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Abstract:We study an optimization problemwith SPDE constraints, which has the peculiarity that the control

parameter s is the s-th power of the difusion operator in the state equation. Well-posedness of the state

equation and diferentiability properties with respect to the fractional parameter s are established. We show

that under certain conditions on the noise, optimality conditions for the control problem can be established.
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1 Introduction

Generally speaking, optimal control problems with constraints are formulated as

min
y∈Y,u∈U

J(y, u) subject to Constr(y, u) = 0,
where J is a cost functional, y the state variable, u the control variable and Constr is a constraint, usually in

the form of an equation for y, called the łstate equationž. An important subcategory arises when the Constr is

a partial diferential equation, so that the task is the identiőcation of coeicient functions or right-hand sides

in the PDE: these are often called łidentiőcation problemsž in the literature.

The purpose of this work is to study an identiőcation problem with two peculiarities: (i) the control vari-

able appears as the (fractional) exponent of a difusion operator, and (ii) the constraint will be a stochastic

PDE in the sense of a PDEdriven by aWiener Process. The optimal control parameter is therefore the answer to

the question łwhat is the optimal (fractional) difusion pattern?ž, which appears in applications, for instance,

in the following way: In biology, y represents the density of a biological species exhibiting anomalous dif-

fusion driven by a fractional operator and combined with a random perturbation. Such fractional difusion

processes are supposed to model very well the forage behavior or certain species; see, e.g., [12].

In engineering and economics, the problem of optimization under uncertainties is also wide-spread: Our

model could serve as a very őrst toy problem to mathematically investigate the maximization of the proba-

bilistic incrementalNet PresentValue for selecting the location of injection andproductionwells in petroleum

engineering. The geometry and extension of such wells are crucial to the success of oil extraction in mature

oil őelds, where the difusion of injected polymers within the oil őeld is studied; see, e.g., [23, 26].

Carina Geldhauser, Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O., 29B, Saint Petersburg 199178

Russia, e-mail: k.geldhauser@spbu.ru. http://orcid.org/0000-0002-9997-6710

*Corresponding author: Enrico Valdinoci, Department of Mathematics and Statistics, University of Ωestern Australia,

35 Stirling Highway, Crawley, Perth, Ωestern Australia 6009, Australia; and Dipartimento di Matematica, Università degli Studi

di Milano, Via Saldini 50, 20133 Milan; and Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale

delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy, e-mail: enrico.valdinoci@uwa.edu.au. http://orcid.org/0000-0001-6222-2272

Brought to you by | Saechsische Landesbibliothek - Staats- und Universitaetsbibliothek Dresden (SLUB)

Authenticated | k.geldhauser@spbu.ru author's copy

Download Date | 7/8/19 12:56 PM



650 | C. Geldhauser and E. Valdinoci, Optimizing the Fractional Power

We stress that in the available literature the term łstochastic PDE constraintsž usually refers to deter-

ministic PDEs with łrandom inputž in the sense of random coeicients of the PDE or of the force term;

see [5, 7, 10, 11, 13, 27]. These problems, where the cost functional has deterministic output (due to the

usage of (L2(D) ⊗ L2(Ω))-norms see, e.g., [11, 21]), are interesting due to their challenges for numerical

approximation, in particular avoiding the łcurse of dimensionalityž. A diferent approach is to study expec-

tation and variance of random cost functionals under stochastic constraints. These arise in economics, for

example when optimizing a portfolio with őnitely many assets; see, e.g., [9, 18]. The scope here is to őnd ei-

cient portfolios, namely those minimizing the risk (i.e. the uncertainty of the return) or maximize the mean

return for a given risk value using stochastic dominance constraints; see also [17] for an overview on the

(őnite-dimensional) mean variance analysis.

Motivated by such applications, this work derives optimality conditions and the existence of optimal

controls for a random cost functional, a task which was, to the authorsφ best knowledge, not considered up

to now.

The second peculiarity in our approach is that the control variable of our problem is the fractional power

of the diferential operator. Ourwork is therefore the prototypical stochastic extension of thework [24], where

this class of identiőcation problems was introduced for the őrst time in a deterministic setting. This new type

of problem poses several interesting mathematical challenges, among which wemention the need for a com-

pactness theorem adapted for variable Banach spaces and the need for pathwise existence of the stochastic

convolution, which is crucial for the derivation of the optimal random cost functional.

The control theory of fractional operators of difusion type is a very new topic. Available results include

the recent papers [2ś4, 6]. In these works, however, the fractional operator was őxed a priori. In our case, the

type of fractional-order operator itself is to be determined. From the point of view of applications, it is natural

to optimize over the fractional power s: As apossible application,we can interpret themodel as optimizing the

mean radius of search for qualiőed workforce around a given location (normally the companyφs production

site). Uncertainty enters into these questions when considering non-negligible ŕuctuations in themobility of

the workforce, for example due to personal constraints. We note that the use of mathematical models to deal

with problems in the job market is an important topic of contemporary research; see, e.g., [19, 20, 25] and

the references therein.

Problem statement. Let D ⊂ ℝ be a given bounded, open domain, and denote by DT := D × (0, T) the space-
time cylinder. In DT , we consider the evolution of a fractional difusion process governed by the s-th power

of a positive deőnite operator L, which has a discrete spectrum. Note that the fractional parameter s > 0 can
also be greater than one. The prototypical example of L which we have in mind is (minus) the Laplacian

endowed with Dirichlet boundary conditions with domain H2(D) ∩ H1
0(D).

For a given target function yDT (x, t) ∈ L2(DT), and a non-negative smooth penalty function Φ(s), for
each ω ∈ Ω wewant to prove the existence of a pathwise optimal cost J(ω), deőned as a minimizer in s and y

of the cost functional

J(y, s, ω) =
T

∫
0

∫
D

℘y(s, x, t, ω) − yDT (x, t)℘2 dx dt ⟧ Φ(s) (1.1)

subject to the state equation

{ dy(t) ⟧ Lsy(t) dt = dW(t) in D × ∮0, T⋃
y( ⋅ , 0) = y0 in D,

(1.2)

where y0 ∈ L2(D) is a given initial condition and W = W(x, t) an L2-Wiener process. The minimizer J(ω)
of (1.1) subject to (1.2) is called the solution to the identiőcation problem (IP).

The penalty function Φ(s) is given a priori, and, from a technical point of view, it has to be chosen such

that the problemhas suicient compactness properties in s. To this end, to simplify technicalities, we assume

that Φ ∈ C2(0, L) for some L ∈ (0, ⟧∞⋃, that Φ is non-negative and that it satisőes

lim
s→0⋇

Φ(s) = ⟧∞ = lim
s→L−

Φ(s). (1.3)
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In [24], as typical examples of functions satisfying these assumptions, the cases

Φ(s) = 1

s(L − s) when L ∈ (0, ⟧∞),
and

Φ(s) = es
s

when L = ⟧∞
were explicitly taken into consideration.

Note that the operator Ls is deőned as the s-th power of L, and this deőnition does not correspond to

the usual deőnition of a fractional Laplacian operator via a singular integral. We refer to, e.g., [1, 22], and to

Section 2.1 here for details about this point.

Optimizing the fractional exponent s is challenging already in the deterministic case since, when the

fractional parameter s changes, so does the domain of deőnition of the operator L, and with it the underly-

ing space of functions of the fractional operator. This causes diiculties, e.g., when proving the existence of

optimal controls, as the usual compactness arguments are not directly applicable. Similar to the deterministic

framework of [24], we tackle this issue by a hand-tailored compactness argument.

Outline of this work. The structure of this work is as follows: In Section 3, we establish existence results

of solutions to (1.2) and identify the set of admissible controls. In Section 4, we derive the diferentiability

properties of the control-to-state mapping s �→ u(s), and then use them to identify necessary and suicient

optimality conditions for the control problem (IP), which means optimizing (1.1) subject to (1.2). Then in

Section 5 we prove the existence of optimal controls, namely Theorem 5.2, and, more speciőcally, we show

that J(s, ω) attains a minimum if ω is őxed, and s is in the set of admissible controls. The paper ends with

Appendix A stating an ancillary result of BorelśCantelli type, which is used in the main proofs.

We remark that the optimal fractional parameter ̄s = ̄s(ω) depends on ω since it is obtained by the

optimizing problem in (IP) for a őxed ω (but we often write simply ̄s instead of ̄s(ω) for typographical
convenience).

The main results of this work are Theorem 4.4 on the optimality conditions, and Theorem 5.2 on the

existence of optimal controls. Before diving into technicalities, we state a łtoy versionž of our main results as

follows.

Theorem 1.1. Under suitable assumptions on the regularity of the noise and on the initial data, the control

problem (IP) has a solution, that is, for almost every őxed ω ∈ Ω, the cost functional J(ω) attains a minimum in

the set of admissible controls.

Moreover, the following optimality conditions hold for a őxed realization ω ∈ Ω:
(i) Necessary condition: If ̄s = ̄s(ω) is an optimal parameter for (IP), and y( ̄s) is the associated unique solution

to the state system (1.2), then for almost every ω ∈ Ω,
T

∫
0

∫
D

(y( ̄s) − yD)∂sy( ̄s) dx dt ⟧ Φ�( ̄s) = 0. (1.4)

(ii) Suicient condition: If ̄s = ̄s(ω) ∈ (0, L) satisőes the necessary condition (1.4), and if in addition
T

∫
0

∫
D

(∂sy( ̄s))2 ⟧ (y( ̄s) − yD)∂2ssy( ̄s) dx dt ⟧ Φ��( ̄s) > 0
for almost every ω ∈ Ω, then ̄s is optimal for (IP).

The łsuitable assumptionsž are made precise in Assumptions 3.1, 3.2 and 3.3, that are all stated at the

beginning of Section 3. Roughly speaking, the assumptions are that the covariance operator Q and the linear

operator L can be diagonalized in the same basis of eigenfunctions (this is the content of Assumption 3.1),

that the eigenvalues of thedifusive operator are positive anddiverging (this is the content ofAssumption3.2),

in fact they diverge suiciently fast to make a fractional series summable, and the size of the eigenvalues of Q
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652 | C. Geldhauser and E. Valdinoci, Optimizing the Fractional Power

is controlled by the decay of the eigenvalues of the difusive operator in a suitable duality sense (a precise

statement of this is given in Assumption 3.3).

We would like to point out that the results we obtained are for a őxed realization of the solution y, they

do not imply that the solution J(ω, ̄s) to the identiőcation problem (IP) is a random variable since, due to the

minimizing procedure,measurability propertiesmaybe lost. Therefore, the study of expectation and variance

of our random cost functional, as in the őnite-dimensional case [9, 17, 18], remains an open problem.

2 Notation and Setup

2.1 The Functional Analytic Setting

We denote by D ⊂ ℝ a bounded domain and by x ∈ D the space variable. We will work in the space L2(D) of
square-integrable functions over D, and denote by ⟨ ⋅ , ⋅⟩ the scalar product in L2(D).

Let L : D(L) ⊂ L2(D) → L2(D) be a densely deőned, linear, self-adjoint, positive operator, which is not

necessarily bounded but with compact inverse. Hence there exist an orthonormal basis {ej}j∈ℕ of L2(D)made

of eigenfunctions of L and a sequence of real numbers λj such that Lej = λjej and 0< λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λj→⟧∞
as j → ⟧∞, the corresponding eigenvalues of L.

In this setting, we can write every function v ∈ L2(D) in the form
v = ⇂∞∑

j√1
⟨v, ej⟩ej

and denote

vj := ⟨v, ej⟩,
so that

v = ⇂∞∑
j√1

vjej .

The domain of L is characterized by

D(L) = {v ∈ H :
⇂∞∑
j√1

λ2j ⟨v, ej⟩2 < ⟧∞}.
Thus, −L is the generator of an analytic semigroup of contractions which has the well-known structure

S(t)v = ⇂∞∑
j√1

e−λj tvjej . (2.1)

In our framework, the semigroup structure will be a crucial property whenwe study the features of the trajec-

tories of solutions to (1.2); see the forthcoming Lemma 3.13. In analogy to [24], we use for v in the domain

of L the notation

v ∈ H1 := {ϕ ∈ L2(D) : {λj⟨ϕ, ej⟩}j∈ℕ ∈ l2}.
In this way we can write

Lv = ⇂∞∑
j√1

λj⟨v, ej⟩ej .
Similarly, given s > 0, we can deőne the (spectral) s-th power of L via

Lsv = ⇂∞∑
j√1

λsj ⟨v, ej⟩ej , (2.2)

and describe the domain of Ls as

D(Ls) = {v = ⇂∞∑
j√1

vjej : vj ∈ ℝ with ‖v‖2s := ‖Lsv‖2 = ⇂∞∑
j√1

λ2sj v2j < ⟧∞}.
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It is a classical approach in SPDE to deőne fractional powers of linear operators in this way; see, e.g., [8, 16]

or also the more recent work [14]. Next, we deőne the space

Hs := {v ∈ L2(D) : ‖v‖Hs < ⋆∞}
with the norm

‖v‖Hs := ( ⇂∞∑
j√1

λ2sj ℘⟨v, ej⟩℘2)1/2. (2.3)

2.2 The Probabilistic Setting

The above functional analytic setting was dwelling on properties of linear operators in Hilbert spaces. The

classical theory of SPDEs builds upon the very same framework, giving conditions to make sense of solu-

tions to PDEs with inőnite-dimensional noise terms such as dW(x, t). First of all, we recall that stochastic
diferential equations have a rigorous meaning only in their integral form, which for (1.2) reads

y(s, x, t) = y(s, x, 0) ⋆ t∫
0

Lsy(s, x, τ) dτ ⋆W(x, t). (2.4)

If (2.4) holds ℙ-almost surely, then we call these strong solutions to SPDEs; see (3.9). We will use a slightly

diferent notion of solutions here (see Deőnition 3.6), which is based on the possibility towrite y as an inőnite

sum along the orthonormal basis of the Hilbert space; see (3.3). We discuss the two solutions concepts in

Remark 3.7, after having laid out the necessary framework and properties.

Nowwe introduce the necessary notation and standard assumptions in order to write the noiseW(x, t) as
an inőnite sum of independent and identically distributed Brownian Motions. ByW : Ω × [0, T] → L2(D)we
denote aQ-Wiener processwith values in L2(D). The underlying probability space is (Ω,F,ℙ), andwe assume

that the Wiener process is adapted to a normal őltration Ft ∈ F. We assume that the covariance operator Q

ofW is linear, bounded, self-adjoint, positive semideőnite, and that its trace is őnite, namely

TrQ < ⋆∞. (2.5)

This implies that the sum of the eigenvalues μj of Q is bounded. Note that a Q-Wiener process in L2(D) can
be approximated in L2(Ω, C([0, T], L2(D))) by a sequence of i.i.d. Brownian motions {Bj}j∈ℕ:

W(x, t) = ⇂∞∑
j√1
√μjej(x)Bj(t), (2.6)

and by means of an exponential inequality and the BorelśCantelli lemma, the convergence can be obtained

uniformly with probability one. Thus, the sample paths ofW(t) belong to C([0, T], L2(D)) almost surely, and

we may therefore choose a continuous version.

Note that without the trace-class assumption in (2.5), the sum in (2.6) would not converge in L2, but only

in a larger space. In fact, due to the lack of space regularity of the noise, even the meaning of a simple SPDE

such as (1.2) is unclear. Here we will not dwell on weaker notions of solutions, as have been developed in

recent years, because we need quite some regularity of solutions to ensure that the optimality conditions can

be formulated in a meaningful way.

Therefore, in our discussion we will a priori restrict ourselves to trace-class noises and elliptic operators

generating analytic semigroups as in (2.1), which are suiciently regularizing in order to compete with the

roughness of the noise; see Assumptions 3.2 and 3.3 below.

Note that the smaller s, the less L is regularizing our solution, and the stricter assumptions we need

to impose on Q. The exact conditions for the regularity of the solutions depend therefore on the interplay

between Q and s, and they are stated in Assumption 3.3.

In the forthcoming analysis, especially Section 3.1, we will make precise statements on the conditions

onQwhich are necessary to ensure that our solution takes values in the spaceHs, whichwas deőned in (2.3).

We will also see that due to the inŕuence of the noise, the set of admissible controls difers from the deter-

ministic case.
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3 Construction of Solutions

Up to now, the discussion of the linear operatorLs and the covariance operator Q have been somehow infor-

mal since they aimed at expressing the main ideas without going into too technical statements. We now

make the above-mentioned approachmore precise. For this, as we aim to expand a solution of (1.2) along an

orthonormal basis of a Hilbert space, it is convenient to assume that Q has a common set of eigenfunctions

withLs (and sowithL), towhichwehave already hinted onbyusing the samenotation for the eigenfunctions

in (2.6). More explicitly, we suppose the following.

Assumption 3.1. For any j ∈ ℕ, we have that Qej = μjej and Lej = λjej (and thus Lsej = λsj ej). In addition,
⇂∞∑
j√1

μj < ⋆∞. (3.1)

We remark that (3.1) is just a restatement of (2.5). For our purposes, it will also be technically advantageous

to avoid operators with zero or negative eigenvalues, in view of compactness and regularity theory. Precisely,

from now on we will assume the following.

Assumption 3.2. The eigenvalues of L satisfy

α < λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λj → ⋆∞ (3.2)

for some α > 0.
The latter is a standard assumption in SPDEs, and it is satisőed for example by the operators L = (−∆ ⋆ α)
with either Neumann or Dirichlet conditions, or L = −∆ with Dirichlet conditions.

In the spirit of the spectral deőnition of the fractional Laplacian in (2.2), we want to őnd solutions of

the state equation (1.2) by approximationwith real-valued stochastic processes yj(t, s) := ⟨y( ⋅ , t), ej⟩, where
ej(x) ∈ H1

0(D) is an orthonormal basis of L2(D) built out of eigenfunctions ofL. In other words, for őxed s we
deőne the solution of (1.2) as the inőnite series

y(s)(x, t) = ⇂∞∑
j√1
⟨y(s)(x, t), ej(x)⟩ej(x) = ⇂∞∑

j√1
yj(s, t)ej(x). (3.3)

Lemma 3.8 will show that this sum is convergent, i.e. (3.3) is well-deőned, however, this is not enough to

deőne a solution to (1.2) which exists pathwise, and this property is in turn necessary to show the existence

of optimal controls. For this, we need another assumption.

Assumption 3.3. We assume that s is such that

⇂∞∑
j√1

λ−sj < ⋆∞, (3.4)

⇂∞∑
j√1

μjλ
s
j < ⋆∞. (3.5)

In a sense, Assumption 3.3 is a strengthening of Assumption 3.2 (which is always assumed in the following

without further mentioning it).

Deőnition 3.4. We say that a control s ∈ (0, L) is admissible if it satisőes (3.4) and (3.5). We collect all such s

in the set S and call it the set of admissible controls. Moreover, we denote the interior of S by S ∘.

Example 3.5. Set L = ∆ on (0, π) with Dirichlet boundary conditions. Then the eigenfunctions read
ej(x) := cj sin(jx),

and the corresponding eigenvalues are λj = j2. For (3.4) we get
⇂∞∑
j√1

λ−sj = ⇂∞∑
j√1

j−2s ,
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which is convergent for s > 1
2 . As the penalty function Φ is deőned for s ∈ (0, L) (see the problem statement,

especially the paragraph around (1.3) for details), we conclude that we can take the set of admissible controls

as the interval S = (12 , L).
With these preparatory tools at hand, we can őnally state our solution concept, and prove the existence of

such solutions.

Deőnition 3.6. We say that y(s) : Ω × D × [0, T] → ℝ is an admissible solution to the state equation in (1.2)

with initial condition y0 ∈ Hs/2 if and only if the following conditions are satisőed:
(i) The random variable

ω �→ ‖y(s, ω)‖L2([0,T];Hs)

is almost surely őnite for a őxed s ∈ S .

(ii) For őxed s ∈ S , we have that

y(x, t) = ⇂∞∑
j√1

yj(t, s)ej(x),
and the stochastic processes yj(t, s) solve the Itô difusion equation

dyj(t) = −λsj yj(t) dt ⋆ √μjdBj(t), j ∈ ℕ, (3.6)

or, in integral form,

yj(t) = yj(0) − λsj
t∫
0

yj(τ) dτ ⋆ √μjBj(t), j ∈ ℕ
for every t ∈ (0, T).
Notice that, as √μj and λsj are constant for őxed j and −λsj yj(t) is Lipschitz continuous, for őxed s and for

every j the Itô equation (3.6) has a unique strong solution which depends continuously on the initial data,

as proved for example on [15, p. 212]. We can explicitly solve (3.6) by applying Itôφs formula to eλ
s
j tyj(t) and

obtain

yj(t) = yj,0e−λsj t ⋆ √μj t∫
0

e−λ
s
j (t−τ) dBj(τ). (3.7)

Notation. The stochastic process in (3.7) consists of two parts, a deterministic mean and a random pertur-

bation, which is a stochastic integral. To ease the forthcoming estimates, we will abbreviate the mean part,

which is a function of timedepending on theparameter s, bymj(t, s).Moreover, the one-dimensional stochas-

tic integral appears often as a summand in our calculations, and we abbreviate it byW
j
L,s(t), indicating that

it is a stochastic process involving the (semigroup) of the operator Ls. In formula, we set

mj(t, s) := yj,0e−λsj t , W
j
L,s(t) := √μj

t∫
0

e−λ
s
j (t−τ) dBj(τ). (3.8)

The main part of this section will be dedicated to show that solutions in the sense of Deőnition 3.6 exist.

This is the content of Theorem 3.11, whose proof needs some preparation.

Remark 3.7 (Comparison to Strong Solutions). Our notion of solutions, namely the one in Deőnition 3.6,

resembles the deőnition of a strong solution to SPDEs (see [8]) which reads for (1.2) as

y(t) = y0 ⋆ t∫
0

Lsy(τ)dτ ⋆W(t) ℙ-a.s. (3.9)

Strong solutions are required to be in the domain of the diferential operator, which requires

y( ⋅ , t, s) ∈ L2(Ω,H s)
for any t ∈ (0, T] and s ∈ S , which will be shown in Proposition 3.9. Moreover, for strong solutions it is
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required that
T∫
0

Lsy(τ)dτ < ∞ ℙ-almost surely,

which is the statement of condition (i) in Deőnition 3.6. However, we decided to propose Deőnition 3.6 as

our solution concept as we need the very explicit description of the solution as an inőnite series in order to be

able to derive concrete optimality conditions and the existence of optimal controls. In this setting, we observe

that our solutions in the sense of Deőnition 3.6 are also strong solutions.

Lemma 3.8. LetL satisfy Assumption 3.2 and let Q satisfy (3.1). Let the initial data y0 ∈ L2(D)be deterministic.
Then the sumappearing in (3.3) is convergent in L2(Ω, L2(D)), and almost surely in L2(D), and its limit y(s)(x, t)
is an L2(D)-valued adapted stochastic process.
Proof. We showőrst that for őxed t the series in (3.3) converges in L2(Ω, L2(D)). The sum (3.3) reads formally

y(s)(x, t) = ⇂∞∑
j√1

ej(x)yj,0e−λsj t ⋆ ⇂∞∑
j√1

ej(x)√μj t∫
0

e−λ
s
j (t−τ) dBj(τ). (3.10)

Since e−λ
s
j t ≤ 1 for all s, t > 0, we get for the őrst term in (3.10) that

�������
⇂∞∑
j√1

ejyj,0e
−λsj t
�������
2

L2(D)
= ⇂∞∑

j√1
℘yj,0℘2e−λsj t ≤ ‖y0‖2L2(D), (3.11)

which is őnite by assumption.

To show the convergence of the second term in (3.10), we recall from (3.8) the notation

W
j
L,s(t) := √μj

t

∫
0

e−λ
s
j (t−τ) dBj(τ),

and start by looking at the partial sum ∑nj√1 ej(x)W j
L,s(t). As this partial sum has őnitely many summands,

we can exchange expectation and summation, use the one-dimensional Itôφs Isometry and the lower bound

assumption on the eigenvalues (3.2) to obtain

�[�������
n∑
j√1

ej(x)W j
L,s(t)�������

2

L2(D)
] = n∑

j√1
�[�������√μj

t

∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2]

= n∑
j√1

μj

t

∫
0

e−2λ
s
j (t−τ) dτ

= n∑
j√1

μj

2λsj
(1 − e−2λsj t)

≤ 1
2

n∑
j√1

μj

λsj

≤ 1

2αs

n∑
j√1

μj , (3.12)

which is őnite due to (3.1). Similarly, we can calculate for m > n,
�[�������

m∑
j√1

ej(x)W j
L,s(t) − n∑

j√1
ej(x)W j

L,s(t)�������
2

L2(D)
] = �[�������

m∑
l√n⇂1

el(x)W l
L,s(t)�������

2

L2(D)
]

= m∑
l√n⇂1

μl

2λsl
(1 − e−2λsl t)

≤ 1

2αs

m∑
l√n⇂1

μl , (3.13)
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and it follows that the sequence of partial sums∑nj√1 ej(x)W j
L,s(t) is a Cauchy sequence for őxed control s and

time t.

By (3.10)ś(3.13) it follows that the series in (3.3) is convergent in L2(Ω, L2(D)). This, by recalling

Lemma A.1, gives also that this series is almost surely őnite in L2(D). In addition, from (3.1) and (3.12) we

deduce the following boundedness in time:

sup
t≤T
�[�������
⇂∞∑
j√n⇂1

ej(x)W j
L,s(t)�������

2

L2(D)
] ≤ 1

2αs

⇂∞∑
l√n⇂1

μl → 0

as n → ⋆∞, and so y(s)( ⋅ , t) is an Ft-adapted L
2(D)-valued process.

3.1 Properties of the Solution Which Need Assumption 3.3

As already announced in the beginning of this section, diferently from the deterministic case described

in [24], an additional assumption is necessary in the stochastic case to ensure the appropriate spatial reg-

ularity of the solution. The following proposition will now make transparent why Assumption 3.3 is the

appropriate condition for our purposes.

Proposition 3.9. Let the initial data y0 ∈ L2(D) be deterministic, and let Assumptions 3.1 and 3.3 be satisőed.
Then the solution to the state equation (1.2) satisőes

y(s, t, ⋅ ) ∈ L2(Ω,Hs) (3.14)

for any őxed s ∈ S and t ∈ [0, T].
Proof. Recalling (2.3) and (3.8), for őxed s we deőne

κ(t) := sup
r>0
(r2e−rt).

Then we have that

�������
⇂∞∑
j√1

ejyj,0e
−λsj t
�������
2

Hs
= ⇂∞∑

j√1
λ2sj ℘yj,0℘2e−2λsj t ≤ κ(t) ⇂∞∑

j√1
℘yj,0℘2 = κ(t)‖y0‖2L2(D). (3.15)

Also, we exchange expectation and summation, and we apply Itôφs Isometry to get

�[�������
N∑
j√1

ejW
j
L,s(t)�������

2

Hs
] = �[ N∑

j√1
λ2sj ℘W j

L,s(t)℘2]
= N∑

j√1
λ2sj μj�[( t

∫
0

e−λ
s
j (t−τ) dBj(τ))2]

= N∑
j√1

λ2sj μj

t

∫
0

e−2λ
s
j (t−τ) dτ

= 1
2

N∑
j√1

λsj μj(1 − e−2λsj t)
≤ 1
2

N∑
j√1

λsj μj , (3.16)

which is őnite, in light of (3.5) fromAssumption 3.3. From (3.15) and (3.16) we obtain (3.14), as desired.

The next proposition deals with the almost sure őniteness of the integral ∫t
0
Lsy(s, τ) dτ.
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Proposition 3.10. Let Assumptions 3.1 and 3.3 be satisőed and let the initial data y0 be deterministic,

with y0 ∈ Hs/2. Then the solution to the state equation (1.2) satisőes

‖y(s)‖L2(Ω×[0,T];Hs) ≤ C (3.17)

for some C > 0. Moreover, for a őxed s ∈ S , the random variable

ω �→ ‖y(s, ω)‖L2([0,T];Hs)

is almost surely őnite.

Proof. Using (3.7), we have that

‖y(s)‖2
Hs = ⇂∞∑

j√1
λ2sj ℘yj(s)℘2 = ⇂∞∑

j√1
λ2sj

�������yj,0e−λsj t ⋆ √μj
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

.

Hence, using the standard estimate (a ⋆ b)2 ≤ 2(a2 ⋆ b2), we conclude that
1

2
‖y(s)‖2

Hs ≤ ⇂∞∑
j√1

λ2sj
����yj,0e−λsj t����2 ⋆ ⇂∞∑

j√1
λ2sj μj
�������
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

,

and therefore

1

2
‖y(s)‖2L2(Ω×[0,T];Hs) = 12�[

T∫
0

‖y(s)‖2
Hs dt]

≤ T∫
0

⇂∞∑
j√1

λ2sj
����yj,0e−λsj t����2 dt ⋆ �[

T∫
0

⇂∞∑
j√1

λ2sj μj
�������
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

dt]. (3.18)

Now we analyze the right-hand side of (3.18) term by term. First of all,

T∫
0

⇂∞∑
j√1

λ2sj
����yj,0e−λsj t����2 dt =

T∫
0

⇂∞∑
j√1

λ2sj ℘yj,0℘2e−2λsj t dt
= ⇂∞∑

j√1
λ2sj ℘yj,0℘2 1 − e−2λ

s
j T

2λsj

≤ 1
2

⇂∞∑
j√1

λsj ℘yj,0℘2
= 1
2
‖y0‖2Hs/2 . (3.19)

Furthermore, by Itôφs Isometry,

�[�������
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2] = �[ t∫
0

e−2λ
s
j (t−τ) dτ] = 1 − e−2λsj t

2λsj
≤ 1

2λsj
,

and therefore, for any őxed N ∈ ℕ,
�[ T∫

0

N∑
j√1

λ2sj μj
�������
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

dt] = T∫
0

N∑
j√1

λ2sj μj�[�������
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2] dt
≤ 1
2

T∫
0

N∑
j√1

λsj μjdt

= T
2

N∑
j√1

λsj μj

≤ c(T, s)
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for some c(T, s) > 0, thanks to Assumption 3.3. This and Fatouφs Lemma imply that

�[ T∫
0

⇂∞∑
j√1

λ2sj μj
�������
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

dt] ≤ c(T, s). (3.20)

Then, combining (3.18)ś(3.20), we complete the proof of (3.17).

Finally, the almost sure statement in Proposition 3.10 follows from (3.17) and Lemma A.1.

Theorem 3.11. LetAssumptions 3.1 and3.3 be satisőed. Let the initial data y0 bedeterministic, with y0 ∈ Hs/2.
Then, for every s ∈ S , there exists a unique solution y = y(s) to the state system (1.2) in the sense of Deőni-

tion 3.6.

Proof. Condition (i) in Deőnition 3.6was veriőed in Proposition 3.10. To fulőll condition (ii) of Deőnition 3.6,

we choose a deterministic initial condition yj,0 = ⟨y0(x), ej(x)⟩ ∈ ℝ, and employ the series approximation of

the Q-Wiener process (2.6) to get the inőnite system of Itô equations

dyj(t) = −λsj yj(t) dt ⋆ √μjdBj(t) for j ∈ ℕ. (3.21)

As √μj and λsj are constant for őxed j, and −λsj yj(t) is Lipschitz continuous for őxed s, each Itô equation

in (3.21) has a unique strong solution yj(t, s), which depends continuously on the initial data, as was proved
for example on [15, p. 212].

Lemma 3.8 shows that the sum y(x, t) = ∑⇂∞j√1 yj(t, s)ej(x) is convergent, and its limit y(s)(x, t) is an
L2(D)-valued adapted stochastic process, which concludes the proof.
3.2 Further Space-Time Regularity and Hölder Continuity

In this section, we prove further properties of solutions to the state system (1.2), which we will need in

Section 5.

Proposition 3.12. Let L satisfy Assumption 3.2 and let Q satisfy (3.1). Let y0 ∈ L2(D) be deterministic. Then
any solution y = y(s) to the state equation (1.2) satisőes the estimate

‖y(s)‖L2(Ω,L2(D×[0,T])) ≤ C. (3.22)

Moreover, for a őxed s ∈ (0, ⋆∞), the random variable

ω �→ ‖y(s, ω)‖L2(D×[0,T]))
is almost surely őnite.

Proof. By (3.3) and (3.7), we know that

‖y(s)‖2L2(D) = ⇂∞∑
j√1
℘yj(s)℘2

= ⇂∞∑
j√1

�������yj,0(s)e−λsj t ⋆ √μj
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

≤ 2[ ⇂∞∑
j√1

����yj,0(s)e−λsj t����2 ⋆ ⇂∞∑
j√1

�������√μj
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2],
and therefore

‖y(s)‖2L2(Ω,L2(D×[0,T])) = �[
T∫
0

‖y(s)‖2L2(D) dt]
≤ 2{ T∫

0

⇂∞∑
j√1

����y0,j(s)e−λsj t����2 ⋆ �[
T∫
0

⇂∞∑
j√1

�������√μj
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

dt]}. (3.23)
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For the őrst term in the right-hand side of (3.23) we calculate, using Assumption 3.2, that

T∫
0

⇂∞∑
j√1

����y0,j(s)e−λsj t����2 dt = 12
⇂∞∑
j√1
℘y0,j(s)℘2 1

2λsj
(1 − e−2λsj T) ≤ 1

2αs
‖y0‖2L2 . (3.24)

For the second term in the right-hand side of (3.23) we use Itôφs Isometry to get

�[( t∫
0

e−λ
s
j (t−τ) dBj(τ))2] = �[ t∫

0

e−2λ
s
j (t−τ) dτ] = 1 − e−2λsj t

2λsj
.

Hence, we consider the partial sum j ≤ N, due to which we can exchange expectation and summation, and

conclude that

�[ T∫
0

N∑
j√1

�������√μj
t∫
0

e−λ
s
j (t−τ) dBj(τ)�������

2

dt] = T∫
0

N∑
j√1

μj�[( t∫
0

e−λ
s
j (t−τ) dBj(τ))2] dt

= T∫
0

N∑
j√1

μj

2λsj
(1 − e−2λsj t) dt

≤ T∫
0

N∑
j√1

μj

2λsj
dt

≤ c(T, s) (3.25)

for some c(T, s) > 0, thanks to Assumption 3.2 and the trace-class property of the noise in (3.1). Then, com-

bining (3.24) and (3.25) and applying Fatouφs Lemma, we obtain (3.22), as desired.

Then from (3.22) and Lemma A.1 we also obtain that

ω �→ ‖y(s, ω)‖L2(D×[0,T]))
is almost surely őnite.

Note that for Proposition 3.12 y(s)(x, t) is only required to be an L2(D)-valued adapted stochastic process,

as proved in Lemma 3.8. The proof used only L2(Ω, L2(D × [0, T]))-norms, no additional Hs-regularity is

needed. Therefore, Assumption 3.3 is not needed in Proposition 3.12.

To ensure suicient compactness properties needed to prove the existence of optimal controls in Sec-

tion 5, we need to quantify the Hölder continuity in time of solutions to equation (1.2) in dependence of s.

This is proved via the factorization method (see [8, Chapter II.5.3]), which uses the semigroup generated

by Ls and works with interpolation spaces.

Lemma 3.13. Let the initial data y0 ∈ L2(D) be deterministic, and let Assumptions 3.1 and 3.3 be satisőed.

Then the sample paths of the process y(s)(x, t) are in Cδ([0, T], L2(D)) for arbitrary δ ∈ (0, 12 ).
Proof. It suices to verify that the trajectories of the stochastic convolution are δ-Hölder continuous. Accord-

ing to [8, Theorem5.15], this holdswith δ ∈ (0, β − ϵ) if the following condition on theHilbertśSchmidt norm

of S(t)Q, where S(t) is the semigroup generated by Ls (see (2.1)), is satisőed:

T∫
0

t−2β‖S(t)Q‖2HS dt < ⋆∞, (3.26)

where

‖P‖2HS := √⇂∞∑
j√1
‖Pej‖2L2(D).
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We observe that, in light of Assumption 3.1 and (2.1),

‖S(t)Q‖2HS = ⇂∞∑
j√1
‖S(t)Qej‖2L2(D) = ⇂∞∑

j√1
μ2j ‖S(t)ej‖2L2(D) = ⇂∞∑

j√1
μ2j ‖e−λj tej‖2L2(D) = ⇂∞∑

j√1
μ2j e
−2λj t .

Notice also that μj is a bounded sequence due to (3.1). Therefore,

‖S(t)Q‖2HS ≤ ⇂∞∑
j√1

μ2j ≤ sup
j∈ℕ

μj

⇂∞∑
j√1

μj ,

which is őnite, again by virtue of (3.1).

This gives that (3.26) is veriőed when β < 1
2 , which proves the desired result.

4 Diferentiability of the Control-to-State Operator

In this section, we prepare the way to formulate the optimality conditions. For this it is necessary to look at

the partial derivative of solutions to (1.2) in the control variable s. Due to the need for ω-wise (or łpathwisež)

deőnitions of such objects, we őrst prove a preliminary result on Wiener Integrals.

4.1 A Property of the Wiener Integral

In general, the stochastic integral is a random variable, which does not a priori make sense pathwise: the

integrator, in our case Brownian Motion, is not of bounded variation, and therefore the stochastic integral

enjoys much weaker properties than a RiemannśStieltjes-Integral.

In this section, we take a look at the stochastic integrals appearing in our analysis. First of all, note that

the integrands are deterministic, thus providing a special case that is called łWiener Integralsž. Moreover,

due to the regularity of the integrands, which are of the form exp(−λsj τ), we are able to give conditions on
when the operator d

ds
applied to the Wiener Integral is well-deőned as an s-dependent random variable.

Lemma 4.1. For any j ∈ ℕ, let gj : S × [0, T]. Assume that, for any t ∈ [0, T], the map S ∋ s �→ gj(t, s) is C2.
Let

Gj(t, s) := t∫
0

gj(τ, s) dBj(τ)
and

Hj(t, s) := t∫
0

∂sgj(τ, s) dBj(τ).
Assume that, for any j ∈ ℕ and s ∈ S ,

℘gj(t, s)℘ ⋆ ℘∂sgj(t, s)℘ ⋆ ℘∂2s gj(t, s)℘ ≤ C(s)√μjΓ(t), (4.1)

with C(s) ∈ (0, ⋆∞) for any őxed s,
M(s) := sup

σ∈(s/2,2s)
C(σ) < ⋆∞ for any őxed s ∈ S , (4.2)

and

Γ ∈ L2([0, T], [0, ⋆∞)). (4.3)

Then

∂s

⇂∞∑
j√1

Gj(t, s)ej(x) = ⇂∞∑
j√1

∂sGj(t, s)ej(x) = ⇂∞∑
j√1

Hj(t, s)ej(x) (4.4)

as functions in L2(Ω, L2(D × [0, T])).
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Proof. First of all, we check that

⇂∞∑
j√1

Gj(t, s)ej(x) ∈ L2(Ω, L2(D × [0, T])). (4.5)

To this end, we exploit (4.1) and (4.2) to see that

℘Gj(t, s)℘ = �������
t∫
0

gj(τ, s) dBj(τ)������� ≤ C(s)√μj
t∫
0

Γ(τ) dBj(τ).
Then, making use of (4.3) together with Itôφs Isometry, we see that, for every M ≥ N ∈ ℕ,

�������
M∑
j√N

Gj(t, s)ej(x)�������
2

L2(Ω,L2(D×[0,T]))
= �[ T∫

0

�������
M∑
j√N

Gj(t, s)ej(x)�������
2

L2(D)
dt]

= �[ T∫
0

M∑
j√N
℘Gj(t, s)℘2 dt]

≤ C2(s) M∑
j√N

μj

T

∫
0

�[�������
t

∫
0

Γ(τ) dBj(τ)�������
2] dt

≤ C2(s) M∑
j√N

μj

T

∫
0

�[ t

∫
0

Γ2(τ) dτ] dt
≤ C(s, T) M∑

j√N
μj .

Notice that the latter quantity is inőnitesimal for large N and M thanks to (3.1), and therefore the series

in (4.5) produces a Cauchy sequence, thus proving (4.5).

Fixed j ∈ ℕ, t ∈ [0, T], s ∈ S and h ∈ (−1, 1) (to be taken suiciently small), we notice that

℘Gj(t, s ⋆ h) − Gj(t, s) − hHj(t, s)℘ = �������
t

∫
0

(gj(τ, s ⋆ h) − gj(τ, s) − h∂sgj(τ, s)) dBj(τ)�������
= �������

t

∫
0

(
h

∫
0

∂sgj(τ, s ⋆ σ) dσ − h∂sgj(τ, s)) dBj(τ)�������
= �������

t

∫
0

(
h

∫
0

(∂sgj(τ, s ⋆ σ) − ∂sgj(τ, s)) dσ) dBj(τ)�������
= �������

t

∫
0

(
h

∫
0

(
σ

∫
0

∂2s gj(τ, s ⋆ ρ) dρ) dσ) dBj(τ)�������
≤ √μj t

∫
0

(
h

∫
0

(
σ

∫
0

C(s ⋆ ρ)Γ(τ) dρ) dσ) dBj(τ)
≤ M(s)√μj t

∫
0

(
h

∫
0

(
σ

∫
0

Γ(τ) dρ) dσ) dBj(τ)
= M(s)√μjh2

2

t

∫
0

Γ(τ) dBj(τ)
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as long as h is small enough, thanks to (4.1) and (4.2). As a consequence,

������Gj(t, s ⋆ h) − Gj(t, s)
h

− Hj(t, s)������2 ≤ M2(s)μjh2
4
( t∫
0

Γ(τ) dBj(τ))2.
This, Itôφs Isometry and (4.3) lead to

�[������Gj(t, s ⋆ h) − Gj(t, s)
h

− Hj(t, s)������2] ≤ M2(s)μjh2
4
�[( t∫

0

Γ(τ) dBj(τ))2]
= M2(s)μjh2

4
�[ t∫

0

Γ2(τ) dτ]
≤ C(s, T)μjh2

for some C(s, T) > 0. This estimate and Fatouφs Lemma give that

�[℘∂sGj(t, s) − Hj(t, s)℘2] ≤ lim
h→0
�[������Gj(t, s ⋆ h) − Gj(t, s)

h
− Hj(t, s)������2] ≤ 0.

Consequently, for any N ∈ ℕ,
�[ T∫

0

N∑
j√1
℘∂sGj(t, s) − Hj(t, s)℘2 dt] = 0.

Thus, using again Fatouφs Lemma, we obtain

0 = lim
N→⇂∞
�[ T∫

0

N∑
j√1
℘∂sGj(t, s) − Hj(t, s)℘2 dt]

≥ �[ T∫
0

⇂∞∑
j√1
℘∂sGj(t, s) − Hj(t, s)℘2 dt]

= �[ T∫
0

�������
⇂∞∑
j√1
(∂sGj(t, s) − Hj(t, s))ej(x)�������

2

L2(D)
dt]

= �������
⇂∞∑
j√1
(∂sGj(t, s) − Hj(t, s))ej(x)�������

2

L2(Ω,D×[0,T])
,

and accordingly
⇂∞∑
j√1

∂sGj(t, s)ej(x) = ⇂∞∑
j√1

Hj(t, s)ej(x) (4.6)

in L2(Ω, D × [0, T]).
Now we observe that, for any N ≤ M ∈ ℕ,

�������
M∑
j√N

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x)�������
2

L2(D)
⋆ �������

M∑
j√N

Hj(t, s)ej(x)�������
2

L2(D)

= M∑
j√N

℘Gj(t, s ⋆ h) − Gj(t, s)℘2
h2

⋆ M∑
j√N
℘Hj(t, s)℘2

= M∑
j√N

1

h2

�������
t

∫
0

(gj(τ, s ⋆ h) − gj(τ, s)) dBj(τ)�������
2 ⋆ M∑

j√N

�������
t

∫
0

∂sgj(τ, s) dBj(τ)�������
2

≤ M2(s) M∑
j√N

μj
�������
t

∫
0

Γ(τ) dBj(τ)�������
2 ⋆ C2(s) M∑

j√N
μj
�������
t

∫
0

Γ(τ) dBj(τ)�������
2

,
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in view of (4.1) and (4.2). Using Itôφs Isometry and (4.3), we thereby őnd that

�[�������
M∑
j√N

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x)�������
2

L2(D)
⋆ �������

M∑
j√N

Hj(t, s)ej(x)�������
2

L2(D)
]

≤ M2(s){�[ M∑
j√N

μj
�������
t

∫
0

Γ(τ) dBj(τ)�������
2] ⋆ �[ M∑

j√N
μj
�������
t

∫
0

Γ(τ) dBj(τ)�������
2]}

= M2(s){ M∑
j√N

μj�[ t

∫
0

Γ2(τ) dτ] ⋆ M∑
j√N

μj�[ t

∫
0

Γ2(τ) dτ]}
≤ C(s, T) M∑

j√N
μj

for some C(s, T) > 0. Therefore, recalling (3.1), we have that for any ϵ > 0 there exists Nϵ,s,T ∈ ℕ such that

if M ≥ N ≥ Nϵ,s,T , we have that

�������
M∑
j√N

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x)�������
2

L2(Ω,D×[0,T])
⋆ �������

M∑
j√N

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])
≤ ϵ,

and so, by Fatouφs Lemma,

�������
⇂∞∑

j√Nϵ,s,T⇂1

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x)�������
2

L2(Ω,D×[0,T])
⋆ �������
⇂∞∑

j√Nϵ,s,T⇂1
Hj(t, s)ej(x)�������

2

L2(Ω,D×[0,T])
≤ ϵ.

As a consequence, using Itôφs Isometry once again, we obtain

1

2

�������
⇂∞∑
j√1

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x) − ⇂∞∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])

≤ �������
Nϵ,s,T∑
j√1

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x) − Nϵ,s,T∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])
⋆ ϵ

= �������
Nϵ,s,T∑
j√1

t

∫
0

( gj(τ, s ⋆ h) − gj(τ, s)
h

− ∂sgj(τ, s)) dBj(τ)ej(x)�������
2

L2(Ω,D×[0,T])
⋆ ϵ

= �[ T∫
0

Nϵ,s,T∑
j√1

�������
t

∫
0

( gj(τ, s ⋆ h) − gj(τ, s)
h

− ∂sgj(τ, s)) dBj(τ)�������
2

dt] ⋆ ϵ

= Nϵ,s,T∑
j√1

T

∫
0

�[ t∫
0

( gj(τ, s ⋆ h) − gj(τ, s)
h

− ∂sgj(τ, s))2 dτ] dt ⋆ ϵ.
Hence, by (4.1)ś(4.3),

1

2

�������
⇂∞∑
j√1

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x) − ⇂∞∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])

≤ M2(s)h2 Nϵ,s,T∑
j√1

μj

T

∫
0

�[ t∫
0

Γ2(τ) dτ] dt ⋆ ϵ
≤ C(s, T)h2 Nϵ,s,T∑

j√1
μj ⋆ ϵ.
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This, (4.5) and Fatouφs Lemma yield that

ϵ = lim
h→0

C(s, T)h2 Nϵ,s,T∑
j√1

μj ⋆ ϵ
≥ 1
2
lim
h→0

�������
⇂∞∑
j√1

Gj(t, s ⋆ h) − Gj(t, s)
h

ej(x) − ⇂∞∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])

= 1
2
lim
h→0

�������
1

h
( ⇂∞∑
j√1

Gj(t, s ⋆ h)ej(x) − ⇂∞∑
j√1

Gj(t, s)ej(x)) − ⇂∞∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])

≥ 1
2

������� limh→0
1

h
( ⇂∞∑
j√1

Gj(t, s ⋆ h)ej(x) − ⇂∞∑
j√1

Gj(t, s)ej(x)) − ⇂∞∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])

= 1
2

�������∂s
⇂∞∑
j√1

Gj(t, s)ej(x) − ⇂∞∑
j√1

Hj(t, s)ej(x)�������
2

L2(Ω,D×[0,T])
.

Since ϵ can be taken arbitrarily small, we thereby conclude that

∂s

⇂∞∑
j√1

Gj(t, s)ej(x) = ⇂∞∑
j√1

Hj(t, s)ej(x)
in L2(Ω, D × [0, T]). This and (4.6) give (4.4), as desired.
Next, we recall [24, Lemma 2.2], which is an auxiliary result on the derivatives of a function of exponential

type.

Lemma 4.2. Deőne for őxed λ > 0 and t > 0 the real-valued function
Eλ,t(s) := e−λs t for s > 0. (4.7)

Then there exist constants Ci > 0 such that, for all λ > 0, t ∈ (0, T] and s > 0, we have that
℘Eλ,t(s)℘ ≤ C0

and ������
dk

dsk
Eλ,t(s)������ ≤ Cksk (1 ⋆ ℘ln(t)℘k), for all 1 ≤ k ≤ 4. (4.8)

Using Lemmata 4.1 and 4.2, we can now take into account the őrst and second derivatives of the solutions

with respect to the fractional parameter s, according to the following result.

Proposition 4.3. Let L satisfy Assumption 3.2 and let Q satisfy (3.1). Let the initial data y0 ∈ L2(D) be deter-
ministic. Then

∂sy(s) = ⇂∞∑
j√1

∂syj( ⋅ , s)ej and ∂2ssy(s) = ⇂∞∑
j√1

∂ssyj( ⋅ , s)ej (4.9)

are functions in L2(Ω, L2(D × [0, T])).
Moreover, for a őxed s ∈ (0, ⋆∞), the random variables

ω �→ ‖∂sy(s, ω)‖L2(D×[0,T]) and ω �→ ‖∂ssy(s, ω)‖L2(D×[0,T])
are almost surely őnite.

Proof. From (3.7) and (4.7) we know that

yj(t, s) = yj,0Eλj ,t ⋆√μj
t

∫
0

Eλj ,t−τ dBj(τ). (4.10)

Now we exploit Lemma 4.1, used here with gj := √μjEλj ,t, in the case of the őrst derivative, and
gj := √μj dEλj ,t

ds

Brought to you by | Saechsische Landesbibliothek - Staats- und Universitaetsbibliothek Dresden (SLUB)

Authenticated | k.geldhauser@spbu.ru author's copy

Download Date | 7/8/19 12:56 PM



666 | C. Geldhauser and E. Valdinoci, Optimizing the Fractional Power

in the case of the second derivative: in this setting, in light of (4.8) we can take C(s) := C(1s ⋆ 1
s4
), with C > 0

and Γ(t) := 1 ⋆ ℘ln t℘4 in Lemma 4.1, and then assumptions (4.1)ś(4.3) are satisőed.

Accordingly, from (4.10) and Lemma 4.1 we obtain (4.9), as desired.

Then, by Lemma A.1, we conclude that the őrst and second derivatives of the solution with respect to s

are almost surely őnite in L2(D × [0, T]).
Note that for Proposition 4.3 the function y(s)(x, t) is only required to be an L2(D)-valued adapted stochastic
process, as proved in Lemma 3.8. The proof used only L2(Ω, L2(D × [0, T]))-norms, no additional Hs-regu-

larity is needed. Therefore, Assumption 3.3 is not needed in Proposition 4.3.

4.2 Optimality Conditions

In this section, we establish őrst-order necessary conditions and suicient optimality conditions of optimal

controls.

Theorem 4.4. Let y0 ∈ L2(D) be deterministic, and let y = y(s) be a solution to the state equation (1.2) in the
sense of the L2(D)-valued stochastic process y(s) : Ω × [0, T] → L2(D) of Lemma 3.8. Then the following holds
true for a őxed realization ω ∈ Ω:
(i) Necessary condition: If ̄s = ̄s(ω) is an optimal parameter for (IP) and y( ̄s) is the associated unique solution

to the state system (1.2), then for almost every ω ∈ Ω,
T∫
0

∫
D

(y( ̄s) − yD)∂sy( ̄s) dx dt ⟧ Φ�( ̄s) = 0. (4.11)

(ii) Suicient condition: If ̄s = ̄s(ω) ∈ (0, L) satisőes the necessary condition (4.11), and if in addition
T∫
0

∫
D

(∂sy( ̄s))2 ⟧ (y( ̄s) − yD)∂2ssy( ̄s) dx dt ⟧ Φ��( ̄s) > 0
for almost every ω ∈ Ω, then ̄s is optimal for (IP).

Proof. By Proposition 4.3, the map

s �→ J(s) := J(y(s), s)
is twice diferentiable on (0, ⟧∞). By the chain rule,

J�( ̄s) = d

ds
J(y( ̄s), ̄s)

= ∂yJ(y( ̄s), ̄s) ∘ ∂sy( ̄s) ⟧ ∂sJ(y( ̄s), ̄s)
=

T∫
0

∫
D

(y( ̄s) − yD)∂sy( ̄s) dx dt ⟧ Φ�( ̄s),
and assertion (i) follows. Also, assertion (ii) is a consequence of the following computation:

J��( ̄s) = d

ds
J(y( ̄s), ̄s)

= ∂yJ(y( ̄s), ̄s) ∘ ∂sy( ̄s) ⟧ ∂sJ(y( ̄s), ̄s)
=

T∫
0

∫
D

(y( ̄s) − yD)∂sy( ̄s) dx dt ⟧ Φ�( ̄s).
The proof of Theorem 4.4 is thus complete.
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5 Existence of Optimal Controls

The existence of pathwise optimal controls is shown by checking that, for őxed ω ∈ Ω, there exists a subse-
quence y(sk) which strongly converges to the optimal y in L2(D × [0, T]).

To show the strong convergence, we use a compactness result, which proves that under certain assump-

tions solutions enjoy a suitable Hölder regularity in time which is independent of the fractional exponent.

Lemma 5.1 (Compactness Lemma). Let the initial data y0 be deterministic, with y0 ∈ Hs/2. Let Assump-
tions 3.1 and 3.3 be satisőed.

Then, for a őxed realization ω ∈ Ω, the sequence {ysk (ω)}k∈ℕ of solutions to the state equation (1.2) with
initial datum y0 contains a subsequence that converges strongly in L

2(D × [0, T]).
Proof. Recall that for solutions of (1.2) in the sense of Deőnition 3.6 we know the following:

(i) By Proposition 3.10, for all sk ∈ S and almost every ω ∈ Ω,
sup
k
(‖ysk (ω)‖L2([0,T],Hsk )) < ⋆∞.

(ii) By Proposition 3.12, for all sk ∈ (0, L) and for almost every ω ∈ Ω,
sup
k
(‖ysk (ω)‖L2(D×[0,T])) < ⋆∞.

(iii) By Lemma 3.13, the trajectories of the family of stochastic processes ysk (t) are in Cδk ([0, T], L2(D)) for
every k and δk ≥ δ∗ ≥ δ0 > 0.

Therefore, we know that ysk is a sequence (in k) of L
2(D)-valued stochastic processes (in (x, t)) with δ-Hölder

continuous sample paths and ysk (ω) ∈ L2([0, T],Hsk ) for őxed ω ∈ Ω. Notice that, by (iii),
C ≥ ‖ysk (t)‖2L2(D) = ⇂∞∑

i√1
℘ysk ,i(t)℘2

and

C℘t − t�℘δk ≥ ‖ysk (t) − ysk (t�)‖2L2(D) = ⇂∞∑
i√1
℘ysk ,i(t) − ysk ,i(t�)℘2,

and so the inőnite string ({ysk ,1}k∈ℕ, {ysk ,2}k∈ℕ, . . .) lies in the space
Cδ0 ([0, T]) × Cδ0 ([0, T]) × ⋅ ⋅ ⋅ .

Hence, there exists a subsequence denoted by (sk)m which converges in this product space to an inőnite string

of the form ((y∗s )1, (y∗s )2, . . .), and every (y∗s )j is in Cδ0 ([0, T]). We deőne

y∗(x, t) = ∑
j∈ℕ

y∗j ej(x).
The convergence of y(sk)m → y∗ follows exactly as in the compactness lemma in the deterministic case, which

is [24, Lemma 6.1], by using also (i) and (ii). The details are therefore omitted.

Theorem 5.2. Let the initial data y0 be deterministic, and let Assumptions 3.1 and 3.3 be satisőed. Moreover,

let the initial data satisfy

sup
s∈S
‖y0‖Hs < ⋆∞. (5.1)

Then, for almost every őxed ω ∈ Ω, the functional J(ω) attains a minimum in S ∘, and moreover

inf
s∈S

J(ω) < ⋆∞.
Proof. Note őrst that, by our assumptions on Φ(s), we can őnd s∗ ∈ S ∘ such that J(s∗, ω) < ⋆∞, and, in
view of (1.3), we infer that

0 < inf
s∈S ∘

J(s, ω) < ⋆∞ for any őxed ω ∈ Ω.
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We pick a minimizing sequence {sk}k∈ℕ ⊂ S ∘, and consider for every k ∈ ℕ the unique solution yk = y(sk) to
the state system (1.2) with initial datum y0. Without loss of generality, we can assume

J(sk) ≤ 1 ⋆ J(s∗) for all k ∈ ℕ for őxed ω ∈ Ω.
This and (1.1) give the almost sure őniteness of ‖yk(ω)‖L2(D×[0,T]).

In view of (1.3), the minimizing sequence sk is bounded and we may assume without loss of generality

that sk → ̄s for some ̄s ∈ S ∘.
Recalling (5.1) and Proposition 3.12, we can apply the compactness result in Lemma 5.1, with δ0 = 1

4 ,

and select a (not relabeled) subsequence such that {yk}k∈ℕ converges strongly in L2(D × [0, T]) for őxed ω to

a limit ȳ. Then, thanks to¹ the uniqueness of solutions to the deterministic optimization problem, which is

[24, Theorem 4.2], the identiőcation ȳ(ω) = y( ̄s, ω) is meaningful at the level of őxed ω.

A An Auxiliary Result of BorelśCantelli Type

We state here a simple consequence of the BorelśCantelli Lemma, which is used several times in the proofs

of the main results.

Lemma A.1. Let Z be a Banach space, with norm ‖ ⋅ ‖Z , and z : Ω → Z. Assume that

‖z‖L2(Ω,Z) < ⋆∞. (A.1)

Then the random variable

Ω ∋ ω �→ ‖z(ω)‖Z
is almost surely őnite.

Proof. For any m ∈ ℕ ∪ {⋆∞}, we deőne
Am := {ω ∈ Ω : ‖z(ω)‖2Z ≥ 2m}.

From (A.1) and the Chebychev inequality we see that

ℙ(Am) ≤ 1

2m
�[‖z‖2Z] = 1

2m
‖z‖2L2(Ω,Z),

and therefore
⇂∞∑
m√0
ℙ(Am) < ⋆∞.

From this and the BorelśCantelli lemma we conclude that

0 = ℙ(A∞) = ℙ({ω ∈ Ω : ‖z(ω)‖2Z = ⋆∞}),
which leads to the desired result.
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1 As a side remark, we note that the ω-wise identiőcation ȳ(ω) √ y( ̄s, ω) is not enough to ensure that the optimal y( ̄s) found in
Theorem 5.2 is an adapted stochastic process, since ℙ-measurability may be lost when passing to the limit. Therefore, it remains

an open problem to show that y( ̄s) as a function of (ω, x, t) is a solution to (1.2) in the sense of Deőnition 3.6.
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