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Abstract

We prove inequalities for Laplace eigenvalues of Kähler manifolds generalising to higher

eigenvalues the classical inequality for the first Laplace eigenvalue due to Bourguignon, Li,

and Yau in 1994. We also obtain similar eigenvalue inequalities for analytic varieties in

Kähler manifolds.
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1. Statements and discussion of results

1.1. Introduction

Let (Σn,g,J) be a closed Kähler manifold of complex dimension n > 1, and ωg be its Kähler

form. By ∆g we denote the Laplace-Beltrami operator acting on functions on (Σn,g). In 1994

Bourguignon, Li, and Yau [7] proved the following inequality for the first non-zero Laplace

eigenvalue λ1(Σ
n,g) for projective manifolds Σn.

Theorem 1.1. Let (Σn,J) be an n-dimensional closed complex manifold that admits a holomor-

phic immersion φ : Σn → CPm. Suppose that Σn is full in the sense that the image φ(Σn) is not

contained in any hyperplane of CPm. Then for any Kähler metric g on Σn the first non-zero

Laplace eigenvalue λ1(Σ
n,g) satisfies the inequality

λ1(Σ
n,g)6 4n

m+1

m

(

∫

Σn
φ ∗(ωFS)∧ωn−1

g

)

/

(

∫

Σn
ωn

g

)

, (1.1)

where ωFS is the Fubini-Study form on CPm, and ωg is the Kähler form of g.

Above we assume that the Fubini-Study form ωFS is normalised so that the diameter of CPm

equals π/2, see Section 2 for the details on the notation used. The quotient of the integrals on

the right hand-side of inequality (1.1), that is

d([φ ], [ωg]) :=

(

∫

Σn
φ ∗(ωFS)∧ωn−1

g

)

/

(

∫

Σn
ωn

g

)

, (1.2)

is a homological invariant, called the holomorphic degree. It depends only on the cohomology

class [ωg] and the action of φ on 2-cohomology φ ∗ : H2(CPm,Q)→ H2(Σn,Q), and is strictly

positive when φ : Σn → CPn is non-constant. Consider the set KΩ(Σ
n,J) of Kähler metrics

on (Σn,J) whose Kähler forms represent a given de Rham cohomology class Ω ∈ H2(Σn,Q).
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Then Theorem 1.1 says that the first Laplace eigenvalue λ1(Σ
n,g) on a projective manifold Σn

is bounded as the metric g ranges in KΩ(Σ
n,J). Since metrics g ∈ KΩ(Σ

n,J) have the same

volume, this statement actually gives a bound for the scale invariant quantity

Λ1(g) = λ1(Σ
n,g)Volg(Σ

n)1/n,

where n is the complex dimension. The restriction to a class of metrics KΩ(Σ
n,J) is neces-

sary for such a bound to hold. Indeed, by the results of Colbois and Dodziuk [10], see also

Lohkamp [23], the quantity Λ1(g) is unbounded when n > 1 and g ranges over all Riemannian

metrics. Theorem 1.1 also implies that the Fubini-Study metric on the projective space CPm

maximises the first Laplace eigenvalue in its Kähler class. This result has been generalised by

Arezzo, Ghigi, and Loi [3] to the setting of Kähler manifolds that admit holomorphic stable

vector bundles over M with sufficiently many sections, under an appropriate stability condition.

In particular, they show that the symmetric Kähler-Einstein metrics on the Grassmannian spaces

also maximize the first Laplace eigenvalue in their Kähler classes. Moreover, as is shown in [6],

so do symmetric Kähler-Einstein metrics on Hermitian symmetric spaces of compact type. Re-

lated to this circle of questions extremal eigenvalue problems have been considered in [2].

The purpose of this paper is to prove inequalities analogous to Theorem 1.1 for higher

Laplace eigenvalues, answering the question raised by Yau [27]. We also obtain inequalities

for higher Laplace eigenvalues on analytic subvarieties in Kähler manifolds.

1.2. Bounds for higher Laplace eigenvalues

For a Riemannian metric g on a closed manifold Σn, we denote by

0 = λ0(Σ
n,g)< λ1(Σ

n,g)6 λ2(Σ
n,g)6 . . .6 λk(Σ

n,g)6 . . .

the eigenvalues of the Laplace-Beltrami operator ∆g, repeated with respect to multiplicity. Our

main result is the following version of Theorem 1.1 for all Laplace eigenvalues.

Theorem 1.2. Let (Σn,J) be an n-dimensional closed complex manifold, and let φ : Σn → CPm

be a non-constant holomorphic map. Then for any Kähler metric g on Σn its Laplace eigenvalues

satisfy the following inequalities

λk(Σ
n,g)6C(n,m)d([φ ], [ωg])k for any k > 1, (1.3)

where C(n,m) > 0 is a constant that depends on the dimensions n and m only, and d([φ ], [ωg])
is the holomorphic degree defined by relation (1.2).

To our knowledge, Theorem 1.2 is the first rigorous result in the literature that gives bounds

for higher Laplace eigenvalues of Kähler metrics in a fixed Kähler class. Note that unlike in

Theorem 1.1, we do not assume that a holomorphic map φ : Σn → CPm is an immersion and do

not impose any hypotheses on the image φ(Σn) in Theorem 1.2. In complex dimension one our

theorem implies a celebrated result of Korevaar [17]: for any Hermitian metric g on a complex

curve Σ1 the Laplace eigenvalues satisfy the inequalities

λk(Σ
1,g)Volg(Σ

1)6C∗ deg(φ)k for any k > 1, (1.4)

where φ : Σ1 → CP1 is an arbitrary non-constant holomorphic map, and C∗ is a universal con-

stant. Indeed, by the change of variables in integral formula we obtain

d([φ ], [ωg]) = deg(φ)
(

Vol(CP1)/Volg(Σ
1)
)

(1.5)
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for an arbitrary non-constant holomorphic map φ : Σ1 →CP1. Now Korevaar’s inequalities (1.4)

follow directly from Theorem 1.2. As is known [12], for any complex curve Σ1 there exists a

non-constant holomorphic map φ : Σ1 →CP1 whose degree is not greater than γ +1, where γ is

the genus of Σ1, and inequalities (1.4) imply the bounds

λk(Σ
1,g)Volg(Σ

1)6C∗(γ +1)k for any k > 1,

for an arbitrary Riemannian metric on Σ1. Theorem 1.2 can be viewed as a natural generalisation

to higher dimensional Kähler manifolds of Korevaar’s result, and in particular, answers the

question on the existence of bounds in Kähler classes for higher eigenvalues, raised by Yau

in [27, p. 170].

For fibrations φ : Σn → CP1 Theorem 1.2 yields a version for higher Laplace eigenvalues of

the inequality for the first Laplace eigenvalue by Li and Yau in 1982, see [22, Theorem 3]. Re-

lated questions have been also discussed by Gromov in [14]. In this case the quantity d([φ ], [ωg])
takes a form similar to (1.5): up to a constant it is the ratio deg(φ)/Volg(Σ

n), where deg(φ) is

understood as the volume of the generic fiber of φ . By considering fibrations over complex

projective spaces, Theorem 1.2 can be used to obtain bounds for all Laplace eigenvalues on

not necessarily projective manifolds. For instance, all Kähler surfaces of algebraic dimension

one are non-projective and elliptic, see [4]. In particular, they admit non-constant holomorphic

maps to CP1, and hence, satisfy the hypotheses of Theorem 1.2. The examples include certain

K3 surfaces and certain complex 2-tori. Thus, in many instances we have a positive answer to

the following outstanding question.

Open Question 1. Let (Σn,J) be a closed Kähler manifold. Are Laplace eigenvalues bounded

in every Kähler class KΩ(Σ
n,J) of Kähler metrics?

Note that when the complex dimension n > 1, the inequality in Theorem 1.2 is not compati-

ble with the Weyl asymptotic law

λk(Σ
n,g)Volg(Σ

n)1/n ∼C(n)k1/n as k →+∞,

in the sense that the index k occurs in it with the ”wrong” power. However, inequality (1.3) can

not be improved to the inequality where k is replaced by k1/n on the right hand-side in (1.3).

For otherwise, passing to the limit, the Weyl law would imply the bound Volg(Σ
n)−1/n 6C(n)d,

where d is the holomorphic degree, which can not hold. To see the latter consider a fibration

φ : CP1 × Σn−1
0 → CP1 that forgets the second factor. Equipping it with the product metric

gFS ⊕ g0, we conclude that the holomorphic degree d does not depend on a metric g0 on Σn−1
0 ,

and arrive at a contradiction with the hypothetical bound. The above discussion leads to the

following question.

Open Question 2. Are there bounds for Laplace eigenvalues in Kähler classes that are com-

patible with the asymptotic eigenvalue behaviour?

A few words about the proof of Theorem 1.2. The main argument uses ingredients origi-

nating from the work of Korevaar [17], and developed further by Grigoryan, Netrusov, and Yau

in [13]. The novelty of our approach is an improved construction of test-functions that allows

us to obtain eigenvalue bounds in Kähler classes of metrics in terms of the holomorphic degree

only. The main idea is motivated by the construction used in [20]. We describe it in Section 3.

1.3. Examples and further discussion

Theorem 1.2 applies to many homogeneous Kähler manifolds, and shows that all Laplace

eigenvalues are bounded in Kähler classes on them. For example, complex Grassmannians
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are holomorphically and isometrically embedded into the projective spaces by the standard

Plücker embedding. In more detail, for a finite-dimensional complex vector-space W we de-

note by Gr(r,W ) the Grassmannian of r-dimensional subspaces in W . The Plücker embedding

Gr(r,W )→ P(∧rW ) is defined by

Gr(r,W ) ∋ L 7−→ [e1 ∧ . . .∧ er] ∈ P(∧rW ), (1.6)

where e1, . . . ,er is a basis in an r-dimensional subspace L ⊂ W . Other examples include irre-

ducible Hermitian symmetric spaces of compact type; by [8] they can be holomorphically and

isometrically embedded into (CPm,cgFS) for some integer m > 0 and real number c > 0.

Holomorphic maps into projective spaces often occur via the so-called Kodaira maps. In

more detail, let E be a holomorphic vector bundle of rank r over a closed Kähler manifold Σn.

Let V = H0(E) be a space of global holomorphic sections of E, and let N be its dimension.

Suppose that E is globally generated, and for p ∈ Σn denote by Vp ⊂V the subspace formed by

sections that vanish at p; its dimension equals N − r. The Kodaira map κE : Σn → Gr(r,V ∗) is

defined by sending p 7→ Ann(Vp), where Ann(Vp) is the annihilator subspace of Vp,

Ann(Vp) =
{

λ ∈V ∗ : λ ≡ 0 on Vp

}

.

Composing it with the Plücker embedding (1.6), we obtain an embedding KE : Σn → CPm,

where (m+ 1) is the binomial coefficient
(

N
r

)

. Besides, as is known, see [3, 12], the pull-back

of the Fubini-Study form ωFS on CPm represents a multiple of the first Chern class c1(E), that

is K∗
E([ωFS]) = c · c1(E), where c > 0 is a constant that depends on normalisation conventions

only. Thus, we arrive at the following consequence of Theorem 1.2.

Corollary 1.3. Let E be a holomorphic globally generated vector bundle over a closed Kähler

manifold (Σn,J). Then for any Kähler metric g on Σn its Laplace eigenvalues satisfy the follow-

ing inequalities

λk(Σ
n,g)6C(n,r,N)

((

∫

Σn
c1(E)∪ [ωg]

n−1

)

/

(

∫

Σn
[ωg]

n

))

k

for any k > 1, where the constant C(n,r,N) depends on the dimension n of Σn, rank r of E, and

N = dimH0(E) only.

The hypotheses of Corollary 1.3 are close to the setting considered by Arezzo, Ghigi, and

Loi in [3], where the authors obtain bounds for the first Laplace eigenvalue. However, unlike

the main result in [3], we are not concerned with the value of the constant C(n,r,N) and do not

require any assumption on the stability of the Gieseker point of E in Corollary 1.3.

We end with a discussion of the version of Theorem 1.2 for analytic subvarieties in Kähler

manifolds. Let Mn+l be a closed (n+ l)-dimensional Kähler manifold, and let Σn ⊂ Mn+l be an

irreducible analytic subvariety whose regular locus Σn
∗, that is the complement of the singular

set, has complex dimension n. Any Kähler metric g on Mn+l induces an incomplete Kähler

metric gΣ on Σn
∗. We consider the Laplace operator defined on compactly supported C2-smooth

functions on Σn
∗. In Section 4 we explain that this operator is essentially self-adjoint and has

discrete spectrum. The following statement gives bounds for Laplace eigenvalues of Σn that are

uniform over Kähler metrics in a fixed Kähler class on Mn+l .

Theorem 1.4. Let (Mn+l ,J) be an (n + l)-dimensional closed complex manifold, and let

φ : Mn+l → CPm be a holomorphic map. Let Σn ⊂ Mn+l be an irreducible analytic subvari-

ety such that the map φ is non-constant on the regular locus Σn
∗. Then for any Kähler metric g

on Mn+l the Laplace eigenvalues of (Σn,gΣ) satisfy the following inequalities

λk(Σ
n,gΣ)6C(n,m)

((

∫

Σn
φ ∗(ωFS)∧ωn−1

g

)

/

(

∫

Σn
ωn

g

))

k
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for any k > 1, where C(n,m) is the constant that depends on n and m only, and ωg is the Kähler

form of g on Mn+l .

In particular, when the Hodge number h1,1(Mn+l) equals one, Theorem 1.4 gives eigenvalue

bounds that are also uniform over both subvarietes Σn of Mn+l and all Kähler metrics g on Mn+l

of unit volume. To our knowledge this statement is new even for algebraic varieties.

2. Preliminaries and notation

2.1. Geometry of the complex projective space

Let CPm be a complex projective space equipped with the Fubini-Study metric gFS. We assume

that the Fubini-Study metric is normalised such that the diameter of CPm equals π/2. Viewing

CPm as the collection of 1-dimensional subspaces in Cm+1, this convention means that the pull-

back π∗ωFS of the corresponding Kähler form ωFS satisfies the relation

π∗ωFS =
i

2
∂ ∂̄ log |Z|2 , where |Z|2 =

m

∑
ℓ=0

|zℓ|
2 ,

and π : Cm+1\{0}→CPm is a natural projection. Recall that the distance function distFS corre-

sponding to the Fubini-Study metric satisfies the following relation

cos(distFS([Z], [W ])) =
|〈Z,W 〉|

|Z| |W |
, (2.1)

where Z, W ∈Cm+1\{0}, and the brackets 〈·, ·〉 denote the standard Hermitian product on Cm+1.

In the sequel we denote by Cut[Z] the cut locus of a point [Z] ∈ CPm. The analysis of geodesics

in CPm shows that it is a hyperplane formed by all 1-dimensional subspaces [W ] orthogonal to

[Z]. We refer to [1, 5], where these and related facts are discussed in detail.

As is well-known [12], any biholomorphic map CPm → CPm has the form

[Z] 7−→ [CZ], where Z ∈ Cm+1\{0}, and C ∈ Glm+1(C). (2.2)

In particular, we see that the group of biholomorphisms of CPm is connected, and hence, any

biholomorphism induces the identity map on cohomology.

Recall that the isometry group of CPm with respect to the Fubini-Study metric is formed by

biholomorphisms (2.2) such that C ∈ SUm+1. Consider the moment map τ : CPm → su
∗
m+1 for

the action of the isometry group; it satisfies the relation

d(τ,X) =−ıξX
ωFS,

where X ∈ sum+1 and ξX is the fundamental vector field for the action on CPm. Identifying the

dual space su
∗
m+1 with the Lie algebra sum+1 by means of the Killing scalar product

(X ,Y ) = trace(X∗Y ) =−trace(XY ),

we may assume that τ takes values in sum+1. Then, in standard homogeneous coordinates

[Z] = [z0 : z1 : . . . : zm] on CPm, it can be written as

τ([Z]) = i
ZZ∗

Z∗Z
= i

(

ziz̄ j

|Z|2

)

06i, j6m

, (2.3)
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see details in [3, 25]. Note also that the moment map satisfies the following identity:

ωFS =−
i

2

m

∑
j,ℓ=0

dτ jℓ∧dτℓ j, (2.4)

where τ jℓ are entries of the matrix τ . Due to the equivariance properties, it is sufficient to see

that this relation holds at one point, for example at [1 : 0 : . . . : 0], where it can be verified in a

straightforward manner.

The following statement is implicitly contained in [7, 3]. We include a proof for the com-

pleteness of the exposition.

Lemma 2.1. Let (Σn,g,J) be a Kähler manifold, and let φ : Σn → CPm be a holomorphic map.

Then the gradient of the matrix-valued map τ ◦φ : CPm → C(m+1)×(m+1) satisfies the relation

|∇(τ ◦φ)|2 ωn
g = nφ ∗(ωFS)∧ωn−1

g ,

where τ : CPm → sum+1 is the moment map, and ωg is the Kähler form of a metric g.

Proof. Recall that for any real (1,1)-form α on Σn the following relation holds

(α,ωg)ω
n
g = nα ∧ωn−1

g , (2.5)

where ωg is the Kähler form on Σn, and the brackets (·, ·) denote the induced Euclidean product

on (1,1)-forms. Choosing

α = i(∂ϕ ∧ ∂̄ ϕ̄ +∂ ϕ̄ ∧ ∂̄ϕ)

for a smooth C-valued function ϕ on Σn, from (2.5) we obtain

|∇ϕ|2 ωn
g = in(∂ϕ ∧ ∂̄ ϕ̄ +∂ ϕ̄ ∧ ∂̄ϕ)∧ωn−1

g . (2.6)

Now let ϕ jℓ be the entries of the matrix τ ◦φ . Then, using (2.6), we obtain

∣

∣∇ϕ jℓ

∣

∣

2
ωn

g = in(∂ϕ jℓ∧ ∂̄ ϕ̄ jℓ+∂ ϕ̄ jℓ∧ ∂̄ϕ jℓ)∧ωn−1
g =

inφ ∗(∂τ jℓ∧ ∂̄ τ̄ jℓ+∂ τ̄ jℓ∧ ∂̄ τ jℓ)∧ωn−1
g =−inφ ∗(∂τ jℓ∧ ∂̄ τℓ j +∂τℓ j ∧ ∂̄ τ jℓ)∧ωn−1

g ,

where in the second relation we used the hypothesis that φ is holomorphic, and in the last – that

the moment map τ takes values in sum+1. Combining the above with relation (2.4), we conclude

that

|∇(τ ◦φ)|2 ωn
g =

m

∑
i, j=0

∣

∣∇ϕ jℓ

∣

∣

2
ωn

g = nφ ∗(ωFS)∧ωn−1
g .

Thus, the statement is demonstrated.

2.2. First eigenfunctions and holomorphic vector fields.

A well-known result by Matsushima [24] establishes a relationship between first Laplace eigen-

functions and holomorphic vector fields on Kähler-Einstein manifolds of positive scalar curva-

ture. In more detail, for any first eigenfunction f its gradient grad f is a holomorphic non-Killing

vector field, see the discussion in [2]. In the sequel we will need an explicit description of the

gradient flow of a particular eigenfunction on the complex projective space CPm.

Given a 1-dimensional subspace [W ] in Cm+1 and a real number t > 0 we consider a C-linear

operator Θt,[W ] : Cm+1 → Cm+1 defined by the following relation

Θt,[W ]Z =

{

Z, if Z ∈ [W ],
tZ, if 〈Z,W 〉= 0,

6



where the brackets 〈·, ·〉 denote the standard Hermitian product on Cm+1. By θt,[W ] we denote

the induced biholomorphism CPm → CPm, given by

θt,[W ][Z] = [Θt,[W ]Z].

It is clear that a point [W ] ∈ CPm as well as the points [Z] corresponding to 1-dimensional

subspaces orthogonal to [W ] are fixed points of θt,[W ] for any t > 0.

Now for a given 1-dimensional subspace [W ]∈CPm we consider a function ϕ[W ] : CPm →R

defined as

ϕ[W ]([Z]) =
|〈Z,W 〉|2

|Z|2 |W |2
, where [Z] ∈ CPm, (2.7)

and the brackets 〈·, ·〉 denote the standard Hermitian product on Cm+1. The maximum of ϕ[W ] is

achieved at the point [W ], and the minimum – at the cut locus Cut[W ]. As is well-known [5, 7],

the function ϕ[W ]−(1/(m+1)) is a first eigenfunction of the Laplace-Beltrami operator on CPm.

The following lemma describes a relationship between the function ϕ[W ] and the family of

biholomorphisms θt,[W ]. Its proof is a straightforward exercise, but we include the details for

reader’s convenience.

Lemma 2.2. For any [W ] ∈ CPm the family of biholomorphisms θe−2τ ,[W ], where τ ∈ R, is the

gradient flow of the function ϕ[W ].

Proof. By the equivariance properties,

ϕ[CW ]([CZ]) = ϕ[W ]([Z]) and θt,[CW ]([CZ]) = [C]θt,[W ]([Z]),

where [Z], [W ] ∈ CPm and C ∈ SUm+1, it is sufficient to prove the statement of the lemma for

one point [W ] ∈ CPm, for example, when [W ] = [1 : 0 : . . . : 0]. For the rest of the proof we

assume that [W ] is chosen in this way, and denote by f the function ϕ[W ]. Since the point [W ]
and its cut locus Cut[W ] are critical sets of f , and the vector field

X[Z] =
d

dτ

∣

∣

∣

∣

τ=0

θe−2τ ,[W ]([Z]) (2.8)

vanishes on these sets, it remains to verify the hypothesis that X is the gradient of f on the

complement of [W ]∪Cut[W ] only. We denote the complement of Cut[W ] by U0; it is formed by

points [Z] = [z0 : z1 : . . . : zm] such that z0 6= 0. In the coordinate chart

U0 ∋ [z0 : z1 : . . . : zm] 7−→

(

z1

z0
, . . . ,

zm

z0

)

∈ Cm

the function f = ϕ[W ] takes the form

f (ζ1, . . . ,ζm) =

(

1+
m

∑
i=1

|ζi|
2

)−1

, (2.9)

and the biholomorphism θt,[W ] acts as a dilation, ζ 7→ tζ . Thus, by relation (2.8), the vector field

X takes the form X(ζ ) = −2ζ . The hypothesis that X is the gradient of f is equivalent to the

relation ıX ωFS = Jd f , where we assume that the complex structure J acts on the 1-form d f as

−d f (J·). The latter can be also re-written in the following form

ıX1,0ωFS = i(d f )0,1, (2.10)

7



where X1,0 and (d f )0,1 stand for (1,0)- and (0,1)-parts of X and d f respectively. Using the

formula for the Fubini-Study metric in these coordinates,

ωFS =
i

2
∂ ∂̄ log

(

1+
m

∑
i=1

|ζi|
2

)

,

and formula (2.9) for the function f , relation (2.10) can be verified in a straightforward fashion.

By relation (2.1) the metric balls B[W ](r) in CPm with respect to the Fubini-Study metric are

precisely the sets

B[W ](r) = {[Z] ∈ CPm : ϕ[W ]([Z])< cos2 r}, (2.11)

where r ∈ [0,π/2]. The next lemma is essentially a consequence of Lemma 2.2, but we state it

separately for the convenience of references.

Lemma 2.3. For any point [W ] ∈ CPm and any t > 0 the biholomorphism θt,[W ] : CPm → CPm

maps a metric ball B[W ](r) in the Fubini-Study metric, where r ∈ (0,π/2), onto the metric ball

B[W ](ρ) such that the radii are related as t tanr = tanρ .

Proof. Since θe−2τ ,[W ] is the gradient flow of ϕ[W ], it clearly maps the level sets of ϕ[W ] into them-

selves preserving the natural order, given by the values of the function ϕ[W ]. The combination

of these facts together with relation (2.11) shows that a metric ball B[W ](r) in the Fubini-Study

metric is mapped by θt,[W ] onto a concentric metric ball B[W ](ρ). The relationship between the

radii can be, for example, derived from the local representation (2.9) for the function ϕ[W ]. In

more detail, assuming that [W ] = [1 : 0 : . . . : 0] and using the notation in the proof of Lemma 2.2,

we see that if ζ ∈ ∂B[W ](r), then the combination of (2.1) and (2.9) yields the following relation:

1

1+ |ζ |2
= cos2 r ⇔ |ζ |2 = tan2 r, (2.12)

where ζ ∈ Cm and |ζ |2 = ∑ |ζi|
2
. Since in these coordinates the biholomorphism θt,[W ] is the

dilation ζ 7→ tζ , the radius ρ of the image ball satisfies the relation

1

1+ t2 |ζ |2
= cos2 ρ ⇔ t2 |ζ |2 = tan2 ρ.

Comparing the last relation with (2.12), we obtain t2 tan2 r = tan2 ρ .

3. Proof of Theorem 1.2

3.1. Geometry of metric measure spaces

The proofs of Theorems 1.2 and 1.4 are based on a statement that guarantees the existence of an

arbitrary number of disjoint sets carrying a sufficient amount of volume. Below we give a brief

account on it in the setting of metric measure spaces. By (X ,d) we denote a separable metric

space; the ball Bp(r) is a subset of the form {x ∈ X : d(x, p) < r}. We start with the following

definition.

Definition 3.1. For an integer N > 1 a metric space (X ,d) is said to satisfy the N-covering

property, if each ball Bp(r) can be covered by N balls of radius r/2.
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As the example below shows, complete Riemannian manifolds of non-negative Ricci curva-

ture can be viewed as metric spaces that satisfy the N-covering property such that the value N

depends on the dimension of a manifold only.

Example 3.1 (Spaces of non-negative Ricci curvature). Let (Mℓ,h) be a complete Riemannian

manifold of non-negative Ricci curvature, and dist(·, ·) be its distance function. Recall that the

value dist(p,q) is defined as the infimum of lengths of all smooth paths joining p and q. We

claim that the metric space (Mℓ,dist) satisfies the N-covering property with N = 9ℓ. Indeed,

recall that by the relative volume comparison theorem, see [9], the volumes of concentric balls

with respect to dist, satisfy the relation

Vol(Bp(R))

Vol(Bp(r))
6

(

R

r

)ℓ

, where 0 < r 6 R. (3.1)

Now for a given ball Bp(r) let C = {Bpi
(r/4)} be a maximal family of disjoint balls centred at

pi ∈ Bp(r). Then the family {Bpi
(r/2)} is a covering of Bp(r). Thus, for a proof of our claim it

is sufficient to estimate the cardinality of the covering C , m = cardC . Let pi0 be a point such

that

Vol(Bpi0
(r/4)) = min

{

Vol(Bpi
(r/4)) : i = 1, . . . ,m

}

.

Then we obtain

mVol(Bpi0
(r/4))6

m

∑
i=1

Vol(Bpi
(r/4)) = Vol

(

⋃

i

Bpi
(r/4)

)

6

Vol(Bp(5r/4))6 Vol(Bpi0
(9r/4)), (3.2)

where in the second inequality we used the fact that the centres pi of the balls belong to Bp(r),
and hence, the balls Bpi

(r/4) lie in the ball Bp(5r/4). In the last inequality in (3.2) we used the

inclusion Bp(5r/4)⊂ Bpi0
(9r/4). Now by inequality (3.1), we conclude

m 6
Vol(Bpi0

(9r/4))

Vol(Bpi0
(r/4))

6

(

9r/4

r/4

)ℓ

= 9ℓ,

and thus, the claim is demonstrated.

Developing the ideas of Korevaar [17], Grigoryan, Netrusov, and Yau [13] showed that on

certain metric spaces with such covering properties for any non-atomic finite measure one can

always find a collection of disjoint sets carrying a controlled amount of measure. The geometry

of such sets is also important. In general, they can not be chosen as metric balls, but can be

chosen as the so-called annuli. By an annulus A in (X ,d) we mean a subset of the following

form

{x ∈ X : r 6 d(x, p)< R},

where p ∈ X and 0 6 r < R < +∞. The real numbers r and R above are called the inner and

outer radii respectively; the point p is the centre of an annulus A. In addition, we denote by 2A

the annulus

{x ∈ X : r/2 6 d(x, p)< 2R}.

The following statement is the reformulation of [13, Corollary 3.2]. It builds on the original

results of Korevaar [17], and this improvement is essential for our proof of Theorem 1.2.
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Proposition 3.2. Let (X ,d) be a separable metric space such that all balls Bp(r) are precom-

pact. Suppose that it satisfies the N-covering property for some N > 1. Then for any finite

non-atomic measure µ on (X ,d) and any positive integer k there exists a collection of k disjoint

annuli {2Ai} such that

µ(Ai)> cµ(X)/k for any 1 6 i 6 k, (3.3)

where c is a positive constant that depends on N only.

The hypotheses in the proposition above are rather delicate and the conclusion can not be

easily improved. For example, the power of the integer k in inequality (3.3) is optimal. The value

of the constant c in Proposition 3.2 can be chosen explicitly. In more detail, we can suppose that

it is given by the relation c−1 = 8N12. This observation follows by examining the main argument

in [13, Section 3], see the proof of [13, Lemma 3.4].

Proposition 3.2 and its ramifications have been used to obtain eigenvalue upper bounds for

a number of eigenvalue problems under various hypotheses, see [13, 19, 15, 18, 16] and refer-

ences therein. However, all these results are concerned with conformal eigenvalue bounds. The

method that we use for a proof of Theorem 1.2 is similar in the spirit to the argument in [20],

and relies on a new construction of test-functions intimately linked to the geometry of CPm. We

describe this construction below.

3.2. Construction of test-functions

We start with constructing auxiliary Lipschitz functions supported in metric balls and their com-

plements. Our functions are modelled on the function ϕ[W ],

ϕ[W ]([Z]) =
|〈Z,W 〉|2

|Z|2 |W |2
, where [Z] ∈ CPm,

and the construction uses the properties of the family of biholomorphisms θt,[W ] described in

Section 2. Recall that by relation (2.1), we have

ϕ[W ]([Z]) = cos2(distFS([Z], [W ])) (3.4)

for any [Z], [W ] ∈ CPm. Thus, the restriction of the function ϕ[W ]− (1/2) to the ball B[W ](π/4)
gives a positive smooth function that vanishes on the boundary of the ball. For a given

R ∈ (0,π/4) we choose the value t = t(R) > 0 such that θt,[W ] maps the ball B[W ](2R) onto

the ball B[W ](π/4); by Lemma 2.3 such a value t exists and is unique. We define a function

ψR,[W ] on the projective space CPm by setting

ψR,[W ]([Z]) =

{

ϕ[W ](θt,[W ]([Z]))−
1

2
, if [Z] ∈ B[W ](2R),

0, if [Z] /∈ B[W ](2R).
(3.5)

Clearly, it is a non-negative Lipschitz function, which is supported in the metric ball B[W ](2R)
and is not greater than (1/2) everywhere. The following auxiliary lemma says that it is bounded

below away from zero on the smaller ball B[W ](R).

Lemma 3.3. For any R ∈ (0,π/4) and any point [W ] ∈ CPm the function ψR,[W ] defined by

relation (3.5) satisfies the inequality

ψR,[W ]([Z])>
3

10
for any [Z] ∈ B[W ](R). (3.6)
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Proof. We follow the notation in the proof of Lemma 2.2. First, by the equivariance properties

it is sufficient to prove the lemma for the case when [W ] = [1 : 0 : . . . : 0]. Second, note that by

Lemma 2.2 together with relation (3.4) the restriction of the function ψR,[W ] to the ball B[W ](R)
achieves minimum on the boundary of the ball. Thus, for a proof of the lemma it is sufficient

to show that inequality (3.6) holds for any point [Z] that belongs to the boundary of the ball

B[W ](R). Let B[W ](ρ) be the image of B[W ](R) under the biholomorphism θt,[W ]; by Lemma 2.3

we have tanρ = t tanR.

Following the argument in the proof of Lemma 2.2, we reduce the considerations to the co-

ordinate chart U0, formed by the points [Z] = [z0 : z1 : . . . : zm] such that z0 6= 0. In this chart the

ball B[W ](ρ) is represented by the Euclidean ball centred at the origin of radius tanρ , see rela-

tion (2.12). Thus, writing down the function ϕ[W ] in these coordinates, for any [Z] ∈ ∂B[W ](R)
we obtain

ϕ[W ](θt,[W ]([Z])) =
1

1+ tan2 ρ
=

1

1+ t2 tan2 R
. (3.7)

Recall that the value t = t(R) > 0 above is chosen such that the bihilomorphism θt,[W ] maps

the metric ball B[W ](2R) onto the ball B[W ](π/4); by Lemma 2.3 it equals tan−1(2R). Thus,

relation (3.7) takes the form

ϕ[W ](θt,[W ]([Z])) =

(

1+
tan2 R

tan2(2R)

)−1

for any [Z] ∈ ∂B[W ](R) and any R ∈ (0,π/4). It is straightforward to see that the right hand-side

in the relation above, as a function of R, achieves its minimum (4/5) when R = 0. Thus, we

conclude that

ψR,[W ]([Z])>
4

5
−

1

2
=

3

10

for any [Z] ∈ B[W ](R).

Now we define a second auxiliary function supported in the complement of a given metric

ball B[W ](r/2) in CPm. For a given r ∈ (0,π/2) we choose the value t = t(r) > 0 such that the

biholomorphism θt,[W ] maps the metric ball B[W ](r/2) in the Fubini-Study metric onto the ball

B[W ](π/4). We define a function ψ̄r,[W ] on the projective space CPm by setting

ψ̄r,[W ]([Z]) =

{

0, if [Z] ∈ B[W ](r/2),

(ϕ[W ](θt,[W ]([Z]))+1)−1 −
2

3
, if [Z] /∈ B[W ](r/2).

(3.8)

Clearly, it is a non-negative Lipschitz function, which is supported in the complement of the

metric ball B[W ](r/2) and is not greater than (1/3) everywhere. The following statement is a

version of Lemma 3.3 for the function ψ̄r,[W ].

Lemma 3.4. For any r ∈ (0,π/2) and any point [W ] ∈ CPm the function ψ̄r,[W ] defined by

relation (3.8) satisfies the inequality

ψ̄r,[W ]([Z])>
1

6
for any [Z] /∈ B[W ](r). (3.9)

Proof. Let t = t(r) > 0 be a real number such that the biholomorphism θt,[W ] maps the ball

B[W ](r/2) onto the ball B[W ](π/4); by Lemma 2.3 it equals tan−1(r/2). By Lemma 2.2 the

restriction of the function ϕ[W ](θt,[W ]([Z]) to the complement of the ball B[W ](r) achieves its

maximum on the boundary. Hence, the restriction of the function ψ̄r,[W ] to the complement of

the ball B[W ](r) achieves its minimum on the boundary ∂B[W ](r), and for a proof of the lemma

11



it is sufficient to show that inequality (3.9) holds for any [Z] ∈ ∂B[W ](r). Following the line of

argument in the proof of Lemma 3.3, we obtain

ϕ[W ](θt,[W ]([Z])) =

(

1+
tan2 r

tan2(r/2)

)−1

for any [Z] ∈ ∂B[W ](r) and any r ∈ (0,π/2). An elementary computation shows that the right

hand-side as a function of r achieves its maximum (1/5) when r = 0. Thus, we conclude that

ψ̄r,[W ]([Z])>
5

6
−

2

3
=

1

6

for any [Z] /∈ B[W ](r).

Now consider annuli A and 2A in CPm, which are complements of concentric metric balls,

A = B[W ](R)\B[W ](r) and 2A = B[W ](2R)\B[W ](r/2),

where 0 6 r < R < π/4 and [W ] ∈ CPm. We define a function uA on CPm by setting it to be the

product ψR,[W ]ψ̄r,[W ]. Clearly, it is a Lipschitz function such that

0 6 uA 6
1

6
everywhere on CPm.

Besides, it is supported in the annulus 2A, and is bounded away from zero on A,

uA([Z])>
1

20
for any [Z] ∈ A.

We use the pull-backs of such functions as test-functions for the Rayleigh quotient to complete

the proof of Theorem 1.2 below.

3.3. The estimate for the Laplace eigenvalues

Now we prove Theorem 1.2. Recall that for any admissible test-function u on Σn the Rayleigh

quotient R(u) is defined by the relation

R(u) =

(

∫

Σn
|∇u|2 dVolg

)

/

(

∫

Σn
u2dVolg

)

.

By the variational principle, see [9], for a proof of the theorem it is sufficient for any k > 1 to

construct a collection of W 1,2-orthogonal k+1 Lipschitz test-functions ui such that

R(ui)6C(n,m)d([φ ], [ωg])k, (3.10)

where d([φ ], [ωg]) is the holomorphic degree defined by the relation

d([φ ], [ωg]) =

(

∫

Σn
φ ∗(ωFS)∧ωn−1

g

)

/

(

∫

Σn
ωn

g

)

.

We regard the complex projective space CPm as a metric space with the distance function

distFS induced by the Fubini-Study metric. By Example 3.1 we conclude that the metric space

(CPm,distFS) satisfies the N-covering property with N = 92m. We endow (CPm,distFS) with a

measure µ obtained as the push-forward of the volume measure Volg on Σn under a given holo-

morphic map φ : Σn →CPm. As is known [12], the pre-image φ−1([W ]) of any point [W ]∈CPm
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is an analytic subvariety of Σn, which could be empty. Moreover, since φ is non-constant, its

codimension is positive, and hence, the push-forward measure µ is non-atomic. Thus, Proposi-

tion 3.2 applies and we can find a collection {Ai} of k+1 annuli on CPm such that

µ(Ai)> cµ(CPm)/(k+1)> µ(CPm)/2k for any i = 1, . . . ,k, (3.11)

where the constant c depends only on m, and the annuli {2Ai} are disjoint.

We denote by ui the Lipschitz test-functions uAi
◦ φ , where uAi

are constructed above. In

more detail, let [Wi], ri, and Ri be the centre, the inner radius and the outer radius of Ai respec-

tively. Denote by ψi the functions ψRi,[Wi], and by ψ̄i the function ψ̄ri,[Wi], see the construction

above. Then the function

ui =

{

(ψiψ̄i)◦φ , if ri > 0,
ψi ◦φ , if ri = 0,

can be used as a test-function for the Rayleight quotient on Σn. Since the ui’s are supported in the

disjoint sets φ−1(2Ai), they are W 1,2-orthogonal, and it is sufficient to prove inequality (3.10)

for all ui, where i = 1, . . . ,k+1.

To prove inequality (3.10) for each ui, we first estimate the numerator in the Rayleigh quo-

tient. Below we assume that ri > 0; the case ri = 0 can be treated similarly. Since the functions

ψi and ψ̄i are not greater than 1, we obtain

∫

Σn
|∇ui|

2
dVolg 6 2

(

∫

φ−1(2Ai)
|∇(ψi ◦φ)|2 dVolg +

∫

φ−1(2Ai)
|∇(ψ̄i ◦φ)|2 dVolg

)

. (3.12)

Now we claim that the first integral above satisfies the following inequalities

∫

φ−1(2Ai)
|∇(ψi ◦φ)|2 dVolg 6

∫

Σn
|∇(ψi ◦φ)|2 dVolg 6

∫

Σn

∣

∣∇(ϕ[Wi] ◦ (θti,[Wi] ◦φ))
∣

∣

2
dVolg

6

∫

Σn

∣

∣∇(τ ◦θti,[Wi] ◦φ)
∣

∣

2
dVolg,

where τ is the moment map for the action of SUm+1 on the projective space CPm. The first

relation above is trivial, and the second is the consequence of the definition of the function ψi,

see formula (3.5). To explain the last inequality note that, by the equivariance properties, we

may assume that the point [Wi] is [1 : 0 : . . . : 0]. Then the function iϕ[Wi] coincides with the (1,1)-
entry of the sum+1-matrix τ , see relation (2.3), and the inequality follows. Now by Lemma 2.1,

we obtain

∫

φ−1(2Ai)
|∇(ψi ◦φ)|2 dVolg 6

∫

Σn

∣

∣∇(τ ◦θti,[Wi] ◦φ)
∣

∣

2
dVolg =

1

(n−1)!

∫

Σn
(θti,[Wi] ◦φ)∗(ωFS)∧ωn−1

g =
1

(n−1)!

∫

Σn
φ ∗(ωFS)∧ωn−1

g , (3.13)

where in the first equality we used the fact that the volume form on Σn equals (ωn
g/n!), and in the

second – the fact that the pull-back form θ ∗
ti,[Wi]

ωFS is cohomologous to ωFS, see the discussion

in Section 2. The second integral in inequality (3.12) can be estimated in a similar fashion. In

more detail, by the definition of the function ψ̄i, see formula (3.8), we get

∫

φ−1(2Ai)
|∇(ψ̄i ◦φ)|2 dVolg 6

∫

Σn
(1+(ϕ[W ] ◦ (θt̄i,[Wi] ◦φ))−4

∣

∣∇(ϕ[Wi] ◦ (θt̄i,[Wi] ◦φ))
∣

∣

2
dVolg

6

∫

Σn

∣

∣∇(ϕ[Wi] ◦ (θt̄i,[Wi] ◦φ))
∣

∣

2
dVolg,
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where in the last inequality we used the fact that the function ϕ[W ] is non-negative. Following

the line of the argument above, we arrive at the inequality

∫

φ−1(2Ai)
|∇(ψ̄i ◦φ)|2 dVolg 6

1

(n−1)!

∫

Σn
φ ∗(ωFS)∧ωn−1

g .

Combining these estimates for the integrals in the right hand-side of (3.12), we obtain the fol-

lowing estimate for the Dirichlet integral of ui:

∫

Σn
|∇ui|

2
dVolg 6

4

(n−1)!

∫

Σn
φ ∗(ωFS)∧ωn−1

g . (3.14)

Using Lemmas 3.3 and 3.4 together with relation (3.11), we can also estimate the denominator

of the Rayleigh quotient:

∫

Σn
u2

i dVolg >
1

400
Volg(φ

−1(Ai)) =
1

400
µ(Ai)>

1

800
cµ(CPm)/k,

where the constant c depends only on m. Recall that the measure µ above is the push-forward

of the volume measure on Σn, and hence, the last inequality gives

∫

Σn
u2

i dVolg >
1

800
cVolg(Σ

n)/k =
c

800n!

1

k

∫

Σn
ωn

g . (3.15)

Combining relations (3.14) and (3.15) we immediately arrive at inequality (3.10).

4. Laplace eigenvalues of analytic subvarieties

4.1. Laplace operator on analytic subvarieties

Let Mn+l be a complex manifold of dimension (n + l). Recall that an analytic subvariety

Σ ⊂ Mn+l is a closed subset that is given locally as the zero set of a finite collection of holomor-

phic functions. A point p ∈ Σ is called regular, if it has a neighbourhood U in Mn+l such that

U ∩Σ ⊂ U is a complex submanifold. The collection of all regular points is called the regular

locus of Σ, and is denoted by Σ∗. An analytic subvariety is called irreducible if Σ∗ is connected.

Throughout the rest of the section we suppose that Σn ⊂ Mn+l is an irreducible analytic subvari-

ety whose regular locus has complex dimension n. The complement Σn\Σn
∗ is called the singular

set of Σn; it is also a subvariety, but of greater codimension, see [12] for details.

For a Kähler metric g on Mn+l we denote by gΣ the induced metric on a regular locus Σn
∗.

Let ∆Σ be the Laplace-Beltrami operator on Σn
∗ with respect to the metric gΣ. We view ∆Σ

as an operator defined on the set D(∆Σ) ⊂ L2(Σn) that is formed by compactly supported C2-

smooth functions on Σn. The following statement is a version of the result in [21] for algebraic

subvarietes. We outline its proof below. Unlike the argument in [21], we use elliptic regularity

theory instead of the integral representaion of the resolvent via the heat kernel.

Proposition 4.1. Let Mn+l be a closed complex manifold, and Σn an irreducible analytic sub-

variety. Then for any Kähler metric g on Mn+l the Laplace-Beltrami operator ∆Σ on Σn is

essentially self-adjoint and has discrete spectrum.

Proof. The standard Green formula yields the following relation

∫

Σn
(∆Σu)vdVolΣ +

∫

Σn
(du,dv)dVolΣ = 0 (4.1)
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for any u, v ∈ D(∆Σ). Hence, the operator ∆Σ is symmetric and has a self-adjoint extension ∆̄

to an unbounded linear operator on L2(Σn), see [11, Lemma 1.2.8]. From (4.1), we also deduce

that

|u|21,2 6 |〈∆Σu,u〉|+ |u|22 (4.2)

for any u ∈ D(∆Σ), where | · |1,2 and | · |2 stand for the W 1,2-Sobolev norm and L2-norm re-

spectively, and 〈·, ·〉 denotes the L2-scalar product. Using relation (4.2) and elliptic regularity

theory, it is straightforward to conclude that the resolvent of ∆̄ is a bounded linear operator

L2(Σn)→W 1,2(Σn). In more detail, let v be a function of the form (∆̄−λ )u, where λ is a point

from the resolvent set, and u ∈ D(∆Σ). Then inequality (4.2) yields

∣

∣(∆̄−λ )−1v
∣

∣

2

1,2
6
∣

∣〈v,(∆̄−λ )−1v〉
∣

∣+(|λ |+1)
∣

∣(∆̄−λ )−1v
∣

∣

2

2
. (4.3)

By elliptic regularity we see that inequality (4.3) holds for an arbitrary compactly supported

smooth function v. Now, since the set of compactly supported smooth functions is dense among

all L2-integrable functions, it is straightforward to see that inequality (4.3) holds for any L2-

integrable function v.

Thus, the resolvent of ∆̄ is indeed a bounded linear operator L2(Σn) → W 1,2(Σn). As is

shown in the proof of [21, Theorem 5.3], the inclusion W 1,2(Σn) ⊂ L2(Σn) is compact, and we

conclude that the resolvent of ∆̄ is also compact. Hence, the operator ∆̄ has discrete spectrum.

By elliptic regularity the eigenfunctions of ∆̄ are smooth, and by [11, Lemma 1.2.2] the self-

adjoint extension is unique.

In the argument above we used the statement from the proof of [21, Theorem 5.3] that the

inclusion W 1,2(Σn) ⊂ L2(Σn) is compact. This is the only place where the hypothesis that a

metric g on Mn+l is Kähler is used. The main ingredient in the argument is a version of the

Sobolev inequality. In more detail, the subvariety Σn is a minimal current in Mn+l , and after

an isometric embedding Mn+l → Rm, is a current of bounded mean curvature in the Euclidean

space Rm to which the Michael and Simon version of the Sobolev inequality applies, see [26].

Due to the choice of the domain D(∆Σ), the self-adjoint extension of ∆Σ is often referred

to as the Dirichlet Laplacian on Σn. Note that in this context the Sobolev space W
1,2
0 (Σn

∗),
the closure in the Sobolev norm of compactly supported smooth functions, coincides with the

Sobolev space W 1,2(Σn), see the proof of [21, Theorem 4.1], and [28, Section 3]. In particular,

the domain D(∆Σ) is dense in the Sobolev space W 1,2(Σn). We use this observation below for

the construction of test-functions for the Laplace eigenvalues on Σn
∗.

4.2. Proof of Theorem 1.4

Throughout this section we denote the restriction to the regular locus Σn
∗ of a holomorphic map

φ : Mn+l → CPm by the same symbol φ ; it is also a holomorphic map. First, by the discussion

above the domain D(∆Σ) is dense in the Sobolev space W 1,2(Σn), and hence, relation (4.1)

continues to hold when the function u is smooth and v belongs to W 1,2(Σn). With this observation

the standard argument in [9] shows that the variational principle for the eigenvalues λk(Σ
n,gΣ)

of the self-adjoint extension continues to hold. Thus, for a proof of the theorem it is sufficient for

any integer k > 1 to construct a collection of W 1,2-orthogonal k+1 test-functions ui ∈W 1,2(Σn)
such that

R(ui)6C(n,m)

((

∫

Σn
φ ∗(ωFS)∧ωn−1

g

)

/

(

∫

Σn
ωn

g

))

k,

where C(n,m) is the constant that depends on n and m only. As in the proof of Theorem 1.2,

as test-functions ui we use the functions uAi
◦φ , where the uAi

’s are Lipschitz functions on CPm
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constructed in Section 3. As is known [12], the volume Volg(Σ
n
∗) is finite, and hence, such

functions do belong to W 1,2(Σn).
Now we argue as in the proof of Theorem 1.2. Let µ be a measure on CPm obtained by

pushing forward the volume measure Volg on Σn
∗ under a holomorphic map φ : Σn

∗ → CPm.

It is finite and has no atoms. The former follows from the fact that the volume Volg(Σ
n
∗) is

finite, and the latter – from the fact that the pre-image φ−1([W ]) of any point [W ] ∈ CPm is an

analytic subvariety of positive codimension, see [12]. Thus, Proposition 3.2 applies, and we

can find a collection {Ai} of k+ 1 annuli such that the annuli {2Ai} are pair-wise disjoint, and

relation (3.11) holds. Following the line of the argument in the proof of Theorem 1.2, we see that

estimates (3.14) and (3.15) for the numerator and the denominator respectively in the Rayleigh

quotient R(ui), also carry over. In more detail, relation (3.15) follows exactly in the same way,

and the only point necessary to justify relation (3.14) is the last equality in (3.13). The latter is

a consequence of the Stokes formula for analytic varieties, see [12].
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