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1 | INTRODUCTION

| Noemi Kreif PhD??3

| Matt Sutton PhD*?

Abstract

Objective: To compare interactive fixed effects (IFE) and generalized synthetic con-
trol (GSC) methods to methods prevalent in health policy evaluation and re-evaluate
the impact of the hip fracture best practice tariffs introduced for hospitals in England
in 2010.

Data Sources: Simulations and Hospital Episode Statistics.

Study Design: Best practice tariffs aimed to incentivize providers to deliver care in
line with guidelines. Under the scheme, 62 providers received an additional payment
for each hip fracture admission, while 49 providers did not. We estimate the impact
using difference-in-differences (DiD), synthetic control (SC), IFE, and GSC methods.
We contrast the estimation methods' performance in a Monte Carlo simulation study.
Principal Findings: Unlike DiD, SC, and IFE methods, the GSC method provided reli-
able estimates across a range of simulation scenarios and was preferred for this case
study. The introduction of best practice tariffs led to a 5.9 (confidence interval: 2.0
to 9.9) percentage point increase in the proportion of patients having surgery within
48 hours and a statistically insignificant 0.6 (confidence interval: -1.4 to 0.4) percent-
age point reduction in 30-day mortality.

Conclusions: The GSC approach is an attractive method for health policy evaluation.

We cannot be confident that best practice tariffs were effective.

KEYWORDS
difference-in-differences, interactive fixed effects, pay-for-performance, policy evaluation,
synthetic control

between the comparator groups due to unobserved confounders
are time-constant. However, the “parallel trends” assumption is
often implausible, particularly in a health policy setting. When the

Health policy evaluations commonly use data before and after a pol-
icy change and assume that, without the intervention, the expected
outcomes for the treated and control groups would have followed
parallel trends. This assumption underpins the standard difference-
in-differences (DiD) estimator and implies that any differences

parallel trends assumption is violated, DiD approaches provide bi-

ased estimates of the effect of the health policy.?> DiD has been

4-10

widely applied to policy evaluations within health economics™ ™ and

health services research.?*> As recently illustrated in re-evaluating
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a pay-for-performance (P4P) scheme,® a study's policy conclusions

can rest on the approach taken to causal inference.®

The synthetic control (SC) method'®'” has been viewed as an
attractive alternative to DiD as it avoids the parallel trends assump-
tion. In essence, the SC method constructs a comparator for the
intervention group, the synthetic control, as a weighted average of
the available control units. Each unit is weighted to ensure that the
mean outcomes of the synthetic control track those of the treated
unit(s) prior to the intervention.>'?* However, despite its wide
use, critics have shown that the SC approach may provide biased
estimates in settings when few pre-intervention periods are avail-
able??%; treatment assignment is correlated with time-varying unob-
served confounders,?® or where the outcomes of the treated units
cannot be obtained by weighting the control units' outcomes by val-
ues between 0 and 1 (ie, the treated units are not within the “con-
vex hull"), leading to poor overlap. 7?>%7 Statistical inference is also

h.?8 Concerns about

somewhat problematic under the SC approac
the DiD and SC approaches have encouraged recent methodological
advances.??"*> However, these methods have not been considered in
the health policy evaluation domain, which is characterized by par-
ticular challenges, notably the (im)plausibility of the parallel trends
assumption, the possibility of heterogeneous treatment effects, and
that there may be few pretreatment periods. Here, we consider two
of these approaches: (a) interactive fixed effect (IFE) models, and (b)
the generalized synthetic control (GSC) method, both are novel to
this context.

IFE models are flexible regression approaches that allow for
multiple time-constant unobserved covariates, each of which may

have effects that vary across time3¢-?

relaxing the parallel trends as-
sumption.*® IFE models nest the fixed effects models routinely used
within DiD estimation, but may produce biased estimates when pol-
icy effects are modified by unobserved covariates, that is effects are
heterogeneous.** For instance, hospital quality, which is generally
unobserved, may moderate the effect that a new health policy has
on outcomes.

The GSC method*! seeks to overcome this limitation by com-
bining insights from the SC literature with the efficiency gains of
IFE models. The GSC approach allows a separate (counterfactual)
potential outcome to be estimated for each treated unit, allowing
heterogeneous treatment effects to be consistently estimated. It
has been argued that the GSC method maintains the approximately
unbiasedness property of the SC estimator but offers improved ef-
ficiency. Despite these desirable features, the GSC method has not
been considered in a published health policy evaluation.?

We contrast the IFE and GSC methods with DiD and SC methods
in a case study and in Monte Carlo simulations. We revisit an eval-
uation of a pay-for-performance scheme, best practice tariffs (BPT)
for hip fractures, introduced for hospitals in the English NHS.2*2 The
incidence of hip fractures in the UK is rising annually and is currently
estimated at 10.2 per 10 000 per year.** The cost to the hospital
services of hip fracture are substantial, and have been estimated to
be £1,131 million in the year of the fracture.** Thus the impact of

policies such as BPT are of interest to policymakers. Our simulation

What this study adds

e Health policy evaluations with pre-post designs are
challenging as the parallel trends assumption underly-
ing difference-in-differences estimation often does not
hold for all outcomes.

e This was the case for the evaluation of the best practice
tariffs (BPT) for hip fractures, a pay-for-performance
scheme, introduced for hospitals in the English NHS.

e Alternative estimation methods have yielded contrast-
ing estimates of the impacts of this BPT.

e In our simulations, the generalized synthetic control ap-
proach outperformed more commonly used methods
(difference-in-differences and synthetic control meth-
ods) and hence was the preferred approach for the case
study.

o |t suggests that the BPT for hip fractures increased the
proportion of patients who had surgery within 48 hours
of admission, but did not statistically significantly re-

duce 30-day mortality.

study extends the precedent comparison of Xu, by considering set-
tings relevant to the HSR context, namely few (<10) pretreatment
periods, highly imbalanced numbers of treatment vs control units,
and serial correlation. While all methods were susceptible to shocks
that impacted treated and control units differently in the post-treat-
ment period, the simulations show that the IFE approach otherwise
avoids bias when treatment effects are homogenous but provides
biased estimates under heterogeneity. By contrast, the GSC method
reports efficient estimates with low bias in the presence of nonpar-
allel trends, heterogeneous effects, and relatively few pretreatment

periods.

2 | MOTIVATING EXAMPLE: EVALUATION
OF A BEST PRACTICE TARIFFS SCHEME
(BPT)

Hospital pay-for-performance (P4P) schemes link a portion of pro-
vider income to achieving predefined quality targets. These schemes
intend to encourage providers to engage in “desirable” behaviors.
However, P4P schemes may shift resources toward rewarded vs un-
rewarded dimensions of care quality, and so have negative spill-over
effects.*> A number of studies have concluded that hospital pay-for-
performance schemes have not had the desired impact.**#¢>! The
international evidence on P4P has been criticized for failing to pro-
vide reliable estimates of these schemes' relative effectiveness.>?>*

The particular P4P scheme considered here, the BPT for hip frac-
tures, was introduced for participating English NHS hospitals from
April 2010,%*?2 who were paid a fixed sum, set at £445 in the 2010/11

financial year, for each hip fracture admission if certain conditions
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representing “best practice” were met.” The BPT payments repre-
sented a considerable share of the total payment to providers for
hip fracture care, 14% in 2011/12,%° so one might anticipate that
providers would respond to these altered incentives to provide best
practice care.

A published survey and qualitative interviews suggested that
BPT participation was influenced by factors unobserved by research-
ers*®, such as the resources required for this scheme, the quality
of facilities available, and the expected benefits from participation.
These may have had time-varying effects on the outcomes. Hence, a
priori, it was unclear whether the parallel trends assumption held for
each outcome. For one outcome, the proportion of patients who had
surgery within 48 hours, the parallel trends assumption appeared
plausible (Figure 1), and tests suggested this assumption could not
be rejected (P = .9255).d However, for the primary outcome, mor-
tality within 30 days, the parallel trends assumption appeared less
plausible (Figure 2) and the null hypothesis of parallel trends was
rejected (P =.039).

Previous analyses, using DiD and SC methods, found that con-
clusions regarding the effects of the BPT differed by method.?
Estimates based on DiD reported that the introduction of BPTs led
to a statistically significant reduction in mortality, whereas the SC
method failed to reject the null of no effect across all outcomes and
indicated a smaller impact on mortality compared to DiD. However,
the authors raised concerns regarding the efficiency of the SC esti-
mates, motivating this re-analysis using alternative methods.

We re-analyze the data used in a previously published study,?
consisting of hospital admissions from 62 hospital trusts that re-
ported receiving at least some BPT payments (treated group) and 49
trusts that reported receiving no payments under the scheme (con-
trol group). Panel data were available for twelve quarters before, and

3
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four after, the scheme's introduction. All analyses were conducted at

the level of the hospital-quarter.

The outcomes considered are the proportion of patients receiv-
ing surgery within 48 hours of an emergency admission and the pro-
portion of patients that die within 30 days of admission. We adjust
for baseline covariates according to age group, gender, and source

of admission.

3 | METHODS

Suppose there arei = 1,...,n units, and T time periods, where t = 1,...t'
are pretreatment, and t' + 1,...,T are post-treatment. The potential
outcomes®® for unit i in period t in the presence and absence of
treatment are denoted by Yilt and Yg

cator equal to one if unit i is treated (exposed to the policy) in period

respectively. Let D, be an indi-

t and zero otherwise. The observed outcome can be written as:
Yie=DyYi+(1-Dy)Y;

We assume the following factor model for the potential outcome
in the absence of treatment:
Y,-o =X+ (Aqehtin -+ Apein) +Eit
where Xj, is a (1 x k) vector of observed time-varying covariates, f is
the (k x 1) vector of their coefficients, assumed to be the same for both
groups, W, (r = 1, ..., R) represents an unobserved time-invariant vari-
able with 4, capturing the effect of that unobserved variable in pe-

riod t, and €; represents exogenous, unobserved idiosyncratic shocks.
Allowing for an additive treatment effect that may differ by individual

Participating hospitals (solid black line)
versus
nonparticipating hospitals (dashed black line)

.65 7 .75
1 1

Surgery within 48 hours
.6
1

.55

5
1

8 12 16

Quarter

FIGURE 1 Proportions of hip fracture patients receiving surgery within 48 h of emergency admission in participating vs nonparticipating

hospitals [Color figure can be viewed at wileyonlinelibrary.com]
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Participating hospitals (solid black line)
versus
nonparticipating hospitals (dashed black line)

.06 .065 .07 .075
1 1 1

Mortality within 30 days

.055
1

8 12 16
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FIGURE 2 Proportions of hip fracture patients dying within 30 d of emergency admission in participating vs nonparticipating hospitals

Color figure can be viewed at wileyonlinelibrary.com]

and period (z;,), and letting p; = [1,... il and 4, = [Ay...., Ag,], the ob-

served outcome can be written as:
Yie=X'if+ A pi+ Dy + &5 1)

The estimand of interest is the average treatment effect for the
treated (ATT) after controlling for covariates, E(z,|D;, = 1, X,,) over the

post-treatment period, t > t'.

3.1 | Difference in Differences (DiD)

Note that if g;=[1,4;] and 1,=[4;,1], equation 1 would correspond to
a two-way fixed effects model:

Yie=X'if+ i+ A+ Dyrip + € (2)

In this case, the parallel trends assumption will hold>”>8;

E (v? = Y8, 1D;=1X ) =E (Y2- Y2, 1D, =0X; ) ¥t >t (AL: Parallel trends).
where t' represents the final pretreatment period, and the condi-
tional ATT can be estimated using DiD with two-way fixed effects

regression.2+>7-61ef

3.2 | Interactive fixed effects

Interactive fixed effects models rely on an alternative set of esti-
mation approaches for the common factor structure 4,’ u;.%” Here,

we estimate the IFE model using the iterative principal component

estimator.®” This approach consists of iterating between (a) es-
timating A; and g; using principal components while holding
constant, and (b) estimating g by regressing (Y—i’ti;i) on X, until
convergence is achieved. The number of factors to include can be
chosen according to cross-validation as described in Algorithm 1
in Xu.** It is preferable to include too many rather than too few
factors.5?

One limitation of the IFE approach is that when treatment ef-
fects are moderated by the unobserved factors, the estimated av-
erage treatment effect may be biased, since the heterogeneity in
treatment effects leads to biased estimates of the common factors

and hence the implied treatment-free potential outcome.

3.3 | Synthetic control (SC) method

The synthetic control method has been shown to provide an approx-

t'” when out-

imately unbiased estimator of the ATT for a treated uni
comes are determined by a linear factor model with time-invariant

covariates (Z), such as:
Yie=0Z,+ A i+ Dyrip +eit 3)

The SC method aims to estimate the unit level causal effect
7, for the treated unit, by constructing a “synthetic control,” or a
weighted average of the control units that has similar outcomes
and observed covariates to the treated unit over the pre-interven-
tion period:

Y wYa Yy Vt<T, and

jeControl

Y wZ~Zvt<T,

jeControl
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where w; is an element of W representing the weight for control j,
with 0<w; < 1. The synthetic control is formed by finding the vector
of weights W that minimizes (X; —XoW)" V (X; —XoW) subject to the
weights in W being positive and summing to 1, where X, and X, con-
tain the pretreatment outcomes and covariates for the treated unit and
control units, respectively,17 and V captures the relative importance
of these variables as predictors of the outcome of interest. When X,
and X; include all of the pre-intervention outcomes, other covariates
do not influence the weights and hence can be excluded as is done
in our analysis below. If the synthetic control and treated unit have
similar outcomes over an extended pre-intervention period, it is plau-
sible that they have similar observed and unobserved predictors of the
outcome.?® Hence, the postintervention outcome for the synthetic
control represents the counterfactual treatment-free potential out-
come for the treated unit (\A/‘;t). The SC method assumes conditional
independence?/ignorability’*:

YO LDy (Y?h) (A2: Independence conditional on past outcomes) .

where Yfi, is a vector of potential outcomes in the h time periods prior to
treatment.

Since the weights are restricted to be between 0 and 1, the
treated unit must lie within the “convex hull” of the control units
to avoid bias.”” The treatment effect for the treated unit (i = 1), z,,,
can be estimated by (Y’lt—\?(l)t) for each postintervention period sep-
arately, and these can be averaged over time to obtain an ATT over
the postintervention period.

The SC approach can be applied to multiple treated units by ap-
plying the method to each treated unit or, as we do here, averaging

across the sample of treated units to obtain a single treated unit.182°

3.4 | Generalized synthetic control (GSC) method

The GSC approach® assumes that treatment assignment is inde-
pendent of potential outcomes conditional on the observed covari-
ates, and R orthogonal, unobserved latent factors (A, = Ay, ... ,Ag) and
their factor loadings (u; = pjq, ... i) **:

{Yilt’ it } LD Xt At i

which implies that
E (Y}t,vgm,. = 17Xitvlt’”i) =E (v}t,vgm, =o,xit,/1t,,4;) (A3)
This will hold true if the same IFE data generating process, such
as equation 1 above, underlies outcomes for the treated and the
control units. The key difficulty in estimating the unobserved treat-
ment-free potential outcome of the treated units in the post-treat-
ment periods is estimating A, for the post-treatment period and y;
for each treated unit. The GSC approach tackles these difficulties
as follows:®
First, an IFE model, Yg:XIt,B+/lty,-+s,-t, is estimated for the con-

trol units only, for the entire sample period, yielding estimates (8,4,)

5
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for the control units. Since 7;D;; is zero in equation 1 for the control

units, (B,1,) are consistent estimates of (8,4,), which are assumed to
be the same for the treated and control units. If we knew ; for the
treated units, we could use our estimates from the control group
(B,Ay) to predict the post-treatment treatment-free potential out-

come for the treated unit using:
Y =XiB+ Aep (&)

Since we do not know y; for each treated unit, the GSC method
finds the value, fi;, that minimizes the pretreatment discrepancy be-
tween the observed outcome and the predicted outcome for a given
treated unit, based on [4].*! Using the estimates for Band flt from the
control units and the resulting prediction f; for the treated unit, we
can estimate the treatment-free potential outcome for the treated

units as:
YO =X, B+ A y; (5)

The estimated treatment-free potential outcomes after the pro-
gram starts can be compared to the actual outcomes for the treated
units to obtain an estimated treatment effect £;, = (Yi’t—\?g) for each
unit in each period. Since, unlike the IFE approach, estimates of ﬁ ﬁt
and fi; do not depend on post-treatment information for the treated
units, %, is not biased by heterogeneous treatment effects.

As with the SC method, when the number of pretreatment pe-
riods is small, it becomes harder to distinguish between y; and ¢;
, which can lead to biased estimates of the treatment effect. This
bias shrinks to zero as both the number of pretreatment periods and
the size of the control group grow.** Unlike the SC method, the GSC
method conveniently allows for time-varying observed covariates.
The GSC approach requires data be available for R + 1 pre-interven-

tion periods.h

4 | IMPLEMENTING THE METHODS
IN THE RE-ANALYSIS OF BPT FOR HIP
FRACTURES

We replicated the DiD and SC estimations reported in a previously
published study.? The DiD estimation was undertaken at the hospital-
level and controlled for covariates (age, gender, source of admission),
together with two-way fixed effects for time periods and hospitals.
The SC method averaged the treated units to define a single treated
unit, and a synthetic control was formed from the control units. In our
implementation of the SC method, we included all of the pre-inter-
vention outcomes as separate variables in the X, and X, matrices. The
variable weights were determined simultaneously with the synthetic
control weights!” as implemented in the Stata package synth.

The IFE model was estimated using the iterative principal com-
ponent estimator.’ In our implementations of IFE and GSC, we in-
cluded the time-varying covariates in the IFE model, two-way fixed

effects, and up to five interactive fixed effects with the number
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chosen by cross-validation, following Algorithm 1 in Xu.*! For infer-

ence, we used a parametric bootstrap with 500 replications.

For each method, we report p-values using the most common
approach to inference for each approach, but recognizing that there
are differences across methods that limit comparability of the re-
sultant p-values across methods.! For the SC method, we use pla-
cebo tests for inference®'’; for the GSC method, we use a bootstrap
approach®; and for the DiD and IFE methods, we report p-values
based on cluster-robust standard errors.

5 | SIMULATION STUDY

We compare the methods in a Monte Carlo Simulation study where
the true ATT is known and contrast the approaches according to
mean bias (%) and RMSE. Building from the case study, we create
500 datasets of 111 units, of which 62 (49) were assigned to treat-
ment (control) as in the case studyj and simulate data for up to 22
periods, with four of these assigned to be post-treatment. The data
generating process (DGP) includes one observed covariate (X,),
2-way additive fixed effects (Mn and Alt), and a further two interacted

factors and an additive treatment effect:

Yie=XieB+ pig + A + Aoehip + Ageig + Dygie + £

We draw Xj, pj1, Hjp, and piz from a standard multivariate normal
distribution and A;; from a uniform(0,5) distribution.X To create a
time-varying X;, we then define X;;=0.5X;+0.5+N (0,1). Here, ¢; is a
standard normally distributed idiosyncratic error term. To introduce
imbalance between the treated and control groups, the means of y;,,
Hip, and p;5 are set two standard deviations higher for the treated units
than for the controls. In scenario A, we ensure the parallel trends as-
sumption holds by setting A, = 13, =0, so the DGP becomes a standard
two-way fixed effects model. In scenario B, we allow for monotonically
increasing nonparallel trends by setting 1,,=0.2«tand A3, =0.1xt.

The performance of the SC method in scenario B may be negatively
affected by our inclusion of time-varying covariates (X;;) since the SC
weights are time-invariant, and by the imbalance in p leading to treated
units that lie outside of the convex hull of the controls. Scenario C rep-
resents a setting without these specific challenges. Here, we use X; in

place of X, so that we have time-invariant covariates, and to ensure

that the average treated unit lies in the convex hull of the controls, for
25% of the control units we increase p;, and p;s by 4 standard devia-
tions so that these unit's outcomes are likely to lie above those of the
average treated unit, while the remaining 75% of controls tend to lie
below. In scenario D, we include an additional postintervention shock,
Ae; =2, that only affects the treated group.

We consider scenarios (A1, B1, C1, and D1) where the treatment
effect is homogenous (z;=1), and otherwise identical scenarios (A2,
B2, C2 & D2) with a heterogeneous treatment effect, in which we
define ;= (1+ (u; —2))." We then apply each method to estimate
the average treatment effect for the treated group as a whole over
the postintervention period. We consider the methods' performance
across pretreatment periods of different lengths (6, 9, 12, and 18 pe-
riods). Finally, we assess the impact of imbalance in the numbers of
treated (n = 10) vs control (n = 100) units (scenario E; Appendix S1).

6 | RESULTS
6.1 | Case study results

The estimated effects of the introduction of the BPT for hip frac-
tures according to method are reported in Table 1. For both end-
points, the IFE method reports that the magnitude of the effect of
BPT is larger than for the other methods. However, since differences
in unobserved covariates, such as hospital quality, are likely to mod-
ify the effects of the policy, this may reflect bias due to heterogene-
ous treatment effects.

The DiD, SC, and GSC methods provide similar point estimates. The
p-values do differ somewhat across the approaches, but the interpre-
tation of these differences must recognize that the SC approach to in-
ference differs to the other methods. The GSC method reports that the
introduction of BPT increases the proportion of patients who have sur-
gery within 48 hours, and suggests that the scheme leads to a reduc-

tion in mortality although this difference is not statistically significant.

6.2 | Simulation results

Figure 3 presents boxplots of the simulation estimates for each sce-

nario by method, while Table 2 reports the corresponding mean bias

TABLE 1 Best Practices Tariffs case study results: ATT on process and outcome measures according to method

Interactive fixed Generalized

Difference-in-differences Synthetic controls effects synthetic controls
Surgery within 48 h 0.0403 0.0482 0.0647 0.0590
(P=.19¢6) (P =.250) (P =.004) (P=.004)
Dead within 30 d -0.0080 -0.0051 -0.0123 -0.0062
(P=.037) (P =.560) (P <.001) (P=.308)

Note: For difference in differences, O'Neill et al? report p-values based on cluster robust standard errors. For the synthetic control method, p-values
are based on placebo tests as described in O'Neill et al?; for interactive fixed effects, we report p-values based on cluster robust standard errors and
the generalized synthetic control approach uses a bootstrap approach as described in Xu.*!
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(%) and root mean squared error (RMSE). We begin by considering the
scenarios where effects are homogenous (scenario A1, B1, C1,and D1,
panel (a) of Figure 3). As expected if the parallel trends assumption
holds, DiD performs best (scenario A1), although IFE and GSC perform
almost as well (Table 2, Figure 3(I)). By contrast, SC performs poorly,
providing biased estimates attributable to the average treated unit
tending to lie outside the convex hull of controls. Where the parallel
trends assumption fails (scenario B1), DiD provides biased estimates,
whereas IFE and GSC report minimal bias (Table 2, Figure 3(ii)). The SC
method again provides biased estimates. In scenario C1, the perfor-
mance of the SC method improves markedly (Table 2, Figure 3(iii)) since
here the treated units tend to lie inside the convex hull of the controls.
When a shock has a differential effect for the treated vs control group
in the postintervention period (scenario D1), all methods provide bi-
ased estimates (Table 2, Figure 3(iv)).

In those scenarios with heterogeneous treatment effects (scenar-
ios A2, B2, and C2, panel (b) of Figure 3), the GSC method continues to
perform well, providing estimates with low bias and low RMSE (Table 2,
Figure 3(i), (ii) (iii), (iv)). DiD, IFE, and SC all report biased estimates. For
DiD, the bias is due to the failure of the parallel trends assumption.
For the IFE model, the heterogeneous treatment effect biases the esti-
mated values for 4, p;, which in turn biases the treatment-free potential
outcome and ultimately the ATT. For the SC method, the bias is attrib-
utable to poor overlap and is mitigated when the treated units lie in the
convex hull of the controls (scenario C2). In scenario D2, all methods
again report bias due to the postintervention shock.

7 | DISCUSSION

This paper critically assesses two causal inference approaches,
IFE and GSC methods, new to health policy evaluation, and con-
trasts them with DiD estimation and the SC method. The paper
extends previous papers in the health policy and political science
4154174 i contrasting IFE and GSC, but also approaches
often considered in the HSR literature (DID and SC). Rather than

focus solely on simple scenarios,*! the paper considers a range

literatures

of settings relevant to the HSR context, including homogeneous
and heterogeneous treatment effects, parallel tends and nonpar-
allel tends, highly imbalanced numbers of treatment and control
units, serial correlation, and idiosyncratic shocks. While our paper
underscores the main finding from Xu's early simulation study,41
that GSC performs better than IFE when there is treatment ef-
fect heterogeneity, it offers a wider set of insights into the relative
performance of GSC vs alternative methods in settings of direct
relevance to the HSR context.

Our re-evaluation of the BPT scheme exemplifies many criti-
cal issues faced in health policy evaluations. Here, there are mul-
tiple outcomes with the parallel trends assumption plausible for
some but not others; the effects of the policy are anticipated to
differ across hospitals; and data are only available for relatively
few periods pre-intervention. An attractive feature of the IFE and

GSC methods is that they allow the analyst to adopt a consistent
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analytical approach across all outcomes, as their factor structure

allows greater flexibility in controlling for unobserved confound-
ers. However, the IFE estimator assumes homogenous treatment
effects, which is unlikely in this study. Here, the GSC method is
preferred in light of its robustness to the assumption of parallel/
nonparallel trends and homogeneous/heterogeneous effects.
It reported that BPT led to a large™ and statistically significant
increase in the proportion of patients who had surgery within
48 hours of admission, together with a small, but not statistically
significant, reduction in 30-day mortality.

The simulation study found that the GSC approach performed
better than the alternatives considered across a range of challenging
settings typically faced in health economic and policy evaluations
that use routine data, namely nonparallel trends, heterogeneous
treatment effects, and few (6) pre-intervention periods. However,
when deciding which methods to apply to a particular setting, it is
important to consider the underlying theory and requirements of
the method. In particular, GSC and IFE approaches both require re-
peated observations of the same units over time (ie, panel data) and
also require data for multiple pre-intervention periods (one more
than the specified number of interactive fixed effects to include).

Generalized synthetic control reports relatively precise esti-
mates across all these challenging settings. We find the method
performs well even if there is limited support for particular under-
lying causal assumptions (eg, parallel trends). In light of this, for the
case study, which has some of these features, we emphasize the
policy conclusions from the GSC approach, which is that the BPT
intervention increased the probability of surgery within 48 hours,
but does not lead to a change in 30-day mortality. We also con-
tribute to the growing literature that critically evaluates the SC
method.??® We extend O'Neill et al? in recognizing that the SC
method can perform badly if there is poor overlap in the pretreat-
ment outcomes between the treated and control units, specifically
when treated units lie outside the convex hull of the controls*”41",
Conversely, we highlight that the SC method can perform well pro-
vided the treated observations do lie within the convex hull of the
controls. Hence, future studies should consider carefully whether
their evaluations have these features before opting for SC as an
alternative for DiD estimation.

This paper has the following limitations. First, each of the meth-
ods considered assumes that idiosyncratic shocks postintervention
have the same expected effect on outcomes for the treated and
control groups. Similarly, while any of these approaches can incor-
porate individual-level baseline information, for example, on patient
case mix, by “risk adjusting” outcomes, unobserved compositional
changes in the postintervention period may be wrongly attributed
to the effect of the intervention. Second, to aid transparency, the
Monte Carlo simulation study had a relatively simple DGP and as-
sumed the IFE models including the one underlying the GSC method
were correctly specified. A natural next step would be to contrast
the IFE and GSC approaches to other relatively untested methods
from the general causal inference literature.?”3%3% Third, in empir-

ical studies the methods would ideally be contrasted by applying



8
J—“ HSR Health Services Research”

O'NEILL ET AL.

(i) Scenarios A: parallel trends and,
(a) Al: homogenous treatment effects

Parallel Trends
sment = 9

i
[
H
i

i
[H
H
H

ot =6
sc

Toro

(b) A2: heterogeneous treatment effects

Parallel Trends

woatment = 9

FIGURE 3 Boxplot of mean % bias in
treatment effect estimates from Monte
Carlo simulation. (i) Scenarios A: parallel
trends, (ii) Scenario B: non-parallel trends,
(iii) Scenario C: non-parallel trends, time-
invariant covariates and treated units
lying inside the convex hull of controls,
(iv) Scenario D: non-parallel trends with
group specific shock post-intervention.
Note: 500 simulations. Tpretreatment is
the number of pre-treatment periods.
Abbreviations: DiD, difference in
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the same randomization inference procedure. The Conley-Taber
randomization inference procedure has been recommended for this
purpose, but requires the same number of observations across the
treated and control groups.®®

The findings from this paper and ongoing methods development

more widely highlight two complementary areas for further research.

Bias (%)

P T

First, a number of extensions to DiD have been proposed to increase
the validity of DiD-type estimators including: allowing for unit-specific

6465 combining matching with DiD,%® and combining instrumen-

trends,
tal variables (IV) approaches with DiD.®” While combining IV with DiD
would allow for unobserved confounding, the population this estimate

relates to (compliers) may not be of policy relevance.
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TABLE 2 Monte Carlo simulation study results by method and scenario

Root mean squared error

Scenario Al A2 B1
Parallel trends Holds Holds Fails
Homogenous treatment effects Yes No Yes
Time-invariant covariates and No No No
treated units in convex hull
Group-specific shock No No No
postintervention
18 pre-treatment periods
Difference-in-differences 0.01 0.01 43.74
Synthetic controls 0.09 0.09 446
Interactive fixed effects 0.01 0.36 0.06
Generalized synthetic controls 0.01 0.01 0.07
12 pre-treatment periods
Difference-in-differences 0.01 0.01 23.19
Synthetic controls 0.11 0.11 3.97
Interactive fixed effects 0.02 0.32 0.14
Generalized synthetic controls 0.02 0.02 0.11
9 pre-treatment periods
Difference-in-differences 0.01 0.01 15.34
Synthetic controls 0.13 0.13 3.80
Interactive fixed effects 0.02 0.34 0.17
Generalized synthetic controls 0.02 0.02 0.18
6 pre-treatment periods
Difference-in-differences 0.02 0.02 9.05
Synthetic controls 0.16 0.16 3.66
Interactive fixed effects 0.03 0.33 0.19
Generalized synthetic controls 0.03 0.03 0.34
Second, the limitations of the originally proposed SC method!®”

have led to recent modifications. The augmented SC approach’* ad-
dresses the bias due to non-exact balance on pretreatment outcomes.
The imperfect SC% reduces the sensitivity of estimates to idiosyn-
cratic errors by applying SC to predicted rather than actual outcomes.
A number of approaches relax the overlap requirement by allowing for
negative weights.??3>7! Extensions of the SC method using machine
learning methods such as ridge regression’! and the matrix comple-
tion approach31 appear promising. Inference for SC type methods is
an area of active research, with several authors proposing extensions
to the originally proposed placebo tests.?*327° Future work is re-
quired that considers the relative performance of these methods and

reports the coverage of alternative inferential procedures.
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ENDNOTES

A recent working paper by Schmidt et al®’ uses the GSC method to as-
sess whether insurance coverage of medical treatments with high out-of-
pocket costs affects patients' utilization.

bSee McDonald et al*? and Kristensen et al ¢® for further details.

‘Here, participation status is defined according to whether the hospi-
tal trust had reported receiving any BPT payments for hip fractures in
2010/11.%2

4The test for parallel trends is described in Appendix C of O'Neill et al?

“The general framework in equation 1 also nests unit-specific linear
trends,®*4° which would be obtained if we specify p;=[1,u.1]and 4= [4,t.1}.

fUnder staggered adoption, and heterogeneous effects, extra care must
be taken to identify the effect being estimated.”?”>

8Gobillon and Magnac®® suggest a similar approach that uses an expecta-
tion maximization approach.

hSample code to estimate all of the methods is available from the authors
on request.

iFor instance, placebo tests capture whether the estimated effect for the
treated group (or unit) is large relative to the effect that would have been
estimated for a treatment group (or unit) chosen at random. This con-
trasts with the more common random sampling perspective underlying
standard errors for regression models.?®

IResults were similar when 10 treated units and 100 control units were
used instead.

“We allow for correlation between Xy, uy, up and ug with the correlation
matrix, C=(1,0.5,0.5,0.3\0.5,1,0.5,0.3\10.5,0.5,1,0.5\0.3,0.3,0.5,
1).

'Note that since E(p;, ID;, = 1)=2 here, the true ATT is 1 in all scenarios.
™The average rate of surgery within 48 hours was 58.3%.

"Where the treated unit's outcomes are very different to those of the
controls, the most similar control will receive a weight of 1 and be used
as the counterfactual for the treated unit, even though it may be very
dissimilar.
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