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Abbreviations and Acronyms 

a – acceleration 

C – Capacity rate for the battery 

CO2e – Carbon Dioxide Equivalent 

dc – Direct Current 

Ereg – Energy regenerated by the tram 

Eres – Energy in the dump resistor 

ESub – Energy from the substation 

ESS – Energy Storage Systems 

Et – Energy consumed by the tram 

EV – Electric Vehicle 

FJoint  - Sum of forces on the tram 

fResistance – Resistance force 

FT – Motor output force 

FTraction – Electric motor traction force 

g – force of gravity 

GPS – Global Positioning System 

Ie – Motor current 

Ireg – Regenerated current 

Ires – Dump resistor current 

IS – Current supplied from the substation 

It – Tram current 

k – Motor force constant 

kg – kilogramme 

km – kilometre 

LatA – Latitude of point A 

LonA – Longitude of point A 

Mtram  - Mass of the tram 

P&R – Park and Ride 

R – Radius of Earth 
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R2R – Road to Rail 

RoI – Return on Investment 

S – Distance 

S – Distance 

t – time 

Tgrad – Track gradient 

v – speed 

V – Volts 

V2G – Vehicle to Grid 

Vmax – maximum working voltage of a cell 

Vreg – Tram voltage during regeneration 

Vres – Dumo resistor voltage 

Vs – Voltage at the substation 

Vt – Tram Voltage 
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Title: Increasing Urban Tram System Efficiency, With Battery Storage and Electric 
Vehicle Charging 

 

Abstract:  

This paper examines the possible placement of Energy Storage Systems (ESS) on an 

urban tram system for the purpose of exploring potential increases in operating 

efficiency through the examination of different locations for battery energy storage. 

Further, the paper suggests the utilisation of Electric Vehicle (EV) batteries at existing 

Park and Ride (P&R) sites as a means of achieving additional energy storage at these 

locations. The study achieves this through MATLAB modelling utilising captured GPS 

data and publically available information. This study examines the scenario of uni-

directional substations with no interconnection between the overhead catenary for 

both directions of travel, and discusses the trade-offs between ESS size and required 

current limits. 

The results show the savings in both energy and basic CO2 emissions alongside the 

discussion of Return on Investment (RoI) that can be achieved through the potential 

installation of ESS at identified ideal locations along the tram network. Moreover, this 

may be extended to the use of EVs as stationary ESS sited at the existing P&R 

facilities. Further, the model may also be used to inform future infrastructure upgrades 

and potential improvements to air quality within urban environments. 

Keywords:  Energy storage; urban trams; electric vehicle charging; electric vehicles. 
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1. Introduction 

There is a growing interest in ‘green’ energy, prompted by both government 

regulations, and general interest amongst the population in achieving a low carbon 

future through the adoption of cleaner transportation (Rezvani et al., 2015; Brady and 

O’Mahony, 2011). Increasingly urban areas are seeing electrified transport networks 

such as light rail and tram systems as a viable method for reducing traffic congestion 

and associated transport emissions (Nichols et al., 2015; Zeng et al., 2012). These 

systems commonly include Park and Ride (P&R) sites to reduce passenger car vehicle 

movements across densely populated urban areas, particularly where there exists or 

is planned for the introduction of a city wide environmental policy, such as a clean air 

zone (Ellison et al., 2013).  The purpose of this paper is to explore the concept of 

utilising stationary Electric Vehicle (EV) batteries in a P&R facility to act as lineside 

energy storage for urban dc tram systems as a method of reducing the capital 

expenditure required to achieve operational efficiency improvements in the tram 

system. 

In a typical tram system, substations are generally uni-directional to save infrastructure 

costs, taking energy from the utility network and supplying it to the dc tram network 

(typically at 750V dc). The consequence of such uni-directional substations is that any 

energy regenerated by braking trams cannot be fed back into the utility grid. A small 

portion of the regenerated energy can be used by ancillary loads onboard (‘Hotel 

loads’) for heating, lighting and air-conditioning etc., however the majority of it is fed 

back into the tram system, where, if there is another tram accelerating in the same 

section of track, it can be utilised. However, if no other tram is present in the same 

section, the regenerated energy causes the catenary voltage to rise, potentially 

causing issues with the voltage rating of the tram and general infrastructure. To 
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prevent excessive voltage rise, and to dissipate this excess energy, trams are usually 

equipped with a resistive dump, such that if the catenary voltage rises too high, excess 

energy is dissipated as heat. The downside of this feature is that it lowers overall 

system energy efficiency, since the regenerated energy is not usefully utilised. This 

issue becomes of even greater significance in an enclosed tram or metro system, such 

as the London Underground, where the wasted energy is dissipated as heat, thus 

causing the entire ambient temperature of the tunnels and stations to rise. This leads 

to increased air conditioning costs to return the ambient temperature to more 

comfortable levels for passengers at even greater expense and energy utilisation. The 

introduction of lineside energy storage into a network therefore alleviates these 

problems by giving the regenerative energy somewhere to be stored until required, 

without the losses associated with dumping the energy into resistors, albeit with an 

associated capital cost. 

Taking the city of Sheffield, UK as an example, an anticipated clean air zone is 

expected to promote an increased use of the city’s tram network; which will likely 

encourage greater use of the Supertram P&R sites, as well as promote and incentivise 

drivers to switch to EVs. This would result in an increasing number of available and 

stationary EVs in P&R facilities during large proportions of the working day. As EV 

batteries are inherently dc, there are efficiency savings to be gained from utilising the 

discussed regenerated energy in the dc tram system, with dc to dc conversion to the 

vehicles acting as additional lineside storage. This is inherently more efficient than the 

dc to ac current conversion that is employed in typical Vehicle to Grid (V2G) systems. 

This investigation focuses on the city of Sheffield, UK, where the city’s tram system is 

typical of urban light rail / tram systems throughout the UK and worldwide, therefore 
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the energy savings demonstrated in this paper may be extrapolated to other such 

systems.  

The remainder of this paper discusses the application of lineside ESS on urban light 

rail systems, and describes the characteristics of the Sheffield tram system (Section 

2); Section 3 details the energy modelling approach taken; Section 4 presents the 

results of the study; and Section 5 concludes the work and discusses the findings of 

the study. 

2. Research Approach 

To date, there have been a number of studies of lineside storage on urban light rail 

systems. Barrero et al. (2008) studied the Brussels metro line 2 which has a total 

length of 8 km, with 14 stops and 9 uni-directional power supply substations, and is 

operated with an open-circuit voltage of 876V. Teymourfar et al. (2012) studied the 

Tehran line-3 metro which is operated with a nominal voltage of 750V, and developed 

an effective method to predict the maximum instantaneous regenerative energy 

produced at each stop from the simulation in the ‘PSCAD’ circuit simulation package. 

The study also found that regenerative energy produced at each stop varies from 533 

MWh/year to 5,900 MWh/year.  

Lee et al. (2011) studied the Seoul Metro Line 7 which is composed of 42 stations and 

16 substations over a 47.1 km long track, and the study uses a power flow algorithm 

(Lagrange optimization and gradient search iterative method) to model a railway 

system with ESS installed and to calculate the optimal power and capacity of the ESS 

required. 

Various studies suggest V2G can be used for integration of renewable energy 

generation (Mwasilu et al., 2014, Richardson, 2013). Through the use of the 

‘EnergyPlan’ model, Lund and Kempton (2008) found that V2G operation can absorb 
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excess generation from wind power, and increase the overall utilization of wind power 

in the electricity grid. Haddadian et al. (2015) investigated using V2G to increase the 

penetration of different renewable resources without harming the system security and 

stability. Ul-Haq et al. (2017) studied an EV charging station that is either powered by 

photovoltaic (PV) panels, or the power grid, where V2G is used to stabilise the grid 

during peak load hours. The simulation results demonstrate the feasibility of the 

charging station under different operating modes, together with the V2G operation (Ul-

Haq et al., 2017). 

These studies show the installation of stationary ESS onto urban light rail systems is 

proven to be able to store the recovered regenerated energy, and subsequently deliver 

energy savings. However, to date little research has explored the potential for utilising 

EV batteries as ESS for light rail / urban tram systems, which forms the basis of the 

research presented in this paper.  

The Sheffield Supertram offers an ideal opportunity for studying both the effects of 

lineside ESS, and the potential for EV’s to act as lineside ESS, for the following 

reasons: the population of Sheffield is 575,424 (ONS, 2016) which is representative 

of a medium sized city in the UK; the city is expected to establish a clean air zone; it 

has an established but modern tram network that is fairly extensive, covering a total 

distance of 34.6km (Topp, 1999); the network has a number of established P&R 

systems in place; a planned network renewal and upgrade is due after 2020, with the 

possibility of incorporating energy storage onto the network as part of the upgrade to 

increase operating efficiency and lower running costs; it is a typical system in terms of 

current and voltage levels; the topography of Sheffield leads to high power demands, 

both traction and regenerative, on the trams due to the number of atypical inclines on 
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the routes; and the Sheffield tram network is local to the authors giving easy access 

for data collection. 

The Supertram network consists of three lines (or routes) and 48 stops. There are also 

12 substations to supply energy to the system. The map of the Supertram is shown in 

Fig 1. The substations are located at the stops identified with a red underline in Fig 1. 

There are also overlaps between lines where the routes utilise the same rails, for 

example, as seen in Fig 1, the blue line and the yellow line overlap from ‘Hillsborough’ 

to ‘Fitzalan Square’, the blue line and the purple line overlap from ‘Cathedral’ to 

‘Gleadless Townend’, and the yellow line and the purple line overlap from ‘Cathedral’ 

to ‘Fitzalan Square’. 

In order to create a model of the Supertram network to predict energy utilisation across 

the operating timetable, a high resolution GPS device (GARMIN eTrex® 10) was used 

to map the network and tram operation. The GPS measured altitude, position, and 

time over the sample journeys at one second intervals, these being taken over 3-days 

including morning and afternoon periods. From this GPS data, and the publically 

available mechanical characteristics of the trams, we were able to calculate the force 

and hence determine the energy demand of the tram. This is similar to the approach 

taken by Gonder et al. (2007) who utilised GPS techniques to model vehicle fleet 

energy consumption using GPS data in the ADVISOR program within the MATLAB 

environment.  

To calculate and examine the energy usage of the entire network, GPS data from both 

operational directions of each line is required. As part of the network has tram tracks 

inset into the road system, the tram timings are affected by the road conditions, and 

this pattern varies randomly. In order to get reliable and representative data, the data 
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collection took place on three different days during a week, in both mornings and 

afternoons for each route, giving 6 sets of data in total.  

In detail, data was collected on Tuesday 19th, Wednesday 20th and Thursday 21st, 

June 2018, in the morning and afternoon. Morning data collection began on the Purple 

line tram journey (Fig 1) which departed at 08:20 from ‘Cathedral’ to ‘Herdings Park’. 

Afternoon data collection began on the Purple line tram journey which departed at 

13:45 from ‘Cathedral’ to ‘Herdings Park’.  

  

Fig.  1 The route map of the Sheffield Supertram (www.goyorkshire.com, 2018)   

8 tram journeys were taken in sequence during each data collection period, Table 1. 

Data sequence Initial Tram Stop Final Tram Stop 

1 ‘Cathedral’ ‘Herdings park’ 
2 ‘Herdings Park’ ‘Gleadless Townend’ 
3 ‘Gleadless Townend’ ‘Halfway’ 
4 ‘Halfway’ ‘Malin Bridge’ 
5 ‘Malin Bridge’ ‘Langsett’ 
6 ‘Langsett’ ‘Middlewood’ 
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7 ‘Middlewood’ ‘Meadowhall’ 
8 ‘Meadowhall’ ‘Cathedral’ 
Table 1 – GPS data collection journey sequence 

As an example of the data collected from an individual journey, the mean height above 

sea level on the ‘blue route’ from ‘Halfway’ to ‘Malin Bridge’ is displayed in Fig. 2. Here, 

the tram stop positions are highlighted with dots within the plot.  

 

Fig.  2 The change of height above mean sea level and distance over time during the 

journey from ‘Halfway’ to ‘Malin Bridge’ (Dots highlight tram stop locations) 

 

3. Energy modelling of Sheffield Supertram 

3.1 Data collection and chosen modelling methodology 

Raw GPS data consists of latitude and longitude coordinates. The coordinates are 

collected second by second, and hence, the travelling distance per second can be 

calculated. If the latitude and longitude of Point A are (LatA, LonA) and of Point B is 

(LatB, LonB), then the distance (S) between Point A and Point B is calculated via Equ 

1.  𝑆 = 𝑅 × arccos[sin(𝐿𝑎𝑡𝐴) × sin(𝐿𝑎𝑡𝐵) + cos(𝐿𝑎𝑡𝐴) × cos(𝐿𝑎𝑡𝐵) ∗ cos(𝐿𝑜𝑛𝐴 − 𝐿𝑜𝑛𝐵)
 (1) 

where R is the radius of the earth which is taken as 6,371,000m.  
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From the distance travelled per second, the speed and acceleration can be calculated 

via Equ 2.  𝑆(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡 = ∬ 𝑎(𝑡)𝑑𝑡     (2) 

where S is distance, t is time, v is speed, and a is acceleration.  

A typical speed trace calculated from this data is shown in Fig. 3.  

Fig.  3 The speed data collected via GARMIN eTrex® 10 

From the data collected, and the mechanical parameters of the tram, forces on the 

tram may be simply modelled. Generally, while the tram is moving, the force that 

impacts the tram is the ‘joint force’ (FJoint), consisting of the sum of the ‘traction force’ 

(FTraction) provided by the electric motor, and ‘resistance’ (fResistance). Hence, the FTraction 

provided by the electric motor can be calculated via Equ. 3. 𝐹𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐹𝐽𝑜𝑖𝑛𝑡 − 𝑓𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒     (3) 

All three forces are vectors. As the resistance is always in the opposite direction of the 

movement of the tram, fResistance is always negative. While the tram is accelerating, the 

acceleration has a positive value. Therefore, FJoint Force and FTraction both have positive 

values, and the traction force equals FTraction. While the tram is travelling at a constant 

speed, FJoint Force is 0, and hence FTraction  equals fResistance. While the tram is 

decelerating, FJoint Force is negative. From this, the electrical supply required by the tram 

may be calculated. 
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The FJoint can be calculated from Equ. 4 utilising Newton’s second law. 𝐹𝐽𝑜𝑖𝑛𝑡  = 𝑀𝑡𝑟𝑎𝑚 × a      (4) 

where Mtram is the mass of the tram, obtained from public data, and a is the 

acceleration.  

The tare weight and the passenger capacity of a single tram is 46,500 kg and 88 seats, 

respectively (Stagecoach, 2018). Assuming the average weight of a passenger is 60 

kg (assuming a mixed demographic of men, women and children), the total mass of a 

tram car is estimated as 46,500+(88×60) = 51,780 kg. 

In operation, the resistance force on the tram opposing its movement consists of basic 

resistance and additional resistance. Basic resistance comprises, motion resistance 

between the parts of the tram, air resistance, and is also caused by the impact and 

friction between the wheels and rails. There are many factors that affect the basic 

resistance of the tram, and some are unable to be quantified. In order to simplify the 

calculation of the basic resistance, the Davis equation is commonly applied to 

approximately express this, based on empirical data, and the type of trams. Hence, 

the basic resistance can be calculated via Equ. 5 (Davis, 1926; Hansen et al., 2017). 𝑓1 = a + bv + c𝑣2     (5) 

where v is the velocity, and a, b, c is vehicle-related experience constant. In this study, 

a is taken as 1.01, b is taken as 0, and c is taken as 0.0006 (Rochard and Schmid, 

2000; Hansen et al., 2017). Additional resistance is caused by the road condition. The 

additional resistance is also calculated via Equ. 6 (Rupp et al., 2016). 𝑓2 = 𝑀𝑡𝑟𝑎𝑚𝑔 𝑠𝑖𝑛 [𝑡𝑎𝑛−1 (𝑇𝑔𝑟𝑎𝑑100 )]    (6) 

where Mtram is the mass of the tram, g is the gravity and Tgrad is the track gradient in 

percentage and is obtained from the height above mean sea level. 
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From Equs. (3) to (6), the traction force of the tram of any moment during the journey 

can therefore be calculated and forms the input into the energy trend model. As an 

example, the journey from ‘Halfway’ to ‘Gleadless Townend’ is used for illustration, 

and the calculated traction force of the tram during this journey is shown in Fig. 4. 

 

Fig. 4.   The traction force of the tram of journey from Halfway to Gleadless Townend 

 

From the force, the current drawn by the tram may be calculated. The traction motors 

used in the trams are the Siemens 1KB2121 and 1KB2021 (Stagecoach, 2018). Both 

motors are Asynchronous AC motor / drive combinations, which feature a linear 

relationship between the rated torque and the rated current (Ie) (Ruigang et al., 2017). 

Therefore, a linear relationship with the Ie and the force from the motor (FT) is deduced 

and can be expressed as Equ. 7. 𝐼𝑒 = 𝑘 ∗ 𝐹𝑇      (7) 

where k is a constant.  

The force constant, k, representing not only the motor, but the whole drive-train of the 

tram, can be approximated to 14 under traction conditions (Du et al., 2010), and to 10 

under braking (Yu et al., 2010) for systems similar to Supertram.  

3.2 Model implementation 
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Here the methodology discussed above has been implemented in Matlab Simulink to 

include the whole Sheffield Supertram network. For illustration, the tram journey from 

Halfway to Crystal Peaks is described in detail. The implementation includes both 

directions of travel, city centre outbound and city centre inbound routes respectively. 

The corresponding Simulink schematic for the illustrative section of the network is 

shown in Fig. 5. As can be seen in the figure, the ‘CAL P’ and ‘CAL N’ blocks are the 

main calculation modules; ‘Substation1’ and ‘Substation2’ represent the substations; 

‘tram1’ to ‘tram4’ are the tram modules; ‘PR1’ to ‘PR4’ and ‘NR1’ to ‘NR4’ are the line 

resistance modules respectively; and ‘ESS’ is the energy storage module for this 

section.   

 
 

Fig. 5. Simulink model illustrating a section of the tram network model 
 
The tramcar model is shown in Fig. 6(a). A Controlled Current Source, is used to 

simulate the tramcar demand on the network. Additionally, the hotel load is included 

to simulate the energy consumption on lighting and heating. The model also includes 

resistive braking, and hence the energy lost in this resistor during the tram braking is 

calculated.   
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The detailed structure of the Substation model is shown in Fig. 6(b). The substations 

are modelled as a Thevenin equivalent circuit, i.e. a DC voltage source and internal 

resistance. The DC voltage source is nominally set as 750V, with an internal 

resistance of 0.02Ω. The addition of the diode unit achieves the unidirectional energy 

supply typical of tram applications.  

 

 

Fig. 6. Detailed models of a tramcar (a) and a substation (b) 

The ESS model consists of a converter and a battery, as shown in Fig.7. The 

bidirectional converter comprises an IGBT based buck-boost converter. This allows 

controlled charge and discharge of the ESS from / to the track. The battery voltage is 

nominally set at 390V.  

 
 

Fig. 7. The model of the ESS module 
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From the previously calculated tram current profile, the MATLAB model allows 

calculation of the voltages for the trams and substations in the whole system, which 

incorporates the track and catenary resistances, and electrical models of the 

substations. The current operating timetable for the Supertram and the logged data 

for the sample journeys and are used as model inputs to simulate the tram movements. 

Therefore, the energy utilised from the substation (ESub), electricity consumed in the 

dump / braking resistor (Eres), electricity consumed by the tram (Et) and regenerative 

energy (Ereg) can be calculated via Equs. (8) to (11) respectively.  𝑬𝒔𝒖𝒃 = ∫ 𝑰𝒔𝒖𝒃 ∙ 𝑽𝒔𝒖𝒃𝒅𝒕     (8) 
Where Isub is the current drawn from the substation, and Vsub is the voltage at the given 
substation  𝑬𝒓𝒆𝒔 = ∫ 𝑰𝒓𝒆𝒔 ∙ 𝑽𝒓𝒆𝒔𝒅𝒕      (9) 

Where Ires is the current and Vres is the voltage of across the dump resistor. 𝑬𝒕 = ∫ 𝑰𝒕 ∙ 𝑽𝒕𝒅𝒕      (10) 
Where It is the current from the catenary to the tram and Vt is the voltage at the tram. 𝑬𝒓𝒆𝒈 = ∫ 𝑰𝒓𝒆𝒈 ∙ 𝑽𝒓𝒆𝒈𝒅𝒕      (11) 

Where Ireg is the current from the tram to the catenary, and Vreg is the voltage of the 

tram. 

From the models, the daily energy balance across the network, considering Esub, Eres 

and Ereg, can be obtained and is shown in Fig 8. Based on the journey data collected 

on different dates and times, the energy trends appear to show little variation with 

traffic conditions and passenger numbers, as the passenger numbers and traffic 

conditions will not be the same for each journey. Typically, the morning data samples 

were taken close to the ‘rush hour’ period, and the afternoon samples were under 

lighter traffic and passenger number conditions. Thus the energy used from the 

substations on the network are within +/- 2% of the average across the 6 sampled 

journey sets. This approach to the daily energy utilisation calculations appears to be 

an acceptable approximation, based on the consistency of the results shown, and 
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therefore forms a useful base on which to examine the integration of EV’s into the tram 

network as part of the proposed ESS. 

 

Fig. 8.   Calculated Daily Energy trends using data captured on morning and 

afternoon of 19th to 21st June 2018. 

4. Results and Discussion 

Using the model, it is possible to determine a maximum size of ESS required to 

achieve sensible system operation. From the model, the maximum current drawn by 

the tram was calculated as less than 1,300A at peak traction force. For example, using 

the tram journey from Halfway to Gleadless Townend for illustration (as shown in Fig. 

9), the traction current remains within 1,000A for the majority of the journey, rarely 

going above 1,000A or reaching the maximum value of 1,300A. Given the nature of 

the converters within the ESS model, the maximum practical current likely to be seen 

by the battery is therefore limited to around 2,000A. 

This allows ESS selection to be based on the current rating of the batteries used. 

Normally, a battery operating current can be quoted in terms of its capacity. For 

example, a 100Ah battery can be expected to supply 100A for 1 hour, termed the ‘C’ 

rate, and 100A drawn from the example battery is referred to as 1C. Similarly, if 50A 
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is drawn from the battery, it should supply the current for 2 hours, termed 0.5C or C/2. 

200A is similarly termed the 2C rate for the example battery. This then allows 

comparison between the operating characteristics of battery packs of different 

capacities. Normally, lithium-based batteries are limited to a maximum rate of 2C to 

prevent damage to the cells in the battery packs. 

 

Fig.9. The profile of traction current of tram journey from Halfway to Gleadless 

Townend 

As the maximum current seen by the battery is 2000A, and we wish to limit the battery 

current to 2C, the initial study is carried out with a 1000Ah battery pack. Examining a 

single journey from ‘Halfway’ to ‘Crystal Peaks’ on the Blue route (Fig. 1) and placing 

a 1000Ah ESS at each stop in turn, results in the energy usage per journey shown in 

Table 2 and Fig 10. 

 

Table 2 – Energy usage for a single journey from ‘Halfway’ to ‘Crystal Peaks’ with 6 

scenarios for ESS placement 
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From Fig 10 and Table 2, it can be seen that the least energy is drawn from the utility 

supply for the single journey in Scenario 4, with the ESS being placed at ‘Waterthorpe’ 

tram stop (location 4), which is between the two substations on this track section. 

Initially, ESS placement has been constrained to tram stop locations, as these allow 

easy track access and would be possible places for EV parking in future study 

scenarios. In the best scenario, the energy lost in the braking resistors is reduced from 

9.580kWh to 2.939kWh per journey, a reduction in loss of 69%. The energy drawn 

from the utility supply for this single journey is also reduced from 16.831kWh to 

12.031kWh, equating to a reduction of ~29%, due to the re-cycling of the captured 

energy from tram braking, used in subsequent accelerations. This therefore points 

towards the optimum location for ESS, located at existing tram stops, to be as close 

as possible to the mid-point between any two substations.  

 

Fig. 10.   Energy use for a single journey from ‘Halfway’ to ‘Crystal Peaks’ with 6 

scenarios for the ESS placement 

Utilising this ESS position, Table 3 shows the effect of using a smaller ESS (200Ah), 

and applying different current limits to the operation, from 0.5C to 10C, given that the 

upper value is commensurate with the 1000Ah, 2C scenario above. Whilst this high 

current rate may not be practical at this time, future developments may not prevent 
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operation at this rate. Plotting these in Fig 11 shows a trend of diminishing returns, 

with little improvement in energy saving operating the 200Ah battery above 4C. This 

is true as it may be seen that the tram current rarely exceeds 4C (800A) while travelling 

between these substations, as shown by the simulated battery current trace, Fig 12.  

 

Table 3 – Energy usage for a single journey from ‘Halfway’ to ‘Crystal Peaks’ with 

maximum current ratings from 0.5C to 10C, for a 200Ah battery at the ‘Waterthorpe’ 

tram stop. 

Therefore, the current limit of 4C imposed on the battery is high enough to capture 

almost all of the energy regenerated from the trams on deceleration and return most 

of what is possible to the tram on acceleration. The sizing and current rating of the 

ESS has implications of cost and return on investment (RoI) if a purpose built ESS is 

to be installed.  

 

Fig. 11.   Energy use for a single journey from ‘Halfway’ to ‘Crystal Peaks’ with 5 

current limits for a 200Ah battery at the ‘Waterthorpe’ tram stop. 
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Fig. 12.   Simulated battery current for a single journey from ‘Halfway’ to ‘Crystal 

Peaks’ with a 10C current limit applied to a 200Ah ESS at the ‘Waterthorpe’ tram 

stop. 

If the ESS is only to be installed at existing P&R tram stop locations, (‘Halfway’, 

‘Middlewood’, ‘Meadowhall’, ‘Valley Centertainment’ and ‘Nunnery Square’), then the 

P&R locations are not what has been shown to be ideal, as they are coincident with, 

or close to, existing substations. A study of the 1000Ah ESS, limited to 2C current 

ratings, installed at each of the P&R locations above leads to the reduction in daily 

energy use of the overall tram system as shown in Fig. 13. This can be directly 

compared with Fig. 8.  

 

Fig. 13.   Simulated Daily Energy trends with the 1000Ah ESS installed at each park 

and ride location on the tram network. 
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Whilst the existing P&R locations are not ideal, there are still energy savings to be 

made. The average daily energy consumption across the network falls from 34.4MWh, 

to 31.0MWh, a saving of 3.4MWh per day, or taking operation over 364 days of a year, 

1237.6MWh.  At a typical cost per MWh of electricity in the UK of £53/MWh, this 

equates to a saving of £65.6k p.a. Methods of converting this electricity saving to Co2e 

savings vary dependant on the approach taken, but indicatively, utilising the year 

average from the UK Gridwatch (http://gridwatch.co.uk/co2-emissions, 2019), this 

gives an average Co2e emission of 9.7kiloTonnes / GWh of energy generated on the 

UK grid. This therefore equates the 1237.8MWh electricity saving to a saving of 

12.0kilo tonnes CO2e.  

A 1000Ah battery, at 390V nominal, results in an ESS capacity of 0.39MWh. If this is 

to be a purpose built ESS, then the RoI can be calculated. Typically, a 0.39MWh 

Lithium based battery can be supplied, fully installed for grid support at ~£150k, giving 

a RoI for 5 such systems, installed at the P&R locations (shown in Fig. 1) as ~11.4 

years based on energy savings alone, which may be seen as an unacceptably long 

period of time, both in terms of investment, and lifetime of the batteries. 

However, a single Nissan Leaf EV has a battery capacity of 40-62kWh dependant on 

the model (Nissan, 2019). Taking an average of 50kWh, the P&R scenario requires 

~8 x Nissan Leaf EV’s to be parked at each P&R site to achieve this required ESS 

capacity. Larger EV’s, for example the TESLA, have a battery capacity of up to 

100kWh (Tesla, 2019), thus requiring fewer vehicles to be available for ESS use. 

One possible technical argument against this idea of the EV batteries being used by 

the tram system, and against V2G in general, is the consequent cycling of the EV 

batteries and loss of capacity. If the single journey from ‘Halfway’ to ‘Crystal Peaks’ is 

taken as an example, using data from Table 2, it is possible to calculate the energy 
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going into the ESS as the difference between the energy lost in the tram braking 

resistors in scenarios 1 and 2, that is, without an ESS, and with an ESS installed at 

the ‘Halfway’ tram stop. In this case the energy difference is 0.56kWh. With a 390kWh 

ESS installed at ‘Halfway’, the state of charge (SoC) of the ESS would only change by 

0.14% for each journey, as the battery sizing requirement is power driven to limit the 

battery current, and not energy driven in this case. This very small change in SoC 

would not give rise to significant cycling of any ESS at this location, with negligible 

subsequent effect on battery lifetime (Millner, 2010).  

A further advantage may be obtained from the fact that the tram only operates from 

‘Halfway’ every 10 minutes, therefore the ‘Halfway’ substation could be utilised to 

charge EVs connected to the supply between scheduled trams, without the need for 

the supplementary grid reinforcement normally required to install a number of EV 

chargers at a given location. Given the scenario whereby the EV’s are parked at the 

P&R facility for most of the working day, the integration of the road and tram system 

could result in benefits for both the tram network, and the vehicle owners with reduced 

charging costs for allowing their vehicles to participate in an additional lineside energy 

storage system. 

To complete the study of ESS utilisation, in a different scenario, the 1000Ah ESS could 

be added to the network at the ‘ideal’ locations as discussed previously (at a tram stop 

mid-point between two substations), and this would result in the overall daily energy 

trends shown in Fig. 14.  
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Fig. 14.   Simulated Daily Energy trends with a 1000Ah ESS installed at ideal tram 

stop locations on the tram network. 

In this case, the yearly savings on energy costs amount to ~£212k per year. (4GWh 

p.a.) and the yearly CO2e savings amount to 38.96 kilo tonnes CO2e. Here, 

significantly more energy is captured by the ESS and re-used within the system. 

However, this comes at a cost in terms of capital costs and installation / running costs 

of the ESS’s. From Fig 1, it may be seen that 11 ESS would be required to achieve 

this saving. At an installation cost of £150k per ESS, the RoI would result in the 

payback period being ~8 years. This is still too long for investment with a battery of 

this size.  

Reducing the battery size to 200Ah (nominally 78kWh), and limiting the operating 

current to 4C would, from Figure 15, capture most of the available energy at reduced 

ESS cost.                 



26 

 

 

Fig. 15.   Simulated Daily Energy trends with a 200Ah ESS installed at ideal tram 

stop locations on the tram network. 

In this case, the yearly savings on energy costs amount to ~£167k per year. (3.1GWh 

p.a) and the yearly CO2e savings amount to 30 kilo tonnes. Once again, 11 ESS would 

be required to achieve this saving. At an installation cost of £40k per ESS, the RoI 

would result in the payback period being ~2.6 years. This is much more attractive to 

implement, and easily falls within typical warranty lifetimes for ESS of ~10-15 years. 

Given the low change in ESS SoC per event, the 200Ah ESS, would be able to handle 

the 4C current rate for the short periods of time required. Additionally, the large amount 

of energy storage available on the system if this was installed would allow periods of 

tram operation independent of the grid, for example to participate in demand side 

response on the utility grid, or avoid peak time electricity charges, further reducing the 

payback time of the system. Further, the use of EV batteries in parallel with the 

installed ESS would further reduce the losses whilst providing the opportunity to 

provide vehicle charging from the tram dc supply when a tram is not in the track 

sections, forming an additional revenue stream. 
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The results of this study could therefore be used to inform siting of possible future P&R 

facilities, and whilst it will not be possible to provide such facilities at each ‘ideal’ 

location on the tram network for optimal energy savings, this does provide insight into 

the savings which could be made in operating costs. Although, any such savings in 

operating costs would need to be accounted for with regards to the RoI once the capital 

outlay of the installations has been calculated.  

 

5. Conclusions 

This paper has examined the possible placement of ESS on the Sheffield Supertram 

network for the purpose of exploring savings made to the operating costs of the system, 

and carbon emission reductions. Also, potential EV charging locations that could 

provide a suitable benefit for the proposed additional energy storage scheme have 

been discussed. This has been achieved through the use of MATLAB modelling 

utilising captured GPS data and publically available information. This study has 

examined the scenario of uni-directional substations with no interconnection between 

the overhead catenary for both directions of travel. Further work is on-going to 

examine different scenarios for system operation, and to examine the trade-offs 

between ESS size and required C-rate operation. 

The results show that savings can be made by installation of ESS within the network, 

and these extend to the use of EVs as stationary ESS sited at the existing P&R 

facilities. The model may also be used to inform future infrastructure upgrades, and 

possible impact of ESS / P&R placement in future scenarios.  

This study highlights the synergies which can be obtained through the integration of 

road and urban light rail transport systems. Whilst the study has highlighted the case 

of the Sheffield city region, it is highly applicable to any city or urban area where a light 
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rail system is available or is being considered. The growing concerns around urban air 

quality that are leading to the widespread introduction of clean air zones in urban areas 

throughout the world, provoke increased uptake of electric vehicles. This increase in 

EV’s and growing interest in green technologies prompts the consideration of novel 

approaches to urban transport issues. For example, it could be envisaged that large 

numbers of EVs will be used as inter-urban transportation, to be parked on the 

outskirts of urban centres facilitating the feasibility of their use as additional energy 

storage on the urban tram system. 
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