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Purpose: Phenotype information is crucial for the interpretation of
genomic variants. So far it has only been accessible for bioinfor-
matics workflows after encoding into clinical terms by expert
dysmorphologists.

Methods: Here, we introduce an approach driven by artificial
intelligence that uses portrait photographs for the interpretation of
clinical exome data. We measured the value added by computer-
assisted image analysis to the diagnostic yield on a cohort consisting
of 679 individuals with 105 different monogenic disorders. For each
case in the cohort we compiled frontal photos, clinical features, and
the disease-causing variants, and simulated multiple exomes of
different ethnic backgrounds.

Results: The additional use of similarity scores from computer-
assisted analysis of frontal photos improved the top 1 accuracy rate

by more than 20–89% and the top 10 accuracy rate by more than
5–99% for the disease-causing gene.

Conclusion: Image analysis by deep-learning algorithms can be
used to quantify the phenotypic similarity (PP4 criterion of the
American College of Medical Genetics and Genomics guidelines)
and to advance the performance of bioinformatics pipelines for
exome analysis.
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INTRODUCTION
Worldwide, more than half a million children born per year
have a rare genetic disorder that is suitable for diagnostic
evaluation by exome sequencing. This test’s unprecedented
diagnostic yield is contrasted by the time requirement for
variant interpretation. Making phenotypic information—the
observable, clinical presentation—computer-readable is key to
solving this problem and important for providing clinicians
with a much-needed tool for diagnosing genetic syndromes.1

To date, the most advanced exome prioritization algorithms
combine deleteriousness scores for variants with semantic
similarity searches of the clinical description of a patient.2 The
Human Phenotype Ontology (HPO) has become the lingua
franca for this purpose.3 However, a facial gestalt for which no
term exists and that is simply described as "characteristic" for
a certain disease is not suitable for these computational
approaches.
Beyond language, capturing indicative patterns through

deep-learning approaches has recently gained attention in
assessing facial dysmorphism.4,5 Artificial neural networks
measure the similarities of patient photos to hundreds of
disease entities. We hypothesized that results of this next-
generation phenotyping tool could be used similarly to
deleteriousness scores on the molecular level. This would

enable us to transition from the dichotomous PP4 criterion
“matching phenotype” in the American College of Medical
Genetics and Genomics (ACMG) guidelines for variant
interpretation to a quantifiable one.6,7

We therefore developed an approach to interpret sequence
variants integrating results from the next-generation phenotyp-
ing tool DeepGestalt. By this means the clinical presentation of
an individual is not only assessed by a human expert clinician,
but also by using an artificial intelligence approach on the basis
of frontal photographs. In short, we call this approach
prioritization of exome data by image analysis (PEDIA).

MATERIALS AND METHODS
We compiled a cohort comprising 679 individuals with
frontal facial photographs and clinical features documented in
HPO terminology.3 The diagnoses of all individuals have
previously been confirmed molecularly and are suitable for
analysis by exome sequencing. In total, the cohort covers 105
different monogenic syndromes linked to 181 different genes.
Of the individuals in this cohort, 446 were published and 233
have not been previously reported (see PMID column in
Supplementary Table 1).
The study was approved by the ethics committees of the
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Hospital Bonn. Written informed consent was given by the
patients or their guardians, including permission to publish
photographs. Easy to understand, transparent information
with both text and illustrations about the pattern recognition
in our algorithm that processes personal data in the form of
2D portrait photographs can be found at https://www.pedia-
study.org/documents. Through technical and organizational
measures (privacy by design), we process the photos and the
data obtained from them in the least identifiable manner
necessary for achieving the purpose. This respects the data
minimization principle of data being adequate, relevant, and
limited.
In addition to the PEDIA data set, we analyzed a subset of

the DeepGestalt study. By removing disorders that are
confirmed by tests other than exome sequencing, such as
Down syndrome (Supplementary Table 2), we ended up with
260 of 329 cases from the DeepGestalt set.5

The facial images were analyzed with DeepGestalt, a deep
convolutional neural network trained on more than 17,000
patient images.5 The results of this analysis are gestalt scores
that quantify the similarity to 216 different rare phenotypes
per individual. These vectors can also be used to identify
duplicates in the DeepGestalt training set and test set without

the need to access the original photos. To avoid overfitting, we
excluded all cases of the PEDIA cohort from a DeepGestalt
model that we used for benchmarking. It is noteworthy that
the version of DeepGestalt available at Face2Gene will not
yield the same results when photos of the PEDIA cohort are
reanalyzed because it is built as a framework that aims to
learn from every solved case.
In addition to the image analysis, we performed semantic

similarity searches with the annotated HPO terms by three
different tools: Feature Match (FDNA), Phenomizer, and
Bayesian Ontology Querying for Accurate Comparisons
(BOQA).8,9 HPO terms for all published cases as well as the
clinical notes in the electronic health records were indepen-
dently extracted by two data curators. All terms that did not
occur in both lists were revisited by a third curator (see Fig. 1a
and Supplementary Table 1). The similarity scores from image
analysis as well as semantic similarity searches were mapped
to genes by mim2gene and morbidmap from OMIM.10 If
there were several syndromes linked to a gene, the highest
gestalt and feature scores were selected for this gene.
Exome sequencing data was not available for the vast

majority of cases. Therefore, we spiked in the disease-causing
variant of each case into randomly selected exomes of healthy
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Fig. 1 Prioritization of exome data by image analysis (PEDIA): cohort and classification approach. (a) Clinical features, facial photograph, and
pathogenic variant of one individual of the PEDIA cohort. In total the cohort consists of 679 cases with monogenic disorders that are suitable for a diagnostic
workup by exome sequencing. (b) Clinical features, images, and exome variants were evaluated separately and integrated to a single score by a machine
learning approach. The disease-causing gene is shown at the top of the list.
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individuals of different ethnicities from the 1000 Genomes
Project.11 All sequence variants were then filtered as described
by Wright et al. and scored for deleteriousness with
CADD.12,13 Per gene, the variant with the highest CADD
score was used, regardless of the genotype. This heuristic was
chosen to maximize the sensitivity also for compound
heterozygous cases where the second hit in a recessive disease
gene achieves only a relatively low CADD score.
For each case this procedure resulted in a table with rows

for genes and the five different scores in the columns (Fig. 1b).
All five scores per line as well as the Boolean label disease
gene “true” or “false” (i.e., the vector) were used to train a
classifier that yields a single value per gene, the PEDIA score,
that can be used for prioritization (Fig. 1b). A detailed
description of preprocessing and filtering, as well as all the
annotated data, can be found in our code repository.
We used a support vector machine (SVM) to prioritize

the genes based on the five scores for each case. To
benchmark our approach, we performed tenfold cross-
validation. First, we split the PEDIA cohort into ten groups,
ensuring that a certain disease gene was included only in
one of ten groups. By this means, we avoided overfitting, in
case the same disease-causing variant occurred in two
different individuals (Supplementary Fig. 1). We used a
linear kernel on the five scores to train the SVM and selected
the hyperparameter C in the range from 2−6 to 212 by
performing internal fivefold cross-validation on the training
set. The C with the highest top 1 accuracy was selected for
training a linear SVM. We further benchmarked the
performance of each case in the test set with this model.
The distance of each gene to the hyperplane—defined as the
PEDIA score—was used to rank the genes for the case. If the
disease-causing gene was at the first position, we called it a
top 1 match, or if it was among the first ten genes, we
considered it a top 10 match.
For the 260 cases from the DeepGestalt publication test

set, where exome diagnostics would be applicable, we
randomly selected cases from the PEDIA cohort with the
same diagnosis and added the CADD and the feature scores
per case (see column C in Supplemental Table 1). The cases
in the PEDIA cohort with the same pathogenic variant as
already assigned to the DeepGestalt test set were removed
from the training set. Then we trained the classifier on the
PEDIA cohort and tested it on the DeepGestalt publication
test set. The experiment was repeated ten times with random
selection. By this means we studied how the publicly available
portraits of the DeepGestalt test set would improve the
performance when used in exome analysis with the PEDIA
approach. However, it has to be emphasized that both
approaches solve different multiclass classification problems
(MCPs), the first tool operating on phenotypes and the
second on genes. The difficulty of the task is not only
characterized by the number of classes and the distinguish-
ability of the different entities but also by the information
available for the classification. For both MCPs the maximum
number of classes can be estimated from OMIM by querying

with the HPO term “abnormal facial shape”, yielding around
700 disorders and genes with disease-causing variants. As
there is additional and nonredundant information available
from the molecular level for PEDIA, it achieves better top 1
and top 10 accuracies.

CODE AVAILABILITY
All training data as well as the classifier are available
at https://github.com/PEDIA-Charite/PEDIA-workflow. The
trained PEDIA model is provided as a service that is ready to
use at https://pedia-study.org.

RESULTS
The performance of a prioritization tool can be assessed by
the proportion of cases for which the correct diagnosis or
disease gene is placed at the first position or among the first
ten suggestions (top 1 and top 10 accuracy). The composi-
tion of the test set has an influence on the accuracy because
some disease phenotypes are easier to recognize, and some
gene variants are more readily identified as deleterious. The
setup of the PEDIA cohort, which is comprehensively
documented in the Supplementary Appendix, therefore
aims at emulating the whole spectrum of cases that could be
analyzed with DeepGestalt and diagnosed by exome
sequencing.
When only CADD scores are used for variant ranking, the

disease-causing gene is in the top 10 in less than 45% of all
tested cases. The top 10 accuracy increases up to 63–94%,
when different semantic similarity scores based on HPO
feature annotations are included (Supplementary Table 3).
The additional information from frontal photos of cases

pushes the correct disease gene to the top 10 in 99% of all
PEDIA cases (Fig. 2a). Particularly striking is the performance
gain for the top 1 accuracy rate from 36–74% without
DeepGestalt scores to 86–89% including the scores from
image analysis (Supplementary Table 3).
The distribution of the PEDIA scores does not differ using

exomes with different ethnic backgrounds (Supplementary
Fig. 2).
Although the top 10 accuracies of DeepGestalt scoring on

the phenotype level and PEDIA scoring on the gene level
cannot be compared directly, both approaches operate on a
similar number of classes (Fig. 2). Adding suitable
molecular information to 260 cases from the DeepGestalt
publication test set confirms our results in the PEDIA
cohort by achieving a top 10 accuracy rate of 99%
(Supplementary Table 2).
The value of a frontal photograph is demonstrated by a case

with Coffin–Siris syndrome (shown in Fig. 1): the character-
istic facial features are relatively mild, so the correct diagnosis
is only listed as the third suggestion by DeepGestalt. Among
all the variants encountered in the exome, the disease-causing
gene ARID1B would only achieve rank 27, if scored by
the molecular information alone. However, combined with
the phenotypic information, the PEDIA approach lists this
gene as the first candidate (Fig. 2b).
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Although the diagnosis of the illustrated case could be
molecularly confirmed by a directed single-gene test in other
instances where the facial gestalt is more indicative,
syndromic disorders often puzzle clinicians due to their high
phenotypic variability. In the Deciphering Developmental

Disorders (DDD) project many syndromes were diagnosed
only after exome sequencing.14 Still, the top 10 accuracy rate
of 49% that DeepGestalt can achieve for phenotypes linked to
genes is impressive (Fig. 2a). The contribution from the
different sources of evidence to the PEDIA score is also
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reflected by the relative weight of the deleteriousness of the
pathogenic variant (0.44), all feature-based scores combined
(0.25), and the results from image analysis by DeepGestalt
(0.31) that can be derived from a linear SVM model. The
information contained in a frontal photograph of a patient
therefore goes beyond what clinical terms can capture. The
top 1 and top 10 accuracies are reported for all combinations
of scores in the Supplementary Table 3.

DISCUSSION
The guidelines for variant classification in the laboratory
follow a qualitative heuristic that combines distinct types of
evidence (functional, population, phenotype, etc.). Interest-
ingly, it is also compatible with Bayesian statistics7 and the
advantage of such a framework is that continuous evidence
types can be integrated into the classification system. While in
silico predictions about a variant’s pathogenicity have a
relatively long history in bioinformatics and machine
learning, the quantification of phenotypic raw data such as
facial images with artificial intelligence systems has just
begun: the PEDIA approach uses scores from DeepGestalt for
gene prioritization in combination with quantitative scores
from the molecular level in Mendelian disorders identifiable
by exome sequencing.
Interestingly, the ethnicity, which affects the number of

variant calls or the deleterious variant load, had minor
influence on the performance of PEDIA. Although the total
number of variants detected by reference-guided sequencing
in individuals of African descent is considerably higher than
in individuals of European or Asian descent, the distribution
of the CADD scores for rare variants is comparable
(Supplementary Figs. 3, 4). That means the rank that a gene
achieves due to the molecular score and the corresponding
scores from the phenotypic information is hardly affected by
the background population (Supplementary Fig. 2).
With regard to the routine use in the laboratory we have

learned three important lessons from specific subgroups or
cases achieving lower PEDIA ranks:
1. Although DeepGestalt, the convolutional neural network

used for image analysis, has been pretrained on real-world
uncontrolled 2D images, patient photographs that were not
frontal, of low resolution, had poor lightening and contrast, or
contained artifacts such as glasses, yielded lower gestalt scores
for the searched disorder. In one use case envisioned for
PEDIA, the human expert in the lab will only receive the

similarity scores from DeepGestalt, but not the original
photograph. In this setting it is not clear whether low scores
originate from a low-quality photograph or whether there is
little dysmorphic signal indicative of a syndromic disorder.
This potential problem could be addressed by providing
gestalt scores from additional photographs.
2. Particularly rare diseases or recently described disorders,

for which the classifier’s representation is based on a smaller
training set, show a lower performance, even if experienced
dysmorphologists would consider them highly distinguish-
able. In a recent publication by Duddin-Byth et al. the
machine learning approach showed the lowest accuracy for
the disorder with the smallest number of training cases;
however, so did humans.15

3. Disease-causing variants in genes that interact in a
molecular pathway often result in highly similar phenotypes
that are organized as series in OMIM and modeled as a single
entity by DeepGestalt. Often there are subtle gene-specific
differences in the gestalt and modeling the entire phenotypic
series by a single class is not the theoretical optimum
achievable with more cases.16,17 This will especially diminish
the performance of genes less frequently mutated in a
molecular pathway. This is exemplified in the PEDIA cohort
by Hyperphosphatasia with Mental Retardation Syndrome
(HPMRS), where the least frequently mutated gene, PGAP2,
shows the lowest performance. Likewise, this applies to
microdeletion syndromes that can also be caused
by pathogenic variants in single genes, such as
Smith–Magenis syndrome, or an atypical clinical presentation
with Kabuki syndrome (see e.g., case IDs 246245 and 204233
in Supplementary Table 1).18

It is noteworthy that these shortcomings are mainly due to
the limited training data for these particular genes and that
they will most likely be overcome by more molecularly
confirmed cases. DeepGestalt and PEDIA are therefore built
as frameworks that will be improved continuously with
additional data. In general, the use of artificial intelligence in
medical sciences raises new or exacerbates existing ethical and
legal issues as repositories of combined genotype and
phenotype data become crucial for the machine learning
community.19,20 Sharing portrait photos of individuals with
rare diseases can be accomplished within the scope of even the
most elaborate data privacy laws, such as the European Union
General Data Protection Regulation 2016/679 (GDPR). The
GDPR not only ensures the protection of individuals, but also

Fig. 2 Performance readout and visualization of test results for a representative prioritization of exome data by image analysis (PEDIA) case.
(a) For each case the exome variants are ordered according to four different scoring approaches, solely by a molecular deleteriousness score (CADD), by a
score from image analysis (DeepGestalt), by a combination of a molecular deleteriousness score and a clinical feature–based semantic similarity score (CADD
+Phenomizer), or the PEDIA score that includes all three levels of evidence. The sensitivity of the prioritization approach depends on the number of genes
that are considered in an ordered list. The top 1 and top 10 accuracy rates correspond to the intersection of the curves at maximum rank 1 and 10. Note that
for benchmarking DeepGestalt on the gene level, syndrome similarity scores first have to be mapped to the gene level, resulting in a lower performance
compared with the readout on a phenotype level, due to heterogeneity. The area under the curve is largest for PEDIA scoring. (b) The disease-causing gene
of the case depicted in Fig. 1 achieves the highest PEDIA score and molecularly confirms the diagnosis of Coffin–Siris syndrome. Other genes associated with
similar phenotypes, such as Nicolaides–Baraitser syndrome, also achieved high scores for gestalt but not for variant deleteriousness.
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the free movement of personal data, inter alia, for scientific
research purposes.21

The interpretation of genetic variants is greatly facilitated by
sequencing additional family members. Analogously, we
hypothesize that the signal-to-noise ratio of next-generation
phenotyping technologies can further be improved by
including unaffected siblings or parents in the analysis.
We include and strive to include a wide variety of

ethnicities, but European backgrounds are currently best
represented, leading to best performance for this population.
As the data set expands further, the algorithm will improve
for currently underrepresented ethnicities.
Assistance with diagnosis of rare genetic disorders is highly

valuable to clinicians, and by extension to the patients
themselves and their families. Especially in inconclusive cases
with findings of unknown clinical significance, additional
evidence from computer-assisted analysis of medical imaging
data could be a decisive factor.13

In conclusion, the PEDIA study documents that exome
variant interpretation benefits from computer-assisted image
analysis of facial photographs. By including similarity scores
from DeepGestalt, we improved the top 10 accuracy rate
significantly compared with state-of-the-art algorithms.
Artificial intelligence–driven pattern recognition of frontal
facial patient photographs is therefore an example of next-
generation phenotyping technology that has proven its
clinical value for the interpretation of next-generation
sequencing data.22
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