ice sheet retreat would34

enable us to assess whether current atmospheric CO2 concentrations will lead35

to the same ice sheet configuration once the Earth system has come to a new36

equilibrium state.37

Keywords: Pliocene; East Antarctic Ice Sheet; environmental magnetism;38

sedimentary biomarkers; modelling; BIOME439

1. Introduction40

Antarctica’s ice sheets hang in a delicate balance where snow accumu-41

lates in the interior, becomes ice and flows to the edges where it floats on42

the ocean forming an insulating ice shelf. Ocean circulation, specifically the43

introduction of ‘warm’ water adjacent to and beneath ice margins, is thought44

to be the principal influence on long-term stability of the modern WAIS and45

the Wilkes Land and Aurora sector of the EAIS. Today ice shelves in the46

Amunsden Sea region appear to be destabilising because ‘warm’ deep ocean47

water is coming into contact with the ice (Mouginot et al., 2014) and mod-48

elling studies indicate rapid ice margin retreat could occur soon (Golledge49
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et al., 2019). The effect of warm waters in contact with Antarctic ice over50

many centuries can by explored by studying ancient records deposited near51

the ice margin when atmospheric CO2 and surface temperature were simi-52

lar to what is predicted in the coming decades (Naish et al., 2009; Mckay53

et al., 2012; Levy et al., 2012, 2016). The most suitable time period for54

such comparisons is the Pliocene: it is the most recent, and best understood,55

epoch with strong similarities to the present day. The ANDRILL AND-1B56

succession showed that the Ross Ice Shelf (an extension of the WAIS) was57

dynamic and retreated repeatedly (Naish et al., 2009; Mckay et al., 2012)58

and Integrated Ocean Drilling Program Exp 318 showed that the Wilkes59

Land margin (A marine sector of the EAIS) was also dynamic during the60

Pliocene (Cook et al., 2013; Patterson et al., 2014). Sea-level records pro-61

vide supporting evidence of dynamic ice sheets with higher average sea-level62

and higher frequency variations during the Pliocene (Grant et al., 2019).63

However, determining sea surface water temperatures (SSTs) and other en-64

vironmental metrics from the Pliocene ice margin have been thus far difficult65

to reconstruct owing to a paucity of appropriate sedimentary records and a66

lack of reliable SST proxies. Here we present geological drill core evidence of67

ice margin response during the Pliocene from a fjord in the Transantarctic68

Mountains. Our data indicate warm and wet conditions on land, elevated69

sea surface temperatures and the presence of a local, higher order plant com-70

munity. Numerical simulations to identify ice sheet configurations which are71

most compatible with our proxy reconstructions, indicate large scale retreat72

of the EAIS from subglacial basins during the Pliocene is most consistent73

with the data presented here.74
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1.1. Drill core of the Pliocene to modern climate transition75

The 327.96 m long, DVDP-11 succession (McKelvey, 1981) spans the76

last 5.5 Ma and provides a unique insight into the Pliocene warm period77

in the Taylor fjord (Transantarctic Mountains, Fig. 1). We identify two78

sedimentary regimes (Fig. 2) that were deposited under different environ-79

mental and climatic conditions. Between 0 m and 195.22 m (0 Myr to c.80

2.8 Myr (Ohneiser and Wilson, 2012)) sediments are dominated by volcanic81

rich sands, diamicts and conglomerates (Porter and Beget, 1981) that were82

deposited in a lacustrine, fluvial or shallow marine setting with persistent83

multi-year sea-ice (Levy et al., 2012). The lower section, below 195.22 m (c.84

4.1 Myr to 5.5 Myr (Ohneiser andWilson, 2012)) is more complex. It contains85

massive to well stratified diamictites, interbedded with thinner, bioturbated,86

mudstone beds that are rich in diatoms (Winter and Harwood, 1997), marine87

benthic microfossils (Ishman and Rieck, 1992) and were deposited in a deep88

(600 and 900 metres) fjord setting (Ishman and Rieck, 1992) with productive89

surface waters (Winter et al., 2012). Diamictities were deposited under an90

expanded Taylor Glacier and can be inferred to cooler climate conditions. In91

this study we conducted organic geochemical, palynological, and magnetic92

mineral analyses on drill core sediment samples to reconstruct the oceanic93

and terrestrial setting.94

2. Methods95

2.1. Palynology.96

Eight sediment samples from the DVDP-11 drill core were analysed for97

palynology. With the exception of common unidentified algal remains in two98
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samples, palynomorphs were extremely sparse in all samples, and none con-99

tained more than a few grains of fossil pollen. The samples were processed100

for palynology at GNS Science using standard methods: 10% hot HCl wash,101

50% HF, a further 10% HCl, float in sodium polytungstate at 2.0 s.g., fil-102

ter through a 6 µm mesh, mount on glass cover slips in glycerin jelly. The103

entire residue of each sample was examined under a light microscope. The104

shallowest sample examined, 16.32 m, contained the greatest abundance and105

diversity of palynomorphs (spores, pollen, algae), dominated by an unidenti-106

fied dinoflagellate cyst (Fig. 3A). The sample also contained dark spherical107

forms interpreted as fungal fruiting bodies (possibly contaminant), and other108

clear hyaline forms possibly of algal origin (cf. Leiosphaeridia). The sample109

at 240.06 m contained abundant unidentified approximately spherical pig-110

mented forms of variable size with small protrusions, possibly of algal origin111

(Fig. 3B).112

2.2. Biomarker extraction and analyses.113

We selected the long chain diol index (LDI) for our SST reconstruction114

because these are the most effective SST proxy at high latitudes. Recon-115

structing ancient SSTs at high latitudes until recently has been difficult116

because of ecological intolerance of the organisms that produce alkenones117

and problems with the diagenesis and preservation of calcareous microfos-118

sils used for Mg/Ca paleothermometry (Beltran et al., 2016). In contrast119

LDIs are found from low to high latitudes, have a temperature range of -3◦C120

to +27◦C (Rampen et al., 2012) and a calibration error of ±1◦C which is121

comparable to alkenone derived SSTs.122

Organic geochemical analyses were conducted at the University of Otago123
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Centre for Organic Geochemistry and Paleoclimate studies (COrGePS). n-124

alcohols and LDIs were extracted from freeze-dried sediments (4 to 10 g of125

sediments) using a Dionex 300 Accelerated Solvent Extractor with dichloromethane126

and methanol (9:1, v/v) at 1500 psi and 100◦C.127

Compound identification of the LDIs was conducted using an Agilent128

6890N gas chromatograph (GC) equipped with an Agilent 5975B mass selec-129

tive (MS) detector in selective ion monitoring mode operated at 100 eV (EI130

Source). LDI were separated using a fused silica capillary column (ZB-5MS,131

30 m long, 0.32 mm internal diameter, 0.25 µm film thickness). The initial132

oven temperature started at 70◦C and increased at a rate of 30◦C min-1 to133

120◦C and subsequently at a rate of 5◦C min-1 to the final temperature of134

300◦C, which was held for 10 min. The relative abundance of long chain diols135

was measured using single ion monitoring of m/z 299, 313, 327, and 411.136

Epicuticular waxes (n-alcohols) on the surfaces of plants help regulate137

the water balance of the plant. The waxes can be preserved in sediment and138

provide an alternative means (from pollen analyses) to identify a plant com-139

munity. n-alcohols were isolated by silica gel chromatography using solvents140

of increasing polarity following a standard procedure (Sicre et al., 2001). The141

fractions containing n-alcohols were concentrated, transferred to clean glass-142

vials, evaporated under nitrogen, and derivatized after reaction with N,O-bis143

(trimethylsilyl) trifluoroacetyl acetamide (BSTFA-TMS).144

Gas chromatographic analyses were performed on a Hewlett Packard 6890145

gas chromatograph with a flame ionisation detector using a fused silica cap-146

illary column (Rxi-1ms, 50 m long, 0.32 mm internal diameter, 0.25 µm film147

thickness). Helium was used as a carrier gas. 5(alpha)- androstane was used148

6



as an internal standard and was spiked into the final extracts immediately149

before injection onto the GC. Recoveries were calculated by comparing the150

target to internal standard ratio. GC/FID quantification was performed151

using a calibration curve (0 ng mL -1 to 250 ng mL -1) with commercial152

standards (C22, C24, C28 n-alcohols).153

2.3. Magnetic mineralogy studies.154

All magnetic analyses were conducted at the Otago Paleomagnetic Re-155

search Facility at the University of Otago, New Zealand. Thermomagnetic156

analyses (Fig. 4E, F) were conducted on crushed/powdered samples that157

were progressively heated to 700◦C in air on an AGICO MFK-1CS Kap-158

pabridge system. Samples were disaggregated using a mortar and pestle and159

rock fragments were removed by sieving in a (250 micron sieve) to ensure160

only the fine fraction was measured because the signal of minerals with lower161

saturation magnetisation could easily be masked by the presence of a small162

basaltic rock fragment. Curie/Néel temperatures were determined using the163

differential method. FORC (Fig. 4 A-D), IRM and hysteresis analyses were164

conducted on c. 0.15 g samples using a Princeton Measurements Corpora-165

tion vibrating sample magnetometer (VSM, Micro-Mag 2900). FORC (Pike166

et al., 1999) measurements were made with a field spacing of 2 mT, Hc be-167

tween 0 and 100 mT, and Hu between -60 and +60 mT. Data were processed168

using the FORCinel (Harrison and Feinberg, 2008) with a smoothing factor169

of between 3 and 7 depending on the magnetic mineral concentration and170

hence the noise level of the measurements.171
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2.4. Numerical simulations.172

HadCM3, the UK Met Office Unified Model General Circulation Model173

(GCM), was used for each of the climate model simulations in this study174

(Gordon et al., 2000). The atmosphere has a horizontal resolution of 2.5◦ in175

latitude and 3.75◦ in longitude, with 19 vertical layers (Pope et al., 2000).176

The radiation scheme represents the effects of minor trace gases (Edwards177

and Slingo, 1996) and has a parameterised background aerosol climatology178

(Cusack, 1998). These simulations use the fixed land-surface scheme of (Cox179

et al., 1999) and the ocean component is a 1.25◦ x 1.25◦ resolution, 20 level180

version of the (Cox and Geophysical Fluid Dynamics Laboratory, 1984) ocean181

model. The sea-ice model is a simple thermodynamic scheme, with parame-182

terised ice drift and sea-ice leads (Cattle and Crossley, 1995).183

Four simulations have been run including a pre-industrial control and184

three simulations (Table 1). The Pliocene simulations use the alternative185

boundary conditions from PlioMIP (Bragg et al., 2012), which incorporate186

changes in atmospheric carbon dioxide concentrations, vegetation, orography187

and ice sheet coverage, but not changes to the modern land-sea mask. These188

boundary conditions have been modified only over East Antarctica (Fig.189

6) to represent a large scale retreat scenario and a modern EAIS scenario,190

encompassing the uncertainties in the size of the EAIS in the Pliocene de Boer191

et al. (2015). The simulation with enhanced southern hemisphere insolation192

has an orbital configuration equivalent to 3.049 Ma (Dolan et al., 2011).193

BIOME4 is a coupled carbon and water flux model, which predicts global194

steady state vegetation distribution, structure and biogeochemistry (Kaplan195

et al., 2003). BIOME4 simulates twelve plant functional (PFT) types, each196
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with a specific range of climate tolerances, ranging from high latitude to197

tropical flora. BIOME4 determines which of 28 biomes is most likely to198

occur in a grid square based on biogeochemical variables. The model is199

forced by monthly mean temperature, precipitation and available sunlight.200

Atmospheric carbon dioxide concentrations are specified. BIOME4 has been201

run on the latest land-sea mask configuration over Antarctica (Dowsett et al.,202

2016), as this shows the areas of land most likely to be subaerial during times203

in the Pliocene when the WAIS is collapsed.204

3. Results205

Palynomorphs were extremely rare in all samples. However, the absence206

of pollen in DVDP-11 sediments does not indicate an absence of an ancient207

terrestrial plant community because under oxidative conditions or in the ab-208

sence of sorptive preservation media pollen can be easily degraded (Versteegh209

et al., 2010). In absence of palynomorphs, we studied the distributions of210

n-alcohols in the extractable organic matter fractions from 14 samples to211

explore further the possible signature of vegetation.212

All samples analysed contained n-alcohols with concentrations varying213

between 7.6 ng/g (nanogram per gram of sediment) and 83.6 ng/g of sed-214

iment (Fig. 2A). The highest concentrations were in the lower half of the215

core (207.39 m to 325.62m). High molecular weight (HMW) n-alcohols (from216

n-C21 up to n-C32) were found in the mudstone intervals below 205 m with ev-217

idence of higher order plant waxes with the typical even/odd predominance in218

the HMW homologues (Logan et al., 1995) recognized in the samples between219

207.39 and 223.58 m and at the base of the record (325.62 m). In parallel,220
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summer sea surface temperatures were reconstructed from the LDI (Ram-221

pen et al., 2012). Long chain alkyl diols are produced by Proboscia diatoms,222

which modify chain length and degree of unsaturation of cell membrane lipids223

in response to ocean temperature to maintain constant membrane fluidity.224

Proboscia diatoms have existed in Antarctic waters since c. 18 million years225

ago and are reported in the DVDP-11 (Proboscia barboi between 203.07 m226

and 247.81 m depth). Our analyses identified long chain alkyl 1,13- and 1,15-227

diols (see methods) in five samples between 207.4 m and 248.8 m (Fig.3) that228

resulted in temperatures ranging between 1.1◦C and 5.6◦C (Fig. 2B).229

4. Environmental magnetic records230

Magnetic mineral type, grain-size, and concentration, are controlled by231

environmental, depositional, and/or post depositional processes (Sagnotti232

et al., 1998; Roberts et al., 2013). We observe that the upper and lower233

parts of the core have contrasting magnetic mineralogy and concentrations234

(Fig. 2C and Supplementary Fig. S1). Above 195 m (younger than 2.8 Ma)235

magnetite is dominant with curie temperatures of c. 580◦C and high concen-236

trations. First Order Reversals Curves (FORC) indicate a mixed magnetic237

grain-size, which is dominated by super-paramagnetic (SP) grains (Fig. 4238

A and B) as evidenced by the shift of the FORC distribution to the ori-239

gin and the appearance of positive contours along the vertical axis of the240

lower quadrant (Lanci and Kent, 2018). Magnetic mineral concentrations241

are lower below 195 m (older than 4.1 Ma) and comprise alternating pris-242

tine and modified mineral input. Thermomagnetic data indicate mixtures of243

magnetite, maghemite or minor hematite (Figs. 4 and 5) in muddy intervals244
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and pure magnetite dominated mineralogy in coarser lithgologies (i.e. di-245

amictite). Analyses of rock and surface sediment samples from this sector of246

the Transantarctic mountains identified magnetite as the dominant magnetic247

mineral in rocks and surface sediments (Ohneiser et al., 2015). Maghemite248

and hematite may have a pedogenic origin which is climate rather than time249

dependent (Maher, 2011; Nie et al., 2010). In DVDP-11 the occurrence250

of haematite and maghemite in only the fine grained sediments suggests a251

climate control on magnetic grain production. Therefore we suggest that252

maghemite and or hematite found in DVDP-11 was produced at the fringes253

of the fjord and was transported to the sea by rivers. FORC analyses of254

mudstone and diamictite samples (Fig. 4 C and D) indicate the presence of255

larger magnetic grains ranging from pseudo single domain to multi domain256

grains and a potential contribution of biogenic magnetite (Roberts et al.,257

2014). We find no evidence of SP grains in this lower section indicating that258

they are either absent or their signature is masked by larger grains.259

5. Numerical simulations260

Previous climate model simulations using the best available Pliocene261

boundary conditions have not produced Antarctic climates similar to those262

suggested by these data (Haywood et al., 2013). Although, it seems clear263

that the WAIS saw significant reductions during the Pliocene and Pleis-264

tocene (Naish et al., 2009; Beltran et al., 2020), the state of the EAIS is265

much less certain and the details of this could have a large impact on Dry266

Valleys climate. Here we present the results of new climate model simulations267

using the UK Met Office Unified Model coupled ocean-atmosphere General268
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Circulation Model (GCM), HadCM3, looking at different scenarios of EAIS269

retreat. We also reconstruct the vegetation that could have been present in270

the Dry Valleys at the time using the BIOME4 mechanistic vegetation model.271

We compare model-predicted temperatures from three Pliocene simulations272

(Table 1); one with a modern EAIS and no retreat, one where no retreat is273

prescribed but the Southern Hemisphere orbital forcing has been enhanced274

and a final simulation with large-scale retreat of the EAIS (Fig. 6E). The275

simulations show that in order to support summer temperatures significantly276

above freezing (Table 1; Fig. 5) and more than the most simple of tundra277

environments in the Dry Valleys region (Fig. 6E), large scale retreat of the278

EAIS is required. In this modelling framework, retreating the EAIS to as far279

south as Taylor Dome prevents cold air masses from entering the Dry Val-280

leys causing summer temperatures of more than +4◦C. BIOME4 mechanistic281

vegetation model results only allow for cushion forb and prostate tundra en-282

vironments in the Dry Valleys unless large scale EAIS retreat is prescribed,283

when more productive tundra environments are simulated (Fig. 6E).284

6. Discussion and Conclusions285

Our data indicate that between c. 4.1 and 4.25 Ma (c. 201m and 225 m)286

the ocean temperature in Taylor fjord was between 5.6±1◦C (Fig. 2) and287

2.6±1◦C, similar to contemporaneous TEX86
L derived temperatures (Mckay288

et al., 2012) from the Ross Sea (AND-1B) (Fig. 2E).289

The elevated annual average and peak seasonal temperatures imply a dra-290

matically different hydrologic system when compared with today. We find291

supporting evidence of warmer, wetter terrestrial conditions in the magnetic292
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minerals and organic geochemical records and simulations indicate mean293

summer temperatures of ca. 8◦C and enhanced precipitation over Taylor294

fjords.295

Rees-Owen et al. (2018) recently reconstructed the ancient plant commu-296

nity and continental surface temperature using biomarkers on the Neogene297

fossil-bearing Sirius Group deposits at Olivers Bluff (c. 850km south of Tay-298

lor Valley). They determined an average continental summer temperature of299

c.5◦C from tetraether lipids which was warm enough to allow a low, diversity300

plant community to exist (Rees-Owen et al., 2018).301

We selected high molecular weight n-alcohols for our reconstruction be-302

cause they are most likely derived from a local plant community (Gagosian303

et al., 1987) where as n-alkanes are common in soils, carbon bearing for-304

mations, and sediments (Eglinton, 1969) and could be recycled from older305

formations or transported over long distances (Gagosian et al., 1987). We306

did not identify altered biomarkers which could be sourced from the much307

older Beacon Supergroup sediments (Matsumoto et al., 1990).308

Feakins et al. (2012) suggested, because biomarkers and palynomorphs309

in the nearby ANDRILL AND-2A succession were not ubiquitous that they310

indicate the sporadic appearance and disappearance of a local plant commu-311

nity. We suggest that the n-alcohols in DVDP-11 were derived from local,312

woody plant community on the shore of the Taylor fjord because n-alcohols313

are unlikely to survive long distance transport or recycling (Gagosian et al.,314

1987). The numerical vegetation simulations that were conducted under tem-315

perature conditions comparable to the SST record indicate conditions were316

sufficiently warm for dwarf shrub and tundra to occupy the Transantarctic317
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Mountains.318

The transition to cooler conditions in Taylor Valley occurred between319

4.1 Ma and 2.6 Ma. In the Ross Sea the surface waters cooled at c. 3 Ma320

(Mckay et al., 2012) with fewer and shorter duration periods when the Ross321

Ice Shelf retreated (Naish et al., 2009). Similarly at the Wilkes Margin,322

precession driven (paced) cooling began at around 3 Ma (Patterson et al.,323

2014). The transition from a smaller, dynamic ice sheet to a larger, more324

stable ice sheet coincides with a shift in the long term, atmospheric CO2325

concentrations (Fig. 2F). Our drill core record indicates that under elevated326

atmospheric CO2 conditions (Fig. 2) Taylor fjord was ice free with negligible327

or no delivery of icebergs to the fjord. Ocean temperatures were too warm328

to allow summer sea-ice and atmospheric conditions were warm enough that329

a plant community was present. Our climate model simulations indicate330

that this is plausible under very high insolation forcing or with the with loss331

of Taylor Dome; a small land based portion of the EAIS. The reduction in332

ice volume results in a significant sea-level increase with a contribution of333

more than 10 metres of sea-level rise from the EAIS. While studies indicate334

that current equilibrium climate sensitivity (ECS) estimates 1.5 - 4.5◦K of335

warming per CO2 doubling are probably accurate (Martinez-Boti et al., 2015)336

our study indicates that this sector of Antarctica (and likely the wider region)337

will experience significant warming (up to 6-7◦K) and ice retreat under the338

current (and future) CO2 conditions (400 ppm - RCP2.6).339
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Figure 1: (A Location of the DVDP-11 drill site in Taylor Valley within the Transantarctic

Mountains and the AND-1B successions (Naish et al., 2009). B Looking up the modern

day Taylor Valley towards the East Antarctic Ice Sheet. The DVDP-11 drill site is near

the foot of the Commonwealth Glacier (right of photo).

Figure 2: DVDP-11 stratigraphic record with magnetic polarity zones and glacial proxim-

ity as derived from sediment character. (A) high molecular weight alcohol concentrations

(green leaf indicates woody plant biomarkers), (B) LDI derived Sea Surface Temperature,

(C) magnetic susceptibility (Ohneiser and Wilson, 2012), (D) curie/néel temperature of

magnetic grains within sediment, (E) TEX86 derived Sea Surface Temperature from Mc-

Murdo Sound (Mckay et al., 2012), (F) composite atmospheric CO2 (see supplement for

details on proxies used and their source), (G) benthic δ
18O record (Lisiecki and Raymo,

2005), (H) insolation at 77◦S, (I) orbital eccentricity.

Figure 3: A Unidentified dinocyst, B Unidentified Algae spp. C Selected gas chromatog-

raphy/mass spectrometry (GC/MS) chromatogram for a sample from 248.8 m depth.

Figure 4: FORC analyses indicate a peak response centred at between 0 and 5 mT above

185mA and B) which indicates the presence of significant quantities of superparamagnetic

(SP) magnetite (Roberts et al., 2014; Lanci and Kent, 2018). The weak response up to

50 mT indicates smaller relative quantities of single domain grains. Below 185 m (C

and D) the peak response is centred between 5 and 25 mT and the peak is more broad

indicating larger grains are dominant such as multidomain grains (229 m) and a mixture

of SD and pseudo single domain grains (Roberts et al., 2014). Thermomagnetic data of

two samples from DVDP-11 with magnetite dominated mineralogy (E, 76.22 m) with a

curie temperature of 580◦C and (F, 207.36 metres) a mixed magnetic mineralogy with

curie temperatures ranging from 580◦C to 680◦C.
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Figure 5: A scatter plot of lithology versus Curie/Néel temperature as derived from 92

thermomagnetic analyses. All diamictites includes massive and stratified diamictites as

well as three breccia and four conglomerate samples. A moderate correlation coefficient

of 0.62 indicates a reasonable associate between lithologies associated with warmer depo-

sitional setting and a higher Curie/Néel temperature.

Figure 6: Results from climate model simulations where the red square indicates the

location of the DVDP-11 record in Taylor fjord. (A) Mean Annual temperature, (B)

Mean Summer temperature (DJF - Decembers, January, February), (C) Mean February

sea surface temperature, (D) Mean annual precipitation, and (E) predicted vegetation

coverage and type under prescribed atmospheric conditions. E also shows the extent of

the ice sheet (land ice) prescribed in the climate model and also the land-sea mask applied

in the climate model (barren).
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Table 1: Dry Valleys climate variables from HadCM3 simulations of the pre-industrial and

Pliocene sensitivity experiments.
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