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Abstract
Many complex physical phenomena and engineering systems, e.g., in heat exchanges, reflux con-
densers, combustion chambers, nuclear vessels, etc., due to the high temperatures/high pressures
hostile environment involved, possess certain properties which are inaccessible to measure and
therefore their influence/determination using inverse analysis is very important and desirable. In
this spirit, the purpose of this paper is to mathematically formulate and analyse a new inverse
problem in which given measurements of temperature at two different instants, it is required to
obtain the space-dependent heat transfer coefficients (HTCs) and the initial temperature. This si-
multaneous identification is challenging since it is both nonlinear and ill-posed. The uniqueness of
solution is established based on the max-min principle for parabolic equations and the contraction
mapping principle for the existence and uniqueness of a fixed point. The novel inverse mathe-
matical model that is proposed offers appropriate scientific guidance to the polymer/heat transfer
processing industry as to which data to measure/provide in order to be able to reliably determine
the desirable HTCs along with the initial temperature, which is in general unknown. Further-
more, for the reconstruction, the surface HTC is determined separately, whilst the variational
formulation is introduced for the simultaneous determination of the domain HTC and the initial
temperature. The Fréchet gradient of the minimising objective functional is derived. The numer-
ical reconstruction process is based on the conjugate gradient method (CGM) regularized by the
discrepancy principle. Accurate and stable numerical solutions are obtained even in the presence
of noise in the input temperature data. Since noisy data are invented, the study models realistic
practical situations in which temperature measurements recorded using sensors or thermocouples
are inherently contaminated with random noise.
Keywords: Inverse problem; Heat transfer; Conjugate gradient method; Heat transfer
coefficients; Initial temperature

1. Introduction

Managing and controlling the complex process of heat transfer involves solving a wide-range
of inverse problems concerned with the identification of physical properties and heat transfer
coefficients, internal sources, boundary and/or initial conditions [1]. In particular, the efficient
and safe performance of heat transfer apparatus and equipment requires knowledge of the HTCs.
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Therefore, an important but difficult problem of reconstructing the domain and surface HTCs
[2], which are assumed to be spacewise dependent, from temperature measurements at interior
points inside the heat conductor at prescribed times is proposed. This approach is practically
advantageous because only internal temperature data at a couple of distinct times are required to
be measured, while the exterior information about the fluid flow is not necessary [3]. Furthermore,
despite recent advances, modern technology such as forging (including quenching) that is currently
employed for heat treatment of aircraft or car parts, can cause cracks in the material due to the
rapid cooling high-pressure gas quenching [4]. In such a current situation of heat treatments
mainly based on practical engineering experience and technical know-how, the development of
inverse expert techniques/models capable to predict the quality of the treated parts is very timely
and important, as it would result in increased productivity (savings in time, cost and energy), as
well as in planning new and better conditions for future treatments. On the other hand, the price to
pay is that a challenging mathematical problem has to be solved, with the difficulty lying not only
in the fact that the noisy data that is measured has to be carefully analysed both quantitatively
and qualitatively in order to guarantee uniqueness and stability of the solution, but also due to
the fact that inverse parabolic heat transfer problem is nonlinear in addition to being ill-posed.
Moreover, in certain applications, e.g., steel melting, data assimilation or deblurring, the initial
status of the diffusion process cannot be prescribed directly, but instead the temperature at a later
time is available. This latter backward heat conduction problem (BHCP) is also well-known to
be severely ill-posed, [5]. The inverse modelling performed in this study will impact the inverse
problems community concerned with engineering applications of optimal heat transfer design inside
building enclosures [6], quenching heat treatment [7], thermal spacecraft protection and safeness
of nuclear reactors, [8], and improving the efficiency of heat exchanger fins [9] or heat flux gauges
in wind-tunnel facilities [10].

When the initial temperature is known, the inverse problem concerning the identification of
the potential/radiative/blood perfusion coefficient from final temperature measurements was the-
oretically investigated in [11, 12, 13, 14], where the uniqueness of solution under various sufficient
conditions and various spaces of functions were established. Moreover, in [15, 16] generic local
well-posedness of the inverse problem was established. Under the particular case that the coeffi-
cient additively separates a conditional Lipschitz stability of its recovery was established in [17]. In
[18], the unknown coefficient was numerically reconstructed by minimizing the nonlinear Tikhonov
regularization functional. In [19], the same inverse problem as in [18] was considered from dis-
crete final temperature observations. On the basis of an interpolation technique, a new method was
found to reconstruct the coefficient by minimizing the same Tikhonov regularization functional. In
[20], the radiative coefficient was determined by minimizing a different weighted objective gradient
functional. The coefficient was obtained numerically by applying the Armijo algorithm combined
with the finite element method (FEM). Recently, this coefficient was numerically determined from
final or time-average temperature measurements using the conjugate gradient method (CGM) in
[21].

On the other hand, when all coefficients in the governing parabolic PDE are known, but the
initial temperature is unknown and has to be determined from final temperature data, the result-
ing BHCP is well-known to be severely ill-posed. However, conditions under which it can become
stable are well-known [5, 22]. Moreover, there are many numerical techniques for reconstructing
the unknown initial temperature, which include the iterative CGM [23, 24], the boundary element
method (BEM) [25], the elliptic approximation together with the BEM [26], the Tikhonov regu-
larization approach [27], the Fourier regularization method [28], and the non-local boundary value
problem method [29]. It is also worth noting [30] for the solution of the BHCP for the heat equa-
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Figure 1: Schematic of the inverse problem under investigation.

tion with heterogeneous thermal conductivity and the more recent investigation [31] of the BHCP
for the nonlinear heat equation. The inversion of statistical discrete final temperature measured
data to obtain the initial temperature has also been considered recently in [32].

Prior to this study, the space-dependent heat (thermal) radiative coefficient, which in this paper
is renamed as the domain HTC, and the initial temperature were simultaneously reconstructed in
[33] from temperature measurements at a fixed time and in a subregion of the space-time domain.
The stability of the inverse problem and the existence of a minimizer to the Tikhonov’s first-
order regularization functional were proved. The multi-grid gradient method was used to obtain
the numerical solution of the nonlinear finite element minimization problem. In a subsequent
paper [34], the previous domain HTC and the initial temperature were determined simultaneously
with the surface HTC, which appears in a convection Robin boundary condition, from final time
measurements only, provided that the domain HTC is a priori known on a sub-domain of the heat
conductor. The uniqueness and stability for this inverse problem were obtained.

Compared to previous studies, in our investigation, we employ less information than in [33, 34],
given by temperature observations at the final time tf and at a instant of time t1, where t1 ∈ (0, tf ).
This is a completely new inverse problem, sketched in Figure 1, which has never been investigated
before, so the first novelty of our study consists in the mathematical formulation. The uniqueness
of the surface HTC in this inverse problem is obtained from the compatibility conditions, while
noticing that other types of boundary measurements of the temperature or average temperature
have been considered elsewhere [35, 36, 37]. Another novelty consists in proving that the domain
HTC is unique. The is accomplished from the contraction mapping principle for the problem in the
time-layer [t1, tf ]. Finally the initial temperature is obtained uniquely from the energy estimate for
the BHCP in the time-layer [0, t1]. Next, the simultaneous numerical reconstruction of the domain
HTC and the initial temperature represents another novelty of the paper. This is carried out by
minimizing the Tikhonov-type objective functional with the already determined surface HTC. The
final novelties of the paper consist in obtaining the Fréchet gradient components with respect to
the two unknowns based on the solution of the adjoint problem, and the numerical implementation
of the CGM. Since the inverse problem is nonlinear and unstable, the CGM is regularized by the
discrepancy principle [23, 24] to obtain a stable and accurate numerical solution.
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The plan of the paper is as follows. The mathematical formulation of the multi-component
inverse problem under investigation is presented in section 2 together with the uniqueness result for
the inverse problem. The variational formulation and the iterative CGM based on the sensitivity
and adjoint problems and the gradient of the objective functional are presented in Sections 3 and
4. Numerical results are presented and discussed in Section 5 and finally, Section 6 highlights the
conclusions of the work.

1.1. Notations and preliminaries
For Ω ⊂ R

N , N = 1, 2, 3, bounded domain with smooth boundary ∂Ω, denote by C l(Ω) for
l ∈ (0, 1), the Hölder space [38, 39] of all continuous functions g(x) on Ω with Hölder exponent l,
equipped with the norm

‖g‖Cl(Ω) := sup
x∈Ω

|g(x)|+ sup
x,x′∈Ω,x ̸=x′

|g(x)− g(x′)|
|x− x′|l .

For m ∈ N, denote by Cm+l(Ω) the class of functions g satisfying ∂jxg ∈ C l(Ω) for 0 ≤ |j| ≤ m
with the norm

‖g‖Cm+l(Ω) :=
∑

|j|≤m

‖∂jxg‖Cl(Ω),

where ∂jx denotes any partial derivative of g(x) with respect to x of order j.
Let tf > 0, then for the cylinder Q := Ω × (0, tf ), the Hölder space C l,l/2(Q) is the Banach

space of all continuous functions u(x, t) in Q with the finite norm

‖u‖Cl,l/2(Q) := sup
(x,t)∈Q

|u(x, t)|+ sup
(x,t),(x′,t)∈Q,x ̸=x′

|u(x, t)− u(x′, t)|
|x− x′|l

+ sup
(x,t),(x,t′)∈Q,t ̸=t′

|u(x, t)− u(x, t′)|
|t− t′|l/2 .

We can also denote by Cm+l,(m+l)/2(Q) the Banach space of functions u(x, t) that are continuous
in Q with ∂rt ∂

j
xu ∈ C l,l/2(Q) for 0 ≤ 2r + |j| ≤ m, equipped with a norm

‖u‖Cm+l,(m+l)/2(Q) =
∑

2r+|j|≤m

‖∂rt ∂jxu‖Cl,l/2(Q).

2. Mathematical formulation and analysis

In the bounded conductor Ω ⊂ R
N with boundary ∂Ω ∈ C2+l, consider the transient heat

transfer process given by the following mathematical model:


















∂T

∂t
(x, t)−∇ · (k(x)∇T (x, t)) + q(x)T (x, t) = f(x, t), (x, t) ∈ Ω× (0, tf ) := Q,

k(x)
∂T

∂ν
+ α(x)T (x, t) = µ(x, t), (x, t) ∈ ∂Ω× [0, tf ] := S,

T (x, 0) = ϕ(x), x ∈ Ω,

(2.1)

where ν is the outward unit normal to the boundary ∂Ω, 0 < k0 ≤ k(x) ∈ C1+l(Ω), with k0 a given
positive constant, represents the thermal conductivity, 0 ≤ q(x) ∈ C l(Ω) and 0 ≤ α(x) ∈ C1+l(∂Ω)
represent the domain and surface HTCs, respectively, and f(x, t), µ(x, t) and ϕ(x) represent an
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internal source, heat flux and initial temperature, respectively. For simplicity, the heat capacity has
been assumed constant and taken to be unity. The Robin convective boundary condition in (2.1)
(assuming, for simplicity, that the ambient temperature is constant and taken to be zero) involving
the surface HTC, α(x) on x ∈ ∂Ω, is the most important boundary condition for quenching process
simulation [6]. In principle, if thermal imaging is used to measure the time-history of both the
temperature and the heat flux on a subportion of the boundary ∂Ω, then the surface HTC could
be obtained directly by solving a non-characteristic Cauchy problem of the heat equation, [40].
However, in our paper, we consider space-dependent measurements at fixed times instead of Cauchy
data boundary measurements. We also mention that in the analysis of this paper, the physical
quantities k(x)|x∈Ω, q(x)|x∈Ω and α(x)|x∈∂Ω are assumed spatially distributed, but they can also
be time-, space- and time-, or temperature-dependent [41, 42, 43, 44, 45, 46, 47].

For known functions (k(x), q(x), α(x)), if we consider (f, µ, ϕ) as the inputs for the heat con-
duction process, then (2.1) defines a well-posed process, namely, the temperature solution T (x, t)
to (2.1) is well-defined. However, in some engineering situations, the system parameters as well
as some inputs may be unknown. To be precise, we assume that the thermal conductivity k(x)
is known, but q(x) and α(x) together with ϕ(x) are unknown and have to be determined from
some additional information that needs to be supplied. We are interested in the determination
of (q(x), α(x), ϕ(x), T (x, t)) satisfying (2.1), given the extra temperature measurements at some
internal prescribed time t1 ∈ (0, tf ) and at the final time t = tf , namely,

T (x, t1) = ϕ1(x), T (x, tf ) = ϕ2(x), x ∈ Ω. (2.2)

A sketch of the inverse problem under investigation is presented in Figure 1. A wide range of
methods and specific devices for practical temperature measurements, such as (2.2), are described
in [48].

Remark 1. A weighted time-average temperature observation φ2(x) =
∫ tf
t1
ω(t)T (x, t)dt for x ∈ Ω,

with ω > 0 a given weight function, may be specified in place of the second condition T (x, tf ) = ϕ2(x)
for x ∈ Ω, in (2.2), [14, 21]. Note that the input data (2.2) and the output components q(x) and
ϕ(x) of the inverse problem are both spatially distributed for x ∈ Ω and therefore, the rule of
thumb of trace functionals in prescribing the extra data with respect to the unknowns is followed
[49]. In case the destructive temperature measurements (2.2) are not permitted or available, non-
destructive boundary temperature (or heat flux) measurements can be used instead, but this resulting
non-characteristic, nonlinear and ill-posed inverse problem is deferred to a future work (a starting
point could be perhaps combining the separate identification of the domain HTC q(x) [50] with that
of recovering the initial temperature ϕ(x) [51]).

In practical cases, measurements unavoidably contain some noise. Therefore, from the numer-
ical implementation point of view, we are in fact seeking the solution only approximately from the
noisy data (ϕδ

1, ϕ
δ
2) of (ϕ1, ϕ2) satisfying

‖ϕδ
1 − ϕ1‖L2(Ω) ≤ δ, ‖ϕδ

2 − ϕ2‖L2(Ω) ≤ δ, (2.3)

where δ ≥ 0 represents the noise level.
In summary, our inverse problem is to identify the HTCs, α(x)|x∈∂Ω and q(x)|x∈Ω, the initial

status ϕ(x)|x∈Ω, and the temperature T (x, t)|(x,t)∈Q, from (2.1), and (2.2) or the noisy data (ϕδ
1, ϕ

δ
2)

satisfying (2.3). To analyse the above inverse problem, we need the following well-posedness result
for the direct problem (2.1) (see [38], p.320).
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Lemma 1. Suppose 0 < k0 ≤ k ∈ C1+l(Ω), 0 ≤ q ∈ C l(Ω) and 0 ≤ α ∈ C1+l(∂Ω). Then, for
given f ∈ C l,l/2(Q), ϕ ∈ C2+l(Ω), µ ∈ C1+l,(1+l)/2(S) satisfying the compatibility conditions of
order [(l + 1)/2], the direct problem (2.1) has a unique solution T ∈ C2+l,1+l/2(Q), which satisfies
the estimate

‖T‖C2+l,1+l/2(Q) ≤ c
(

‖f‖Cl,l/2(Q) + ‖ϕ‖C2+l(Ω) + ‖µ‖C1+l,(1+l)/2(S)

)

. (2.4)

Notice that the inverse problem (2.1) and (2.2) is nonlinear when the triplet (q, α, ϕ) is un-
known. We first establish the uniqueness for this inverse problem. To this end, we define the
admissible set for the unknowns where we have the uniqueness. Define

Q := {q(x) : q ∈ C l(Ω), 0 < q− ≤ q(x) ≤ q+}, A := {α(x) : 0 ≤ α ∈ C1+l(∂Ω)}

and
Φ := {ϕ(x) : 0 < ϕ0 ≤ ϕ ∈ C2+l(Ω)},

where q± and ϕ0 are given positive constants. We have the following uniqueness result.

Theorem 1. For known and given 0 < k0 ≤ k ∈ C1+l(Ω), 0 < f0 ≤ f ∈ C l,l/2(Q) and 0 ≤ µ ∈
C1+l,(1+l)/2(S), the solution to the inverse problem (2.1) and (2.2) is unique in Q×A×Φ. That is, for
(T i(x, t1) = ϕi

1(x), T
i(x, tf ) = ϕi

2(x)) being the inversion input data corresponding to (qi, αi, ϕi) ∈
Q×A× Φ for i = 1, 2, we have that (q1, α1, ϕ1) = (q2, α2, ϕ2) in C l(Ω)× C1+l(∂Ω)× C2+l(Ω), if
(ϕ1

1(x), ϕ
1
2(x)) = (ϕ2

1(x), ϕ
2
2(x)).

Proof. By the max-min principle for parabolic equations, for (qi, αi, ϕi) ∈ Q × A × Φ together
with f ≥ f0 > 0, k ≥ k0 > 0 and µ ≥ 0, it yields that T i(x, t) ≥ T0 > 0 for (x, t) ∈ Q, where the
constant T0 = T0(ϕ0, f0, k, µ).

Using the Robin boundary condition for T i(x, t) at the internal time t1 ∈ (0, tf ), we have

k(x)

(

∂T 1(x, t1)

∂ν
− ∂T 2(x, t1)

∂ν

)

+(α1(x)−α2(x))T 1(x, t1) = α2(x)(T
2(x, t1)−T 1(x, t1)), x ∈ ∂Ω.

However, by Lemma 1 we have that ϕi
1(x) = T i(x, t1) ∈ C2+l(Ω). Therefore, it follows from

ϕ1
1(x) = ϕ2

1(x) that

∇T 1(x, t1) · ν(x) = ∇T 2(x, t1) · ν(x), T 1(x, t1) = T 2(x, t1), x ∈ ∂Ω

noticing that ∂Ω ∈ C2+l. Consequently, from T 1(x, t1) ≥ T0 > 0 on ∂Ω, the above equation leads
to (α1(x)− α2(x))T

1(x, t1) = 0, which yields α1(x) = α2(x) = α(x) for x ∈ ∂Ω.
Now we prove the uniqueness for q(x) by considering the inverse heat transfer problem in the

time-layer [t1, tf ], given by


















∂T i

∂t
(x, t)−∇ · (k(x)∇T i(x, t)) + qi(x)T i(x, t) = f(x, t), (x, t) ∈ Ω× (t1, tf ) =: Qf ,

k(x)
∂T i

∂ν
+ α(x)T i(x, t) = µ(x, t), (x, t) ∈ ∂Ω× [t1, tf ] =: Sf ,

T i(x, t1) = ϕ1(x), x ∈ Ω,

(2.5)

with the extra data
T i(x, tf ) = ϕi

2(x), x ∈ Ω. (2.6)
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At this stage, it is worth noting that the uniqueness of the potential q(x) in the inverse problem
(2.5) and (2.6) was established in [11] in the case when α = µ = 0, and in [13] in the case when
ϕ1 = 0. Below we give the proof of the more general situation of (2.5) and (2.6) without these
particularisations.

We need to prove that q1(x) = q2(x) from

(ϕ1
1(x), ϕ

1
2(x)) = (ϕ2

1(x), ϕ
2
2(x)) =: (ϕ1(x), ϕ2(x))

in terms of (2.5) and (2.6), which is equivalent to prove that the nonlinear equation

T [q](x, tf ) = ϕ2(x), x ∈ Ω (2.7)

has a unique solution q(x) ∈ Q, where T [q](x, t) is the solution to the problem


















∂T

∂t
(x, t)−∇ · (k(x)∇T (x, t)) + q(x)T (x, t) = f(x, t), (x, t) ∈ Qf ,

k(x)
∂T

∂ν
+ α(x)T (x, t) = µ(x, t), (x, t) ∈ Sf ,

T (x, t1) = ϕ1(x), x ∈ Ω,

(2.8)

where the known initial condition ϕ1(x) = T (x, t1) > T0 > 0 from the max-min principle noticing
that T (x, 0) = ϕ(x) > 0 in Ω.

We apply the techniques used in [11] for a homogeneous Neumann boundary condition to
establish the unique solvability of equation (2.7). Consider the mapping U : Q 7→ C l(Ω) defined
by

U [q](x) := q(x) + Λ(T [q](x, tf )− ϕ2(x)) (2.9)
for q ∈ Q, noticing that from the regularity of the solution of (2.8), T [q](·, tf ), ϕ2(·) ∈ C2+l(Ω) ⊂
C l(Ω). In (2.9), Λ > 0 is a constant whose value we are free to choose. If the mapping U has a fixed
point q ∈ Q, then we obtain T [q](x, tf ) = ϕ2(x), namely, q solves (2.7). Conversely, q(x) must
be a fixed point of the mapping U if q ∈ Q is the solution to (2.7). Due to this equivalence, the
uniqueness of the solution to (2.7), is equivalent to the uniqueness of the fixed point of functional
U [q] for any fixed constant Λ > 0.

Since U : Q 7→ C l(Ω) with Q being a closed non-negative cone of C l(Ω), we can estimate both
q and U [q] for q ∈ Q by the C(Ω) norm instead of C l(Ω) norm. Assume that q1, q2 ∈ Q are two
fixed points of functional U [q]. If the nonlinear functional U [q] is strictly contractive in Q by C(Ω)
norm, namely,

‖U [z1]− U [z2]‖C(Ω) ≤ β‖z1 − z2‖C(Ω), ∀z1, z2 ∈ Q (2.10)
for some β ∈ (0, 1), then the uniqueness of the fixed point of U [q] follows immediately from

‖q1 − q2‖C(Ω) = ‖U [q1]− U [q2]‖C(Ω) ≤ β‖q1 − q2‖C(Ω),

i.e., q1(x) = q2(x) = q(x) in C(Ω). However, we also have the regularity q1(x), q2(x) ∈ C l(Ω), so
it follows that q(x) is in C l(Ω), i.e., q(x) is in Q.

To prove (2.10), from the mean value theorem for Gâteaux derivatives (see [52], p.13) we have
that U [q] is strictly contractive in Q is equivalent to the contractiveness of the linear operator U ′[q]
on Q for any q ∈ Q. So, we need to prove that for any fixed q ∈ Q,

‖U ′[q] ⋄ h‖C(Ω) ≤ β∗‖h‖C(Ω), ∀h ∈ Q (2.11)
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for some β∗ ∈ (0, 1). By (2.9), we have

(U ′[q] ⋄ h)(x) = h(x)− Λ (T ′[q] ⋄ h)(x, tf ), x ∈ Ω,

where (T ′[q] ⋄ h)(x, t) := T̂ (x, t) is a linear functional of h(x) satisfying






















∂T̂

∂t
(x, t)−∇ · (k∇T̂ (x, t)) + q(x)T̂ (x, t) = h(x)T [q](x, t), (x, t) ∈ Qf ,

k(x)
∂T̂

∂ν
+ α(x)T̂ = 0, (x, t) ∈ Sf ,

T̂ (x, t1) = 0, x ∈ Ω.

(2.12)

Using the maximum principle, from h(x)T [q](x, t) ≥ q−T0 > 0 and the comparison theorem, we
have that T̂ (x, tf ) ≥ T ∗ > 0 for some positive T ∗ which depends on q− and T0. So, the estimate
(2.4) for the problem (2.12) yields

T ∗ ≤ T̂ (x, tf ) ≤ max
(x,t)∈Qf

T̂ (x, t) = max
(x,t)∈Qf

|T̂ (x, t)| = ‖T̂‖C(Qf )

≤ ‖T̂‖C2+l,1+l/2(Qf )
≤ c‖hT‖Cl,l/2(Qf )

≤ c‖h‖C(Ω)‖T‖Cl,l/2(Qf )
≤ cq+‖T‖Cl,l/2(Qf )

uniformly for all x ∈ Ω, leading to 0 < q− − cΛ q+‖T‖Cl,l/2(Qf )
≤ h(x)−Λ T̂ (x, tf ) for Λ > 0 small

enough. Consequently,

‖(U ′[q] ⋄ h)‖C(Ω) = sup
x∈Ω

(h(x)− Λ (T ′[q] ⋄ h)(x, tf )) ≤ sup
x∈Ω

(h(x)− Λ T ∗)

= ‖h‖C(Ω) − Λ T ∗ ≤
(

1− Λ T ∗ 1

q+

)

‖h‖C(Ω)

which leads to (2.11) with β∗ :=

(

1− Λ T ∗ 1

q+

)

∈ (0, 1) for Λ > 0 small enough.

Once the uniqueness of q(x) and α(x) have been proven, now we can prove the uniqueness of
initial temperature ϕ(x) by considering the BHCP in the time-layer [0, t1] given by



















∂T

∂t
(x, t)−∇ · (k(x)∇T (x, t)) + q(x)T (x, t) = f(x, t), (x, t) ∈ Ω× (0, t1) =: Q1,

k(x)
∂T

∂ν
+ α(x)T (x, t) = µ(x, t), (x, t) ∈ ∂Ω× [0, t1] =: S1,

T (x, t1) = ϕ1(x), x ∈ Ω.

(2.13)

Assume the problem (2.13) has two solutions T 1 and T 2 and denote by T̃ = T 1−T 2 their difference
which satisfies the problem























∂T̃

∂t
(x, t)−∇ · (k(x)∇T̃ (x, t)) + q(x)T̃ (x, t) = 0, (x, t) ∈ Q1,

k(x)
∂T̃

∂ν
+ α(x)T̃ (x, t) = 0, (x, t) ∈ S1,

T̃ (x, t1) = 0, x ∈ Ω.

(2.14)

Denoted by {(λn, ψn[k, q, α](x)) : n ∈ N
∗} the orthogonal eigenpair system of the elliptic problem







−∇ · (k(x)∇ψ) + q(x)ψ = λψ, x ∈ Ω,

k(x)
∂ψ

∂ν
+ α(x)ψ = 0, x ∈ ∂Ω.
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Then, the solution of the problem (2.14) can be represented as

T̃ (x, t) =
∞
∑

n=1

cne
−λntψn[k, q, α](x), (x, t) ∈ Ω× (0, t1]. (2.15)

Applying (2.15) at t = t1 and using that T̃ (x, t1) = 0, it is easy to see that cn = 0, n ∈ N
∗, which

implies that T̃ (x, t) = 0, in L2((0, t1);H
1(Ω)). From (2.14) multiplying with T̃ and integrating, we

obtain
1

2

∫

Ω

|T̃ (x, 0)|2dx =

∫

Q1

(

k|∇T̃ |2 + q|T̃ |2
)

dxdt+

∫

S1

α|T̃ |2dsdt.

Since q ∈ Q, α ∈ A and 0 < k0 ≤ k ∈ C1+l(Ω) we have the classical energy estimates, see also
[53],

∫

Q1

(

k|∇T̃ |2 + q|T̃ |2
)

dxdt+

∫

S1

α|T̃ |2dsdt ≤ c(k, q, α)‖T̃‖2L2((0,t1);H1(Ω)) = 0,

which implies that T̃ (x, 0) = 0 in L2(Ω). Furthermore, due to the a-prior regularity of ϕ ∈ Φ it
also follows that T̃ (x, 0) = 0 in the C(Ω) norm as well. The proof of Theorem 1 is complete.

3. Optimization version for noisy input data

In terms of the proof scheme in the above section, the unique reconstruction of α(x) for x ∈ ∂Ω,
q(x) and ϕ(x) for x ∈ Ω, together with the temperature T (x, t) for (x, t) ∈ Q, from specified
temperatures (2.2) at two instants t1 and tf is implemented by the following three steps:

• Step 1: Recover α(x) on ∂Ω using the compatibility between either conditions in (2.2) and
the Robin boundary condition in (2.1) on ∂Ω at either t = t1 or t = tf , to formally obtain

α(x) = (µ(x, t1)− k(x)∇ϕ1(x) · ν(x))/ϕ1(x) or

α(x) = (µ(x, tf )− k(x)∇ϕ2(x) · ν(x))/ϕ2(x), x ∈ ∂Ω; (3.1)

• Step 2: With α(x) on ∂Ω already determined in S1, recover the solution (q(x), T (x, t))
satisfying the inverse problem (see (2.5) and (2.6))



















∂T

∂t
(x, t)−∇ · (k(x)∇T (x, t)) + q(x)T (x, t) = f(x, t), (x, t) ∈ Qf ,

k(x)
∂T

∂ν
+ α(x)T (x, t) = µ(x, t), (x, t) ∈ Sf ,

T (x, t1) = ϕ1(x), T (x, tf ) = ϕ2(x), x ∈ Ω;

(3.2)

• Step 3: With α(x) on ∂Ω and q(x) in Ω already determined in Steps 1 and 2, respectively,
recover the solution (ϕ(x), T (x, t)) of the BHCP given by (2.13).

Although the above reconstruction process, which recovers three unknowns step by step, is
theoretically clear for the uniqueness, the numerical implementation is not so easy, since the
reconstruction error in one step will contaminate the recovery in the next step. Especially, the
realisation of Step 1 is based on the stable computation of the derivative k∇ϕ1 · ν or k∇ϕ2 · ν on
∂Ω from the noisy data (2.3), which has been previously studied thoroughly by one of the authors
together with error analysis in [53]. Step 2 is the most challenging since the inverse problem is
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both nonlinear and ill-posed, whilst Step 3 considers a linear BHCP which has been investigated
in many studies but which is still challenging due to its severe ill-posedness and heterogeneity of
the material properties which are space-dependent.

In the following, we reconstruct q(x) and ϕ(x) simultaneously for known α(x) using the noisy
data (ϕδ

1(x), ϕ
δ
2(x)). To deal with these noisy situations, we reformulate the inverse problem in its

optimization version. Let T (x, t; q, ϕ) be the solution of the direct problem (2.1). Introduce the
admissible sets

A1 = {q ∈ L∞(Ω) : 0 < q− ≤ q(x) ≤ q+, a.e. x ∈ Ω},
A2 = {ϕ ∈ L2(Ω) : 0 ≤ ϕ(x) ≤ F0, a.e. x ∈ Ω}.

The quasi-solution of the inverse problem is obtained by minimizing the Tikhonov-type objective
functional J [q, ϕ] : A1 ×A2 → R+ defined by

J [q, ϕ] =
1

2

(

‖T (·, t1; q, ϕ)− ϕδ
1(·)‖2L2(Ω) + ‖T (·, tf ; q, ϕ)− ϕδ

2(·)‖2L2(Ω)

)

+
β1
2
‖q‖2L2(Ω) +

β2
2
‖ϕ‖2L2(Ω),

(3.3)
where β1, β2 > 0 are regularization parameters to be prescribed and T (x, t; q, ϕ) ∈ H1,0(Q) is the
weak solution to (2.1) satisfying the variational form

∫

Q

(

−T ∂η
∂t

+ (k∇T ) · ∇η + qTη

)

dxdt+

∫

S

αTηdsdt

=

∫

Q

fηdxdt+

∫

S

µηdsdt+

∫

Ω

ϕη(x, 0)dx, ∀η ∈ H1,1(Q), η(·, tf ) = 0. (3.4)

The existence and uniqueness of T (q, ϕ) ∈ H1,0(Q) satisfying (3.4) for the direct problem (2.1)
can be found in [54]. Moreover,

‖T‖H1,0(Q) + max
t∈[0,tf ]

‖T (·, t)‖L2(Ω) ≤ c
(

‖f‖L2(Q) + ‖µ‖L2(S) + ‖ϕ‖L2(Ω)

)

(3.5)

for some constant c > 0 independent of f , µ and ϕ.
Inspired by the approaches in [33, 35, 55], the existence of a minimizer for the objective func-

tional (3.3) over the admissible set A1×A2 is established as follows, for regularization parameters
β1, β2 > 0 prescribed in advance.

Theorem 2. There exists at least one minimizer to the optimization problem (3.3) and (3.4).

Proof. Since infA1×A2 J [q, ϕ] =: J0 ≥ 0, there exists a minimizing sequence {(qn, ϕn) : n ∈ N} ⊂
A1 ×A2 such that

lim
n→∞

J [qn, ϕn] = J0,

which implies that {(qn, ϕn) : n ∈ N} is uniformly bounded in L∞(Ω) × L2(Ω) and thus there
exists a subsequence, still denoted by {qn, ϕn}, such that (qn, ϕn)⇀ (q∗, ϕ∗) in L∞(Ω)×L2(Ω) with
(q∗, φ∗) ∈ A1×A2. The a-priori estimate (3.5) implies that the sequence {T n := T (qn, ϕn) : n ∈ N}
is uniformly bounded in H1,0(Q), noticing that the constant c depends only on q+. Thus we may
extract a subsequence, still denoted by {T n : n ∈ N} such that T n ⇀ T ∗ ∈ H1,0(Q) in H1,0(Q).

From the definition (3.4) of the weak solution, for any η ∈ H1,1(Q) with η(·, tf ) = 0, we have
∫

Q

(

−T n∂η

∂t
+ (k∇T n) · ∇η + qnT nη

)

+

∫

S

αT nη =

∫

Q

fη +

∫

S

µη +

∫

Ω

ϕnη(x, 0). (3.6)
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The third term in the left-hand side of (3.6) can be rewritten as
∫

Q

qnT nη =

∫

Q

q∗T nη +

∫

Q

(qn − q∗)T nη.

Since qn ⇀ q∗ in L∞(Ω), using the estimate (3.5) for T n and the Lebesgue dominant convergence
theorem giving

∫

Q
(qn − q)T nηdxdt→ 0, finally (3.6) leads to

∫

Q

(

−T ∗∂η

∂t
+ (k∇T ∗) · ∇η + q∗T ∗η

)

+

∫

S

αT ∗η =

∫

Q

fη +

∫

S

µη +

∫

Ω

ϕ∗η(x, 0),

by T n ⇀ T ∗ in H1,0(Q), H1,0(Q) →֒ L2(Q) compactly, and T n|S ⇀ T ∗|S in L2(S).
Thus, we have T ∗ = T (q∗, ϕ∗) due to the uniqueness of weak solution to direct problem (2.1).

Now the lower semi-continuity of norms implies

J [q∗, ϕ∗] =
1

2

(

‖T ∗(·, t1)− ϕδ
1(·)‖2L2(Ω) + ‖T ∗(·, tf )− ϕδ

2(·)‖2L2(Ω)

)

+
β1
2
‖q∗‖2L2(Ω) +

β2
2
‖ϕ∗‖2L2(Ω)

≤ 1

2
lim
n→∞

(

‖T n(·, t1)− ϕδ
1(·)‖2L2(Ω) + ‖T n(·, tf )− ϕδ

2(·)‖2L2(Ω)

)

+
1

2
lim infn→∞

(

β1‖qn‖2L2(Ω) + β2‖ϕn‖2L2(Ω)

)

≤ lim infn→∞J [q
n, ϕn] = inf

A1×A2

J [q, ϕ],

i.e., {q∗, ϕ∗} is a minimizer of the optimization problem over A1 ×A2. The proof is complete.

To find the minimizer, we will apply the CGM, where the gradient of J [q, ϕ] is required.
Consequently, we need to prove the differentiability of T [q, ϕ], which is assisted by the following
lemma.

Lemma 2. The mapping (q, ϕ) 7→ T (q, ϕ) is Lipschitz continuous from A1 to H1,0(Q) with respect
to q, and from A2 to H1,0(Q) with respect to ϕ, i.e.,

‖T (q +∆q, ϕ)− T (q, ϕ)‖H1,0(Q) ≤ c‖∆q‖L∞(Ω), (3.7)
‖T (q, ϕ+∆ϕ)− T (q, ϕ)‖H1,0(Q) ≤ c‖∆ϕ‖L2(Ω) (3.8)

for any q, q+∆q ∈ A1, ϕ, ϕ+∆ϕ ∈ A2 and the corresponding T (q, ϕ), T (q+∆q, ϕ), T (q, ϕ+∆ϕ) ∈
H1,0(Q), where the constant c = c(k, q+, F0).

Proof. The proof is just a straightforward application of (3.5) to the initial boundary value prob-
lems for ∆Tq := T (q + ∆q, ϕ) − T (q, ϕ) and ∆Tϕ := T (q, ϕ + ∆ϕ) − T (q, ϕ). We omit the
details.

Based on the above lemma, now we can prove the differentiability of T (q, ϕ).

Theorem 3. The mapping (q, ϕ) 7→ T (q, ϕ) is Fréchet differentiable with respect to q and ϕ, i.e.,
there exist two bounded linear operators Uq : A1 7→ H1,0(Q) and Uϕ : A2 7→ H1,0(Q) such that

lim
∥∆q∥L∞(Ω)→0

‖T (q +∆q, ϕ)− T (q, ϕ)− Uq∆q‖H1,0(Q)

‖∆q‖L∞(Ω)

= 0, (3.9)

lim
∥∆ϕ∥L2(Ω)→0

‖T (q, ϕ+∆ϕ)− T (q, ϕ)− Uϕ∆ϕ‖H1,0(Q)

‖∆ϕ‖L2(Ω)

= 0. (3.10)

11



Proof. For given q ∈ A1, consider the problem


















∂uq
∂t

= ∇ · (k∇uq)− quq −∆qT (q, ϕ), (x, t) ∈ Q,

k(x)
∂uq
∂ν

+ α(x)uq = 0, (x, t) ∈ S,

uq(x, 0) = 0, x ∈ Ω,

(3.11)

for ∆q ∈ L∞(Ω) such that q + ∆q ∈ A1, where T (q, ϕ) is the solution to direct problem (2.1).
Then, there exists a unique solution uq(x, t) ∈ H1,0(Q) for (3.11) depending on ∆q linearly, and
by (3.5), the mapping ∆q 7→ uq, which is denoted by Uq, is from L∞(Ω) to H1,0(Q).

Define wq := T (q + ∆q, ϕ) − T (q, ϕ) − Uq∆q = ∆Tq − uq. Then, it is easy to verify that ∆Tq
satisfies the problem



















∂(∆Tq)

∂t
= ∇ · (k∇(∆Tq))− q∆Tq −∆q(∆Tq + T (q, ϕ)), (x, t) ∈ Q,

k(x)
∂(∆Tq)

∂ν
+ α(x)∆Tq = 0, (x, t) ∈ S,

∆Tq(x, 0) = 0, x ∈ Ω.

(3.12)

Using (3.11), then wq satisfies


















∂wq

∂t
= ∇ · (k∇wq)− qwq −∆q∆Tq, (x, t) ∈ Q,

k(x)
∂wq

∂ν
+ α(x)wq = 0, (x, t) ∈ S,

wq(x, 0) = 0, x ∈ Ω.

Applying (3.5) to this problem, we obtain

‖wq‖H1,0(Q) ≤ c‖∆q∆Tq‖L2(Q) ≤ c‖∆q‖L∞(Ω)‖∆Tq‖L2(Q) ≤ c‖∆q‖L∞(Ω)‖∆Tq‖H1,0(Q),

Using (3.7) in Lemma 2, the above estimate leads to

‖T (q +∆q, ϕ)− T (q, ϕ)− Uq∆q‖H1,0(Q) = ‖wq‖H1,0(Q) ≤ c‖∆q‖2L∞(Ω).

So, we have proved (3.9).
Similarly, the function ∆Tϕ = T (q, ϕ+∆ϕ)− T (q, ϕ) satisfies the problem



















∂∆Tϕ
∂t

= ∇ · (k∇(∆Tϕ))− q∆Tϕ, (x, t) ∈ Q,

k(x)
∂(∆Tϕ)

∂ν
+ α(x)∆Tϕ = 0, (x, t) ∈ S,

∆Tϕ(x, 0) = ∆ϕ(x), x ∈ Ω,

(3.13)

which defines a linear operator Uϕ associated to ∆ϕ. Then, the relation (3.10) can be proved
analogously. The proof is completed.

Theorem 4. The objective functional J [q, ϕ] is Fréchet differentiable and its Fréchet derivatives
J ′
q[q, ϕ] and J ′

ϕ[q, ϕ] are given by

J ′
q[q, ϕ] = −

∫ tf

0

T (x, t)λ(x, t)dt+ β1q(x), x ∈ Ω, (3.14)

J ′
ϕ[q, ϕ] = λ(x, 0) + β2ϕ(x), x ∈ Ω, (3.15)
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where λ satisfies the following adjoint problem:


























∂λ

∂t
= −∇ · (k∇λ) + qλ

−(T (x, t1; q, ϕ)− ϕδ
1)δ̃(t− t1)− 2(T (x, tf ; q, ϕ)− ϕδ

2)δ̃(t− tf ), (x, t) ∈ Q,

k(x)
∂λ

∂ν
+ α(x)λ = 0, (x, t) ∈ S,

λ(x, tf ) = 0, x ∈ Ω,

(3.16)

where δ̃(·) denotes the Dirac delta function.

Proof. Taking any ∆q ∈ L∞(Ω) such that q +∆q ∈ A1, we have

J [q +∆q, ϕ]− J [q, ϕ]

=
1

2

∫

Ω

{

[

T (x, t1; q +∆q, ϕ)− ϕδ
1(x)

]2
+
[

T (x, tf ; q +∆q, ϕ)− ϕδ
2(x)

]2
}

dx

−1

2

∫

Ω

{

[

T (x, t1; q, ϕ)− ϕδ
1(x)

]2
+
[

T (x, tf ; q, ϕ)− ϕδ
2(x)

]2
}

dx+
β1
2

∫

Ω

{

(q +∆q)2 − q2
}

dx

=
1

2
‖∆Tq(·, t1)‖2L2(Ω) +

∫

Q

∆Tq(x, t)
[

T (x, t1; q, ϕ)− ϕδ
1(x)

]

δ̃(t− t1)dxdt+ β1

∫

Ω

q∆qdx

+
1

2
‖∆Tq(·, tf )‖2L2(Ω) + 2

∫

Q

∆Tq(x, t)
[

T (x, tf ; q, ϕ)− ϕδ
2(x)

]

δ̃(t− tf )dxdt+
β1
2
‖∆q‖2L2(Ω).

Let λ be the weak solution of the problem (3.16). Integrating by parts in the above identity,
we have

J [q +∆q, ϕ]− J [q, ϕ] =

∫

Q

∆Tq

{

−∂λ
∂t

−∇ · (k∇λ) + qλ

}

dxdt

+β1

∫

Ω

q∆qdx+
β1
2
‖∆q‖2L2(Ω) +

1

2
‖∆Tq(·, t1)‖2L2(Ω) +

1

2
‖∆Tq(·, tf )‖2L2(Ω)

=

∫

Q

λ

{

∂(∆Tq)

∂t
−∇ · (k∇(∆Tq)) + q∆Tq

}

dxdt−
∫

Ω

∆Tqλ|tf0 dx

+

∫

S

(

k
∂(∆Tq)

∂ν
λ− k

∂λ

∂ν
∆Tq

)

dsdt+ β1

∫

Ω

q∆qdx+
β1
2
‖∆q‖2L2(Ω)

+
1

2
‖∆Tq(·, t1)‖2L2(Ω) +

1

2
‖∆Tq(·, tf )‖2L2(Ω)

= −
∫

Q

∆qT (q +∆q, ϕ)λdxdt+ β1

∫

Ω

q∆qdx+
β1
2
‖∆q‖2L2(Ω)

+
1

2
‖∆Tq(·, t1)‖2L2(Ω) +

1

2
‖∆Tq(·, tf )‖2L2(Ω).

Using (3.5), (3.7) and (3.12) we have

max
{

‖∆Tq(·, t1)‖2L2(Ω), ‖∆Tq(·, tf )‖2L2(Ω)

}

≤ max
t∈[0,tf ]

‖∆Tq(·, t)‖2L2(Ω) ≤ c‖T‖2L2(Q)‖∆q‖2L∞(Ω),

∣

∣

∣

∣

∫

Q

∆q∆Tqλdxdt

∣

∣

∣

∣

≤ ‖∆q‖L∞(Ω)‖∆Tq‖L2(Q)‖λ‖L2(Q) ≤ c‖∆q‖2L∞(Ω)‖λ‖L2(Q).

13



Using these estimates in

−
∫

Q

∆qT (q +∆q, ϕ)λdxdt = −
∫

Q

∆q∆Tqλdxdt−
∫

Q

∆qTλdxdt,

we obtain that

J [q +∆q, ϕ]− J [q, ϕ] = −
∫

Q

∆qTλdxdt+

∫

Ω

β1q∆qdx+ o(‖∆q‖L∞(Ω)),

which means that the Fréchet derivative J ′
q[q, ϕ] is given by (3.14).

Using a similar approach, we obtain

J [q, ϕ+∆ϕ]− J [q, ϕ] =

∫

Ω

∆ϕ(λ(x, 0) + β2ϕ)dx+ o(‖∆ϕ‖L2(Ω)),

thus the Fréchet derivative J ′
ϕ[q, ϕ] is given by (3.15). The proof is completed.

Note that the Fréchet gradients J ′
q[q, ϕ], J ′

ϕ[q, ϕ] and the adjoint problem (3.16) will be utilized
in the nonlinear CGM for the reconstruction of the unknown coefficients (q, ϕ) in the inverse
problem (3.3) and (3.4) in the next section.

4. Conjugate gradient method

The following iterative process based on the CGM is now used for the estimation of q(x) and
ϕ(x) by minimizing the objective functional J [q, ϕ]:

qn+1(x) = qn(x)− βn
q P

n
q (x), n = 0, 1, 2, · · · , (4.1)

ϕn+1(x) = ϕn(x)− βn
ϕP

n
ϕ (x), n = 0, 1, 2, · · · , (4.2)

where n denotes the number of iterations, q0(x) and ϕ0(x) are the initial guesses for q(x) and ϕ(x),
βn
q and βn

ϕ are the step search sizes for q(x) and ϕ(x) in passing from iteration n to iteration n+1,
and P n

q (x) and P n
ϕ (x) are the directions of descent given by

P 0
q = J ′

q[q
0, ϕ0], P n

q = J ′
q[q

n, ϕn] + γnq P
n−1
q , n = 1, 2, · · · , (4.3)

P 0
ϕ = J ′

ϕ[q
0, ϕ0], P n

ϕ = J ′
ϕ[q

n, ϕn] + γnϕP
n−1
ϕ , n = 1, 2, · · · (4.4)

Different expressions are available for the conjugate coefficients γnq and γnϕ, e.g., for the Fletcher–
Reeves method [23, 56, 57],

γnq =
‖J ′

q[q
n, ϕn]‖2L2(Ω)

‖J ′
q[q

n−1, ϕn−1]‖2L2(Ω)

, n = 1, 2, · · · , (4.5)

γnϕ =
‖J ′

ϕ[q
n, ϕn]‖2L2(Ω)

‖J ′
ϕ[q

n−1, ϕn−1]‖2L2(Ω)

, n = 1, 2, · · · (4.6)

The search step sizes βn
q and βn

ϕ are found by minimizing

J [qn+1, ϕn+1] =
1

2

∫

Ω

[T (x, t1; q
n − βn

q P
n
q , ϕ

n − βn
ϕP

n
ϕ )− ϕδ

1(x)]
2dx+

β1
2

∫

Ω

(qn − βn
q P

n
q )

2dx

+
1

2

∫

Ω

[T (x, tf ; q
n − βn

q P
n
q , ϕ

n − βn
ϕP

n
ϕ )− ϕδ

2(x)]
2dx+

β2
2

∫

Ω

(ϕn − βn
ϕP

n
ϕ )

2dx.
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Setting ∆qn = P n
q and ∆ϕn = P n

ϕ , the estimated temperature T (x, t1; qn − βn
q P

n
q , ϕ

n − βn
ϕP

n
ϕ ) and

T (x, tf ; q
n − βn

q P
n
q , ϕ

n − βn
ϕP

n
ϕ ) are linearised by a Taylor series expansion in the form

T (x, t′; qn − βn
q P

n
q , ϕ

n − βn
ϕP

n
ϕ ) ≈ T (x, t′; qn, ϕn)− βn

q P
n
q

∂T (x, t′; qn, ϕn)

∂qn
− βn

ϕP
n
ϕ

∂T (x, t′; qn, ϕn)

∂ϕn

≈ T (x, t′; qn, ϕn)− βn
q ∆Tq(x, t

′; qn, ϕn)− βn
ϕ∆Tϕ(x, t

′; qn, ϕn)

where t′ represents t1 and tf , respectively.
Then, denoting T n

1 = T (x, t1; q
n, ϕn), T n

f = T (x, tf ; q
n, ϕn), ∆T n

q,1 = ∆Tq(x, t1; q
n, ϕn), ∆T n

q,f =
∆Tq(x, tf ; q

n, ϕn), ∆T n
ϕ,1 = ∆Tϕ(x, t1; q

n, ϕn) and ∆T n
ϕ,f = ∆Tϕ(x, tf ; q

n, ϕn), we have

J [qn+1, ϕn+1] =
1

2

∫

Ω

[T n
1 − βn

q ∆T
n
q,1 − βn

ϕ∆T
n
ϕ,1 − ϕδ

1(x)]
2dx+

β1
2

∫

Ω

(qn − βn
q P

n
q )

2dx

+
1

2

∫

Ω

[T n
f − βn

q ∆T
n
q,f − βn

ϕ∆T
n
ϕ,f − ϕδ

2(x)]
2dx+

β2
2

∫

Ω

(ϕn − βn
ϕP

n
ϕ )

2dx.

We calculate the partial derivatives with respect to βn
q and βn

ϕ to obtain

∂J

∂βn
q

= C1β
n
q + C2β

n
ϕ − C3,

∂J

∂βn
ϕ

= C2β
n
q + C4β

n
ϕ − C5,

where

C1 =

∫

Ω

[

(∆T n
q,1)

2 + (∆T n
q,f )

2 + β1(P
n
q )

2
]

dx, C2 =

∫

Ω

(

∆T n
q,1∆T

n
ϕ,1 +∆T n

q,f∆T
n
ϕ,f

)

dx,

C3 =

∫

Ω

[

(T n
1 − ϕδ

1)∆T
n
q,1 + (T n

f − ϕδ
2)∆T

n
q,f + β1q

nP n
q

]

dx,

C4 =

∫

Ω

[

(∆T n
ϕ,1)

2 + (∆T n
ϕ,f )

2 + β2(P
n
ϕ )

2
]

dx,

C5 =

∫

Ω

[

(T n
1 − ϕδ

1)∆T
n
ϕ,1 + (T n

f − ϕδ
2)∆T

n
ϕ,f + β2ϕ

nP n
ϕ

]

dx.

Next, we set ∂J

∂βn
q

=
∂J

∂βn
ϕ

= 0, and obtain the search step sizes βn
q and βn

ϕ as follows:

βn
q =

C2C5 − C3C4

C2
2 − C1C4

, βn
ϕ =

C2C3 − C1C5

C2
2 − C1C4

, n = 0, 1, · · · (4.7)

When β1 = β2 = 0, the unregularized iterative procedure given by equations (4.1) and (4.2)
does not provide the CGM with the stabilization necessary for the minimization of the function
(3.3) to be classified as well-posed because of the errors in the measurements (2.2). However, the
CGM becomes well-posed if the discrepancy principle is used to stop the iterative procedure when

J [qn, ϕn] ≈ 1

2

(

‖ϕδ
1 − ϕ1‖2L2(Ω) + ‖ϕδ

2 − ϕ2‖2L2(Ω)

)

. (4.8)

To summarise, the steps of the CGM for reconstructing the unknown space-dependent coeffi-
cients q(x) and ϕ(x), are as follows:

S1 Set n = 0 and choose initial guesses q0(x) and ϕ0(x) for the unknowns q(x) and ϕ(x),
respectively.

15



S2 Solve the direct problem (2.1) (using e.g., the finite-difference method (FDM)) to compute
T (x, t; qn, ϕn) and J [qn, ϕn].

S3 Solve the adjoint problem (3.16) to compute the Lagrange multiplier λ(x, t; qn, ϕn), and the
gradients J ′

q[q
n, ϕn] in (3.14) and J ′

ϕ[q
n, ϕn] in (3.15). Compute the conjugate coefficients γnq

and γnϕ in (4.5) and (4.6), and the directions of descent P n
q and P n

ϕ in (4.3) and (4.4).

S4 Solve the sensitivity problems (3.12) and (3.13) to compute the functions ∆Tq(x, t; q
n, ϕn)

and ∆Tϕ(x, t; q
n, ϕn) by taking ∆qn(x) = P n

q (x) and ∆ϕn(x) = P n
ϕ (x), and compute the

search step sizes βn
q and βn

ϕ in (4.7).

S5 Compute qn+1 and ϕn+1 by (4.1) and (4.2). In case qn+1 takes negative values replace it by
max{0, qn+1} in order to enforce the physical constraint that the coefficient q(x) cannot be
negative.

S6 When β1 = β2 = 0, the stopping condition is: If the condition (4.8) is satisfied, then go to
S7. Else set n = n+ 1, and go to S2.

S7 End.

Remark 2. (i) At this stage it is worth mentioning that another possible approach, motivated by
[58], was also developed based on decoupling the simultaneous identification into first obtaining
the domain HTC q(x) using the CGM [21] by solving the inverse coefficient problem in the region
Ω × (t1, tf ), after which the initial temperature ϕ(x) is obtained using an elliptic approximation
method [26] for solving the BHCP in the region Ω × (0, t1). However, due to the uncontrollable
noise present or accumulated in q(x), ϕ1(x) and ∂tT (x, t1), which are needed as input in this latter
operator splitting method, the numerically obtained results were rather inconsistent and therefore
they are not presented.
(ii) Compared to other related methods of minimization [18, 19, 20], the CGM is expected to
perform equally well in terms of accuracy and stability, with the extra feature of being faster, since
the step search sizes βn

q and βn
ϕ in (4.1) and (4.2), respectively, are optimized as in (4.7). However,

this comparison is deferred to a future work.

5. Numerical results and discussions

In this section we show the numerical results for the initial temperature ϕ(x) and the domain
HTC q(x) reconstructed simultaneously by the nonlinear CGM, as described in Section 4. As
described before at the beginning of Section 3, the surface HTC, α(x), is assumed to have been
separately/independently obtained, prior to the simultaneous inversion of (q(x), ϕ(x)), using the
formal expression (3.1) in case of exact input data (2.2), or the regularization techniques described
in [53] in case of noise data (2.3).

The FDM based on the Crank-Nicolson scheme in one-dimension N = 1, and the alternating
direction implicit (ADI) scheme in two-dimensions N = 2, [21], are employed to solve the direct,
sensitivity and adjoint problems. Note that the source term in (3.16) contains the Dirac delta
function which is approximated by

δa(t− ti) ≈
1

a
√
π
e−(t−ti)

2/a2 , i = 1, f, (5.1)
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where a is a small positive constant taken as a = 10−3. The Simpson’s rule is used to approximate
all the integrals involved. We define the errors at the iteration number n for q(x) and ϕ(x) as

E1[q
n] = ‖q − qn‖L2(Ω), (5.2)

E2[ϕ
n] = ‖ϕ− ϕn‖L2(Ω). (5.3)

The temperature measurement ϕδ
1 at time t1 and the final temperature measurement ϕδ

2 at
time tf containing random noise are simulated by adding to the exact data ϕ1 and ϕ2 error terms
generated from a normal distribution in the following forms:

ϕδ
1 = ϕ1 + σ × random(1), ϕδ

2 = ϕ2 + σ × random(1), (5.4)

where σ =
p

100
×maxx∈Ω{|ϕ1(x)|, |ϕ2(x)|}, p% represents the percentage of noise, and random(1)

generates random values from the normal distribution with mean equal to 0 and standard deviation
equal to unity using MATLAB.

At this stage, we note that the CGM regularization can be accomplished either by including
regularization with appropriate positive regularization parameters β1 and β2 in (3.3), and running
for all iterations n until there is no significant difference between consecutive iterates or, in the
case β1 = β2 = 0, stopping the iterations according to the discrepancy principle (4.8). However,
as demonstrated in [59] for a linear sideways heat conduction problem, there is no significant
difference in the numerical results obtained by these approaches. Therefore, in this section we only
present the numerical results obtained by taking β1 = β2 = 0 in (3.3), which becomes

J0[q, ϕ] :=
1

2

(

‖T (·, t1; q, ϕ)− ϕδ
1‖2L2(Ω) + ‖T (·, tf ; q, ϕ)− ϕδ

2‖2L2(Ω)

)

, (5.5)

and employ the stopping criterion (4.8).

5.1. Example 1
In the one-dimensional case we take Ω = (0, 1). We also take t1 = 0.5, tf = 1 and

k ≡ 1, f(x, t) = x(1 + 2x+ x2)e−t, µ(0, t) = e−t, µ(1, t) = 4e−t, (5.6)
ϕ1(x) = e−0.5(1 + x2), ϕ2(x) = e−1(1 + x2). (5.7)

Then the analytical solution of the inverse problem is
α(x) = 1, x ∈ ∂Ω, q(x) = 3 + x, ϕ(x) = 1 + x2, x ∈ Ω, (5.8)
T (x, t) = e−t(1 + x2), (x, t) ∈ Ω× (0, tf ). (5.9)
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Figure 2: (a) The objective functional (5.5), the errors (b) (5.2) and (c) (5.3), for p ∈ {0, 1} noise, for Example 1.
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For obtaining the components q(x), ϕ(x) and T (x, t) of the solution we use the FDM Crank-
Nicolson scheme with mesh sizes ∆x = ∆t = 0.025 to solve the PDEs involved in the CGM. In this
example, the initial guesses q0 and ϕ0 for q(x) and ϕ(x) are chosen as q0(x) = 2 and ϕ0(x) = x+2.

In Figures 2(a)–2(c), the objective functional J0[qn, ϕn] given by (5.5), and the errors E1[q
n]

given by (5.2) and E2[ϕ
n] given by (5.3) are illustrated for the simultaneous numerical reconstruc-

tion of the initial temperature ϕ(x) and the domain HTC q(x) using the CGM of Section 4. Figure
2(a) shows the monotonic decreasing convergence of the objective functional (5.5), as a function
of the number of iterations n, for p ∈ {0, 1} noise. The stopping number for the iterations is 30
for no noise p = 0, and 2 iterations according to the discrepancy principle (4.8) for p = 1 noise.
These values are in good agreement with the optimal values of the iteration numbers, which can
be inferred from Figures 2(b) and 2(c) included herein only for illustrative purposes.

(a) (b)

0 0.5 1

x

2.8

3

3.2

3.4

3.6

3.8

4

D
o

m
ai

n
 H

T
C

Exact

p=0

p=1

0 0.5 1

x

0.8

1

1.2

1.4

1.6

1.8

2

2.2

In
it

ia
l 

te
m

p
er

at
u

re

Exact

p=0

p=1

Figure 3: The exact and numerical results for (a) the domain HTC q(x) and (b) the initial temperature ϕ(x), for
p ∈ {0, 1} noise, for Example 1.

The corresponding numerical solutions for q(x) and ϕ(x) are shown in Figures 3(a) and 3(b),
respectively. First, it can be seen that in the case of no noise, the retrieved solutions for both the
domain HTC q(x) and the initial temperature ϕ(x) are in very good agreement (E1[q

30] = 0.0174,
E2[ϕ

30] = 0.0139) with the exact solutions (5.8). Second, in the case of noisy data p = 1, the
retrieved solutions are stable and also in reasonable agreement (E1[q

2] = 0.0875, E2[ϕ
2] = 0.0985)

with the exact solutions (5.8) for both functions.

5.2. Example 2
The previous example has been concerned with the recovery of smooth functions in (5.8). In

this example, we investigate a more severe situation in which the domain HTC in (5.13) is a
discontinuous function. We take Ω = (0, 1), t1 = 0.5, tf = 1 and

k ≡ 1, µ(0, t) = µ(1, t) = e−t,

f(x, t) = π2 sin(πx)e−t + (1 + π + sin(πx))e−t ×







1− x, x ∈ [0, 0.3],
−x+ 4x2, x ∈ (0.3, 0.7),
2, x ∈ [0.7, 1],

(5.10)

ϕ1(x) = e−0.5(1 + π + sin(πx)), ϕ2(x) = e−1(1 + π + sin(πx)). (5.11)
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Then the analytical solution of the inverse problem is
α(x) = 1, T (x, t) = (1 + π + sin(πx))e−t, ϕ(x) = 1 + π + sin(πx), (5.12)

q(x) =







2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1].

(5.13)

The initial guesses are chosen as q0(x) = 1 and ϕ0(x) = 2 for the two unknowns q(x) and ϕ(x),
respectively. The FDM Crank-Nicolson scheme with the mesh sizes ∆x = ∆t = 0.01 is utilized to
solve the PDEs involved in the CGM.
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Figure 4: (a) The objective functional (5.5), the errors (b) (5.2) and (c) (5.3), for p ∈ {0, 1} noise, for Example 2.
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Figure 5: The exact and numerical results for (a) the domain HTC q(x) and (b) the initial temperature ϕ(x), for
p ∈ {0, 1} noise, for Example 2.

The objective functional J0[qn, ϕn] given by (5.5), and the errors E1[q
n] given by (5.2) and

E2[ϕ
n] given by (5.3), illustrated in Figures 4(a)-4(c), for p ∈ {0, 1} noise, present similar features

to those in Figures 2(a)–2(c) for Example 1. The corresponding numerical results for q(x) and ϕ(x)
are illustrated in Figures 5(a) and 5(b), respectively. We also quantify the errors (5.2) and (5.3),
as given by E1[q

30] = 0.1072, E2[ϕ
30] = 0.1260 for p = 0, and E1[q

7] = 0.2372, E2[ϕ
7] = 0.1309 for

p = 1. From these errors and Figure 5 it can be concluded that the numerical solutions are stable
and reasonably accurate bearing in mind the difficult discontinuous domain HTC q(x) in (5.13)
that had to be retrieved.
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5.3. Example 3
In the two-dimensional case we take Ω = (0, 1)× (0, 1). We also take t1 = 0.5, tf = 1 and
k = I2, f(x1, x2, t) = (4 + x1 + x2)(1 + x21 + x22)e

−t − 4e−t, µ(0, x2, t) = (1 + x22)e
−t,

µ(1, x2, t) = (4 + x22)e
−t, µ(x1, 0, t) = (1 + x21)e

−t, µ(x1, 1, t) = (4 + x21)e
−t, (5.14)

ϕ1(x1, x2) = e−0.5(1 + x21 + x22), ϕ2(x1, x2) = e−1(1 + x21 + x22). (5.15)
The analytical solution of the inverse problem is given by

α(x1, x2) = 1, q(x1, x2) = 5 + x1 + x2, ϕ(x1, x2) = 1 + x21 + x22, (5.16)
T (x1, x2, t) = (1 + x21 + x22)e

−t. (5.17)
We employ the ADI scheme with mesh sizes ∆x1 = ∆x2 = ∆t = 0.05 to solve the PDEs

involved in the CGM, with the initial guesses q0(x1, x2) = 4 and ϕ0(x1, x2) = 1.5 + x1 + x2.
The objective functional (5.5), the accuracy errors (5.2) and (5.3), and the exact (5.16) and

numerical solutions for the two unknown functions q(x1, x2) and ϕ(x1, x2), obtained using the
CGM of Section 4 are shown in Figures 6–8. Similar conclusions to those drawn from Figures 2
and 3 of Example 1 can be made. According to Figure 6(a), and further argued in Figures 6(b)
and 6(c), the iterations are stopped after 30 for p = 0 and 4 for p = 1, giving the errors (5.2) and
(5.3) from Figures 7 and 8 as E1[q

30] = 0.0886, E2[ϕ
30] = 0.0336 for p = 0, and E1[q

4] = 0.1117,
E2[ϕ

4] = 0.0454 for p = 1.
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Figure 6: (a) The objective functional (5.5), the errors (b) (5.2) and (c) (5.3), for p ∈ {0, 1} noise, for Example 3.
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Figure 7: (a) The exact and numerical results for q(x1, x2) for (b) p = 0 and (c) p = 1 noise, for Example 3.
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Figure 8: (a) The exact and numerical results for ϕ(x1, x2) for (b) p = 0 and (c) p = 1 noise, for Example 3.

6. Conclusions

The analysis of this paper has successfully pushed the boundaries of inverse problem formula-
tions to a different level of challenge by simultaneously reconstructing the space-dependent surface
and domain HTCs along with the initial temperature from temperature measurements at two dif-
ferent instants. The interior transient temperature inside the solution domain, at the boundary
and the heat flux are also obtained as a by-product of solving the problem. The uniqueness of the
HTCs and the initial temperature in the inverse problem have been proved rigorously. With the
already determined surface HTC, the remaining two unknown functions have been simultaneously
reconstructed by minimizing a Tikhonov-type objective functional. The existence of a minimizer
of the objective functional has been proved, and the Fréchet gradients have been obtained by a
variational method. Then, the CGM has been applied to simultaneously determine the two un-
known quantities. Three numerical experiments for one- and two-dimensional examples have been
illustrated and discussed. Good accuracy and reasonable stability have been achieved. Never-
theless, there is a need in the future to utilise the analysis of this paper to promote the benefits
of the proposed inverse mathematical model by conducting industrial trials and inversion of raw
temperature data.
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