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Abstract

Directional modulation (DM) as a physical layer security technique has been
studied widely to meet different design requirements, such as minimum s-
pacing between adjacent antennas, and robust against steering vector errors.
However, weight magnitude constraints in DM area have not been studied
thoroughly. In this paper, the possibility of imposing various weight mag-
nitude constraints is explored and simultaneous maximum and minimum
magnitude constraints for weight coefficients are proposed in DM design for
the first time. The proposed maximum magnitude constraint can avoid the
use of multiple-stage power amplifiers, and the minimum magnitude con-
straint can make sure a minimum power requirement for each antenna is
achieved so that a reasonable minimum transmission range of the system
can be maintained by effectively using all employed antennas. Since the re-
sultant problem is non-convex, a solution to transform it into a convex form
is described, allowing the problem to be solved conveniently using existing
convex optimisation toolboxes. Design examples are provided to show the
effectiveness of the proposed design.
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1. Introduction

The Fifth Generation (5G) network has been studied widely [1, 2]. As a
critical technique in 5G, beamforming can be used to protect data by keep-
ing maximum power to desired direction or directions, while reducing power
as low as possible for the rest of directions. However, it is possible for eaves-
droppers in undesired directions to decode the transmitted signal, since the
same constellation mappings are transmitted in all spatial angles. To solve
the problem, directional modulation (DM) technique has been introduced,
which keeps the main beam pointing to the desired direction or directions
with known constellation mappings, while lowering the power and scram-
bling constellation points for the remaining directions simultaneously [3].

In [3], a parasitic array was applied to achieve DM in the near-field by
changing the effective length of reflectors, while in the far-field, both recon-
figurable antenna array [4] and phased antenna array [5, 6] were employed.
For the reconfigurable antenna array design, DM was achieved by switching
elements for each symbol, while for the phased antenna array design, DM
was implemented by setting the phases and magnitudes of weight coefficients
properly. To reduce the number of antennas of an antenna array, {; norm
minimisation and reweighted /; norm minimisation methods were proposed
for sparse antenna array designs [7]. An inherent limitation of DM is that
eavesdroppers and the desired users can receive the same signal when they
are in the same spatial direction of the antenna array; to overcome this lim-
it, reflecting surfaces [8] and multiple antenna arrays [9] were introduced.
Crossed-dipole antenna array for orthogonal polarisations [10] and inverse
Discrete Fourier Transform (IDFT) for multiple signals transmission [11, 12]
were presented for increasing channel capacity. In [13], directional antennas
were used in the design instead of isotropic antennas, and a narrower low
bit error rate (BER) range was achieved. In [14], dual beam DM method
was introduced, followed by the BER DM synthesis method [15], pattern
synthesis approach [16, 17] and time-modulated antenna array method [18].
Recently, artificial noise (AN) for DM was proposed to further advanced
the directional modulation technology. Two methods to generate AN were
introduced. One is the orthogonal vector method [19, 20], and the other is
the AN projection matrix method [21, 22].

However, to our best knowledge, magnitude constraints have not been
considered in this context. In the DM design, without maximum magnitude
constraint, the magnitudes of coefficients could be very high on some an-



tennas; this could cause serious problems in practice as high magnitude of
signal needs multiple-stage power amplifiers. On the other hand, sometimes
a minimum magnitude constraint is also necessary. For example, we want
to make sure the transmission power of the whole antenna array meets a
minimum threshold, ensuring its signal can travel over a required distance;
since the maximum possible transmission power of the whole array is the
squared sum of the magnitudes of all transmitted antenna signals, we may
have to set a minimum transmission power for each employed antenna to
reach this threshold. Therefore, in the paper, we consider the following two
constraints simultaneously, i.e., maximum magnitude constraint and mini-
mum magnitude constraint for weight coefficients.

The remaining part of this paper is structured as follows. A review of
DM design based on a narrowband linear antenna array is given in Sec. 2.
The proposed simultaneous maximum and minimum magnitude constraints
for weight coefficients are introduced in Sec. 3, with a solution transforming
the resultant non-convex problem into a convex form provided. In Sec. 4,
design examples are provided, with conclusions drawn in Sec. 5.

2. Review of DM design based on narrowband linear antenna ar-
rays

2.1. Narrowband beamforming

A narrowband linear antenna array with N omni-directional antennas
for transmit beamforming is shown in Fig. 1. The weight coefficients and the
spacing between the first antenna to its subsequent antennas are represented
by w, (n =0,1,...,N —1) and d,, for n = 1,..., N — 1, respectively. The
spatial angle 6 € [0°,180°]. The steering vector of the array is given by

: (1)

where {-}7 is the transpose operation, and c is the speed of propagation.
For a uniform linear antenna array (ULA) with a half-wavelength spacing
between adjacent antennas, where d,, — d,,—1 = A/2, the steering vector can
be represented by

s(w, 0) = [1,edwdrcostle  giwdn—ycosb/eT

s(w, (9) — [17 eijCOSQ’ s 6j7r(N—1) cosG]T‘ (2)
w can be used as a weight vector including all weight coefficients

W = [wo,wl,...,wN_l]T. (3)
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Figure 1: A narrowband transmit beamforming structure.

Then, the beam response of the array is given by

p(w,d) = st(w,H), (4)

where {-} represents the Hermitian transpose.

2.2. Directional modulation design

The way to achieve DM is to find the corresponding sets of weight
coefficients for all symbols. For M-ary signaling, such as multiple phase
shift keying (MPSK), there are M sets of desired array responses. With-
out loss of generality, we assume each desired responses include r main-
lobe responses and R — r sidelobe responses. Then for the m-th symbol
(m=0,1,...,M — 1), we have

PmML = [Pm(% 90)apm<wa 01)7 ce apm<wa 07"—1)]’ (5)
Pm,SL = [ m(wa 9r)7pm(w> ’97’-‘1-1)7 s 7pm(w7 HR—l)]‘

Similarly, the steering vector for mainlobe and sidelobe ranges can be given
by

= [s(w,00),s(w, b1),...,s(w,0-1)],
= [S<wv 97")? S(w, 9r+1>a S S(w: ‘9R71>]-

(6)
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Note that all symbols for a fixed # share the same steering vector. The
corresponding weight vector can be represented by

Wy = [wmp,wm’l,...,wmw_ﬂT, m=20,1,...,M — 1. (7)

Based on the above parameters, for the m-th symbol, the corresponding
weight coefficients for DM design can be obtained by solving the following
problem

min  ||pm,sz — Wi Ssill2 ®)

subject to WgSML = Pm,ML,
where || - ||2 denotes the Iy norm. The cost function is to minimise the
difference between desired and designed sidelobe responses, and the equality
constraint is to make sure that the designed mainlobe responses are the same
as desired ones.

3. The proposed maximum and minimum magnitude constraints
for weight coefficients

One potential issue with the design in (8) is that the magnitudes of
weight coefficients are not constrained. As mentioned earlier, in some appli-
cations, simultaneous maximum magnitude and minimum magnitude con-
straints for the DM design are needed, which will be discussed in the follow-
ing.

For constraining the maximum magnitude of weight coefficient, we can
use the following constraint

|wm,n| < 5m; (9)

for all n, where | - | represents the absolute value, and d,, is the maximum
magnitude threshold for the m-th set of weight coefficients. Similarly, the
minimum magnitude constraint for weight coefficient is given by

|wm,n| > Ym; (10)

where 7, represents the minimum magnitude threshold. Then, the DM
design under simultaneous maximum and minimum magnitude constraints
for weight coefficient is given by
min  |[py,sr — Wi Ssi||2
subject to WgSML = Pm,ML
’ (11)
|wm,n| < Om

|wm,n| > Ym.-



However, the second inequality constraints |wp, | > vm is non-convex.
To transform the non-convex problem into a convex one, the idea is that we
set an equality constraint for the sum of all magnitudes of coefficients, and
by keeping all magnitudes no greater than a given threshold, no magnitudes
will be smaller than the minimum value; otherwise, the equality constraint
will not be achieved.

First we assume that the magnitudes of all desired responses in the
mainlobe directions are the same, i.e.,

[P (w,00) = [pm(w,01)] = ... = |[pm(w, 6r—1)|. (12)

We then use the following constraints

1Wmll1 < |pm(w, bo)l, (13)
Pml W, 90 -
il < P 900 =, (14)
to replace the inequality constraint |wy, n| > ym in (11), where || - ||1 repre-
sents the /1 norm, and || - ||oc represents the I, norm.

The constraint (13) sets the sum of all magnitudes no greater than
|[pm (w, 6p)|. With the following equality constraint

WiASML = Pm. ML, (15)

(13) and (15) together set the sum of all magnitudes equal to |py,(w,00)],
ie.,
1Wimll1 = |pm(w, bo)l (16)

To prove it, we first analyse (15) based on (12),

WS\ = PmmL
=wils(w. 0y) = pm(w, bo)
=|wys(w, 00)| = [pm(w. fo)]
jw?, o+ why Bl o000/ g el cosdole)
<Jwr, of + [wp, 17 0L) 4, el odn L eostolel (17)
<[why ol + [y | - |78 0L 4w, |- eIt eosbole)
<lwp ol + w1+ 4wy, v
<[lwil[1

=|pm(w, 00)| < [[Wnl[1-



Then, based on (13) and (17), we can deduce (16).

The inequality constraint (14) makes sure that the entry of the vector
Wy, with the maximum magnitude is no greater than W. To derive
it, we first assume the minimum magnitude of one entry is v;,, and then the
maximum sum of the remaining (N — 1) coeflicients is |pp(w, 0p)| — ym. To
keep no entries from the N — 1 coefficients smaller than ~,,, the maximum

value is set to Jpr”(—w]\}efll_M.

Moreover, ,, is not a random value, and there is a range for it,

|pm(w760)|
< Pml@ o)l 18
Tm S Ty (18)
If 7y, is greater than M, e.g.,
w, 0
Yo = |pm(N 0)] + B, (19)

where 3, is a positive value, then by replacing 7, in (14) by (19), we have

[P (w, 6)| — (IEmfoll g

N-—-1
|pm(W,60)|+NBm>
N

Wi lloo <

_ IpuleB0)l =
- N -1

= NN —1)

< (N — 1)|pm(wa HU)| — N/Bm

= NN -1)

- N N -1

Then, even if the magnitudes of all coefficients take the maximum value, we
have

(’pm(w>90)’ /Bm

_ _ NBm_ (21)
< |pm(w’90>|

which does not satisfy (16).
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Figure 2: Resultant beam responses for the broadside design without magnitude con-
straints in (8).

As aresult, the DM design under the maximum and minimum magnitude
constraints for weight coefficients can be modified into

min |[pm,s. — wiSsill2
subject to wgSML = Pm,ML
|wm,n| < om (22)
[[Winll1 < [pm(w, 60)]

|Pm(w, 00)| — ¥m
N1 '

[[Winloo <

The above problem (22) can be solved by the CVX toolbox in MATLAB [23,
24].

Note that the proposed maximum and minimum magnitude constraints
are set and calculated for each symbol. If the magnitudes of symbols are
not the same, such as 16QAM, according to equation (22), |pm(w,8y)| has
to be changed, while the other two variables ~,, and N stay the same.

4. Design examples

In this section, both broadside and off-broadside designs are considered.
For the broadside design, without loss of generality, we assume one mainlobe
direction 6y, = 90°, and Ogz, € [0°,85°] U [95°,180°]. Similarly, for the off-
broadside design, 01, = 60°, and Ogz, € [0°,55°] U [65°,180°]. All design
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Figure 3: Resultant phase responses for the broadside design without magnitude con-
straints in (8).

Table 1: Magnitude of weight coefficients for the broadside design without magnitude
constraints in (8) for symbol ‘00’ (m = 0).
Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0412  wmr 0.0647  wmia  0.0573
Wi 1 0.0568  wmg 0.0532 w15 0.0725
W2 0.0128 Wy 0.0666  wmis  0.0549
W3 0.0130  wmio  0.0817 w1y 0.0592
Wi a 0.0674  wpi1  0.0506  wpis  0.0519
Wi s 0.0649  wpi2  0.0635  wpi9  0.0178
Wi 6 0.0592  wma3  0.0751

Table 2: Magnitude of weight coefficients for the broadside design without magnitude
constraints in (8) for symbol ‘01’ (m = 1).

Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0406 w7 0.0395  wmia  0.0360
Win.1 0.0359  wmg 0.0547  wpmis  0.0323
Wim.o 0.0474 Wy 0.0793  wmis  0.0434
Win.3 0.0326  wmio 00728  wpir  0.0434
Win 4 0.0890  wpmi1  0.0493 w1z 0.0284
Wi s 01126 w1z 0.0250  wpi9  0.0450
Win 6 0.0832  wpiz  0.0635




Table 3: Magnitude of weight coefficients for the broadside design without magnitude
constraints in (8) for symbol ‘11’ (m = 2).

Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0442  wpmr 00713 wmia  0.0603
Wi 1 0.0206  wWmg 0.0881 w15 0.0539
W2 0.0471 Win.o 0.0785  wmis  0.0687
W3 0.0725  wmio  0.0558 w1y 0.0316
Win 4 0.0215  wpmir 00623  wpis  0.0097
Wi s 0.0440  wpio  0.0528  wmpie  0.0196
Win 6 0.0850  wpi3  0.0806

Table 4: Magnitude of weight coefficients for the broadside design without magnitude
constraints in (8) for symbol ‘10’ (m = 3).
Weight Magnitude Weight Magnitude Weight Magnitude

W 0 0.0570 Wy 7 0.0777 Wiy, 14 0.0468
Wi, 1 0.0583 Win, 8 0.0804 Wi, 15 0.0296
Wiy 2 0.0414 Wi 9 0.0777  wmas 0.0582
Wi 3 0.0637 w10 0.0551 Wiy 17 0.0204
Wm, 4 0.0429 Wm, 11 0.0462 Wm,18 0.0349
Wm,5 0.0821 Wm,12 0.0574 Wm,19 0.0437
Wi 6 0.0754 w13 0.0766
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Figure 4: Resultant beam responses for the broadside design with magnitude constraints
in (22).

examples are based on an N = 20 ULA. The desired response in the desired
direction is a value of one (magnitude) with 90° phase shift (QPSK), i.e.,

—_— t—_———ti— Y —— -, — — i— (23)
2 2 2 2 2 27 2 2

for symbols ‘00’, ‘01°, ‘11, ‘10’, and a value of 0.3 (magnitude) with random

phase shifts over the sidelobe regions. The maximum magnitude threshold
dm = 0.07, and the minimum magnitude threshold ~,, = 0.025 for all m =
0,1,2,3.

To verify the performance of the proposed design, the beam and phase
patterns for the designs with and without magnitude constraints for weight
coefficients are provided. BER is also calculated based on which quadrant
the received complex-valued signal falls in. In this example, 105 bits are
transmitted, with 12 dB signal to noise ratio (SNR) in the mainlobe direc-
tion, and the same additive white Gaussian noise (AWGN) power levels in
all directions.

For the broadside design without magnitude constraints in (8), Figs.
2 and 3 show the beam and phase patterns for symbols ‘00, 01, 11, 107,
where all main beams are exactly pointed to 90° (the desired direction)
with a low sidelobe level, and the phases in the desired direction follow
the standard QPSK constellation mappings, but random for the rest of the
angles. However, as shown in Tables 1, 2, 3 and 4, magnitudes of eight weight
coefficients are lower than the minimum magnitude threshold 0.025, e.g.,

11
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Figure 5: Resultant phase responses for the broadside design with magnitude constraints
in (22).

Table 5: Magnitude of weight coefficients for the broadside design with magnitude con-
straints in (22) for symbol ‘00’ (m = 0).
Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0513  wmr 0.0513  wmia  0.0513
Wi 1 0.0513  wmg 0.0513  wpis  0.0513
W2 0.0496 Wy 0.0513  wpis  0.0513
W3 0.0387  wmio 00513 w1y 0.0513
Wi a 0.0513  wpi1 00513 wpis  0.0513
Wi s 0.0513  wmi2 00513 wyie  0.0394
Wi 6 0.0513  wpa3  0.0513

Table 6: Magnitude of weight coefficients for the broadside design with magnitude con-
straints in (22) for symbol ‘01’ (m = 1).
Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0513 w7 0.0508  wmia  0.0513
Win.1 0.0466  wmg 0.0513  wpis  0.0513
W2 0.0513 Wy 0.0513  wmis  0.0513
Win.3 0.0365  wmio 00513  wpir  0.0513
Win 4 0.0513  wpmi1 00513 wpis  0.0513
Wi s 0.0513  wpmi2  0.0450  wpie  0.0513
Win 6 0.0513  wyi3  0.0513
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Table 7: Magnitude of weight coefficients for the broadside design with magnitude con-
straints in (22) for symbol ‘11’ (m = 2).
Weight Magnitude Weight Magnitude Weight Magnitude

Win,0 0.0513 Win,7 0.0513 Win,14 0.0513
Win, 1 0.0513 Win, 8 0.0513 Win, 15 0.0513
Wip, 2 0.0513 Win, 9 0.0513 Wi, 16 0.0513
Win, 3 0.0513 W, 10 0.0513 Wi, 17 0.0513
Wm, 4 0.0449 Wm, 11 0.0513 Wm,18 0.0513
T 0.0513 w12 0.0513 w19 0.0514
Wi 6 0.0513 w13 0.0513

Table 8: Magnitude of weight coefficients for the broadside design with magnitude con-
straints in (22) for symbol ‘10’ (m = 3).
Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0513  wWmr 0.0513  wmia  0.0513
W1 0.0513 Wy 0.0513  wpis  0.0513
Wi 2 0.0513 Wy 0.0513  wpis  0.0513
W3 0.0513  wmio 00513 wpir 00440
Wi a 0.0376  wpmi1 00513 wpis  0.0513
Wi s 0.0513  wmpi2  0.0513 w19 0.0461
Win 6 0.0513 w3 0.0513

BER of QPSK with awgn
10° T T T
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<
o
T
L
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e
&
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Figure 6: BER for the broadside design with magnitude constraints in (22).
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Figure 7: Resultant beam responses for the off-broadside design with magnitude con-
straints in (22).
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Figure 8: Resultant phase responses for the off-broadside design with magnitude con-
straints in (22).
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Table 9: Magnitude of weight coefficients for the off-broadside design with magnitude
constraints in (22) for symbol ‘00’ (m = 0).
Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0513  wmr 0.0513  wmia  0.0513
Wi 1 0.0513  wpmg 0.0513  wpis  0.0513
W2 0.0513 Wy 0.0513  wpis  0.0513
W3 0.0439  wpmio 00512 w1y 0.0513
Wina 0.0513  wpi1 00513 wpis  0.0406
Wi s 0.0513  wmio  0.0513  wpio  0.0432
Wi 6 0.0513  wma3  0.0513

Table 10: Magnitude of weight coefficients for the off-broadside design with magnitude
constraints in (22) for symbol ‘01’ (m = 1).
Weight Magnitude Weight Magnitude Weight Magnitude

Wi 0 0.0513 Wiy 7 0.0508 Wiy 14 0.0513
Win, 1 0.0513 Win, 8 0.0513 Win, 15 0.0513
Win,2 0.0495 Win, 9 0.0513 Win,16 0.0513
Win,3 0.0513 Win,10 0.0513 Win, 17 0.0502
Wi, 4 0.0513 Win,11 0.0513 Win,18 0.0513
Wm,5 0.0459 Wm,12 0.0450 Wm,19 0.0333
Win, 6 0.0513 Wi, 13 0.0513

Table 11: Magnitude of weight coefficients for the off-broadside design with magnitude
constraints in (22) for symbol ‘11’ (m = 2).
Weight Magnitude Weight Magnitude Weight Magnitude

Wm0 0.0513  wmr 0.0513  wmia  0.0513
Win 1 0.0513  wmg 0.0513  wpis  0.0513
W2 0.0513 Wy 0.0513 w1 0.0513
W3 0.0513  wpmio 00513 w1y 0.0416
Wi a 0.0513  wpmi1 00513 wmpis  0.0488
Wi s 0.0513  wmio  0.0513  wpio  0.0372
Wi 6 0.0513  wma3  0.0513

15



Table 12: Magnitude of weight coefficients for the off-broadside design with magnitude
constraints in (22) for symbol ‘10’ (m = 3).
Weight Magnitude Weight Magnitude Weight Magnitude

Win,0 0.0513 Win,7 0.0513 Win,14 0.0513
Win, 1 0.0513 Win, 8 0.0513 Win, 15 0.0513
Wip, 2 0.0513 Win, 9 0.0513 Wi, 16 0.0513
Wm,3 0.0471 Wm,10 0.0513 Wm, 17 0.0513
Wi 4 0.0480 w11 0.0513  wmis 0.0513
Wi 5 0.0513 w12 0.0513 w19 0.0325
Wi 6 0.0513 w13 0.0513
o BER of QPSK with awgn
10 T T T T
10 3
e 102E E
10E 3
10750 3|0 slo 9|0 1&0 1é0 180

Spatial direction (¢ degree)

Figure 9: BER for the off-broadside design with magnitude constraints in (22).
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wo,2, Wo,3, Wo,19, and magnitudes of 20 weight coefficients are higher than the
maximum magnitude threshold 0.07, e.g., wo 10, wo,13, Wo,15, representing
unsatisfactory designs.

In contrast, for the broadside design with the maximum and minimum
magnitude constraints in (22), Figs. 4 and 5 show the corresponding beam
and phase patterns, meeting the needs of the DM design. The magnitudes
of the m-th set of weight coefficients for m = 0,1, 2, 3 are shown in Tables 5,
6, 7 and 8, respectively, where all magnitudes satisfy 0.025 < wy,,, < 0.07.
The BER performance of the proposed design is given in Fig. 6, with a very
small value (107°) in the desired direction (90°), and a value of about 0.5
in other directions, demonstrating the effectiveness of the proposed design
(22).

For the off-broadside design, with the proposed magnitude constraints
in (22), the corresponding beam and phase patterns are shown in Figs. 7
and 8; the magnitudes of all weight coefficients wy, , € [0.025,0.07] for all
m=20,1,2,3,and n =0,1,...,19, are displayed in Tables 9, 10, 11 and 12;
the corresponding BER performance is given in Fig. 9, all demonstrating a
satisfactory design.

5. Conclusions

Directional modulation design under simultaneous maximum and mini-
mum magnitude constraints for weight coefficients has been studied for the
first time, and a solution to transform the resultant non-convex constant
magnitude constraint into a convex form was described, allowing the prob-
lem to be solved conveniently by existing toolboxes. The proposed maximum
magnitude constraint can avoid the use of multiple-stage power amplifiers,
and the minimum magnitude constraint can make sure a minimum pow-
er requirement for each antenna is achieved so that a reasonable minimum
transmission range of the system can be maintained by effectively using all
employed antennas. As shown in the provided design examples, based on
the given beam pattern, phase pattern, BER and Tables for weight coeffi-
cients’” magnitudes, the proposed design works well for both broadside and
off-broadside DM scenarios.
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