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Cell senescence is a driver of ageing, frailty, age-associated disease and functional decline. In oncology, tumour
cell senescence may contribute to the effect of adjuvant therapies, as it blocks tumour growth. However, this is
frequently incomplete, and tumour cells that recover from senescence may gain a more stem-like state with in-
creased proliferative potential. This might be exaggerated by the induction of senescence in the surrounding
niche cells. Finally, senescence will spread through bystander effects, possibly overwhelming the capacity of
the immune system to ablate senescent cells. This induces a persistent system-wide senescent cell accumulation,
which we hypothesize is the cause for the premature frailty, multi-morbidity and increased mortality in cancer
survivors.
Senolytics, drugs that selectively kill senescent cells, have been developed recently and have been proposed as
second-line adjuvant tumour therapy. Similarly, by blocking accelerated senescence following therapy, senolytics
might prevent and potentially even revert premature frailty in cancer survivors.
Adjuvant senostatic interventions, which suppress senescence-associated bystander signalling, might also have
therapeutic potential. This becomes pertinent because treatments that are senostatic in vitro (e.g. dietary restric-
tionmimetics) persistently reduce numbers of senescent cells in vivo, i.e. act as net senolytics in immunocompe-
tent hosts.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Improvements in cancer treatment have rendered many common
cancers curable in a high proportion of patients. Although cancer
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remains a common disease, affecting an estimated 18 million of the
world population in 2018, cancer-specific mortality has dropped
sharply in the last few decades in developed countries. For example
N70% of patients with breast cancer can now expect to live N10 years
from diagnosis and many haematological and paediatric cancers have
high cure rates [1]. Although efforts continue to address how to improve
survival in harder to treat cancers, prominently including brain
tumours, there is now greater awareness of health issues in long-term
survivors, and in some fields the emphasis has started to shift towards
efforts to improve the quality of survivorship after successful cancer
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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treatment [2]. The mainstays of adjuvant treatment i.e. radiotherapy
and chemotherapy cause not only short-term toxicities in tissues
which rely on continued self-renewal such as bonemarrow, GI tract, go-
nads and skin. They also result in long-termmorbidity in a much wider
range of organ systems, including cardiovascular, gastrointestinal, pul-
monary, hepatic, musculoskeletal and neurological effects aswell as en-
hanced frailty and mortality, together resembling accelerated ageing
[3,4]. Although more refined approaches to treatment, particularly ad-
vanced surgical and radiotherapy techniques can abrogate some local
effects, addressing the long-term attrition of tissue and organ homeo-
stasis as a result of treatment is an unmet research need. The role of se-
nescent cell populations in this context is a relatively under-explored
area of research. However there is increasing evidence that promotion
of senescence in normal tissues is associated with long term reduced
function expressed clinically as an ageing-like phenotype.

There are still major tumour types with very low rates of survival.
Malignant gliomas, for example, remain amongst themost lethal of can-
cers. Median survival for patients suffering from its most common type
in adults, glioblastoma, is little over a year despite combination treat-
ment of maximal surgery, high dose radiotherapy and chemotherapy.
Despite many attempts at improving outcome using novel agents, the
treatment of this disease has not improved in more than a decade
[5–7]. These primary brain tumours exemplify the relatively unusual
situationwhere there is always significant residual disease post surgery.
It is also well established that the brain represents an immune
privileged site, where immune-mediated removal of microscopic dis-
ease is limited, leaving a large number of cells that can only be ablated
by chemo-radiotherapy. Mechanisms of treatment resistance are still
poorly understood, but a pool of cells with stem like features associated
with up-regulated DNA repair mechanisms and a highlymigratory phe-
notype are thought to represent a resistant population that survive and
re-populate the tumour after cytotoxic treatments [8–10]. Definition of
novel targeting strategies to alter this treatment-resistant phenotype is
a major unmet need in neuro-oncology. Based on evidence, discussed
below, that senescencemay be particularly relevant in promoting frailty
after brain radiotherapy and data supporting senescence in glioma cells
after both radiation and chemotherapy, we suggest that brain tumours
represent an excellent clinicalmodel inwhich to investigate senescence
as a therapeutic target.

Although outcome in themost common type of high grade glioma in
adults remains poor, recent molecular pathology analyses show that
there is also a very good prognosis sub-group defined by 1p19q chro-
mosomal deletion and IDH mutation [11,12]. This molecular classifica-
tion selects patients whose tumours are chemo and radiation
sensitive, and who have median survivals N10 years after radiotherapy
and adjuvant chemotherapy. In the context of these outcomes, long-
term toxicity of treatment is a growing concern in these patients, in
which follow up demonstrates cognitive decline in N50% of cases. In a
large cohort of long-term childhood cancer survivors, frailty and pre-
frailty incidence was highest in CNS cancer survivors [13]. Recent data
suggest that normal brain tissue, particularly hippocampus, is sensitive
to even low doses of radiation when neurocognitive change is used as
an end-point, implying that despite advances in highly targeted radio-
therapy, novel approaches to ameliorate the effects of radiotherapy on
normal brain remain a significant unmet need [14,15].

This review suggests that cell senescence is an essential driver for
both tumour relapse following radio- and chemotherapy and for prema-
ture ageing in cancer survivors and summarizes the evidence that both
can be treated by senolytic as well as senostatic interventions.

2. Cell senescence

Cell senescence has originally been identified as the irreversible and
reproducible loss of proliferative capacity of human somatic cells in cul-
ture [16]. However, a more appropriate definition is that of a cellular
stress response [17], characterized by the integration of at least three
interacting signalling pathways, namely i) a persistent DNADamage Re-
sponse (DDR) [18] frequently initiated by shortened or otherwise
uncapped telomeres [19]. The DDR activates ii) senescence-associated
mitochondrial dysfunction (SAMD) typically characterized by de-
creased respiratory activity and membrane potential together with in-
creased mitochondrial ROS production [20,21]. SAMD might be driven
or at least enhanced by dysregulated mitophagy in senescence [22,23].
Thirdly, senescent cells are characterized by a senescence-associated se-
cretory phenotype (SASP, see [24] for a recent review). Following induc-
tion of senescence, the SASP develops kinetically: In the early phase
(coinciding with development of the SAMD) upregulated NOTCH1 sig-
nalling causes repression of C/EBPβ and upregulation of an immunosup-
pressive and pro-fibrotic SASP with high TGF-β levels, followed by later
downregulation of NOTCH1 signalling and induction of a C/EBPβ− and
NF-κB-driven SASP with high levels of pro-inflammatory interleukins,
cytokines and matrix metalloproteases [25–28]. The pro-inflammatory
SASP and the SAMD are closely interrelated by positive feedback loops
[20,27,28]: Deletion of mitochondria from senescent cells [29] or ROS
scavenging [20,30] suppresses the complete senescent phenotype in-
cluding NF-κB-dependent interleukin production. Conversely, persis-
tent activation of the NF-κB-driven SASP aggravates ROS production
and DNA damage in senescent cells [31]. Both SASP and SAMD are fur-
ther interconnected with a re-wiring of the epigenome [32] and de-
sensibilisation of mTOR-dependent nutrient signalling leading to en-
hanced autophagy activity together with decreased mitophagy [23].
Global epigenetic reprogramming, especially repressive histone H3
lysine 9 trimethylation (H3K9me3) marks in the vicinity of S-phase
entry-relevant gene promoters, stably maintains the senescent growth
arrest in oncogene- and stress-induced senescence [33]. At the same
time, epigenetic reprogramming conveys amore stem cell-like gene ex-
pression pattern to senescent cells [32–35].

Importantly, activation of these stress response pathways can often
be uncoupled from cell cycle arrest [36]. Firstly, the senescent pheno-
type develops kinetically over a couple of weeks following an inducing
stress event towards ‘deep’ senescence, which is characterized by a sta-
ble proliferation arrest in primary cells [20,22,26]. Tumour cells how-
ever can escape even from a growth arrest with multiple features of
‘deep’ senescence [36]. Importantly, at least in some models these
escaping tumour cells retain epigenetic features developed during se-
nescence, especially increased ‘stemness’ [35]. Conversely, in an ageing
organism, postmitotic cells including neurons [37], retinal cells [38],
skeletal muscle fibres [39] or cardiomyocytes (unpublished) increas-
ingly display the same sets of markers that characterize cell senescence,
indicating upregulation of the same interlinked pathways as in conven-
tional senescence. Senescence markers in post-mitotic cells are acti-
vated in response to a persistent DDR [37]. Thus, post-mitotic cells are
not inherently senescent, but can become ‘senescence-like’ if they accu-
mulate DNA damage, which might happen many years after they be-
came post-mitotic. Therefore, we propose to use the terminus ‘cell
senescence’ to characterize the stress response phenotype irrespective
of whether it is coupled with induction of cell cycle arrest or not.

Senescence is more than a cell-autonomous stress response. Bioac-
tive molecules released from senescent cells are potent inducers of
cell senescence in bystander cells [40,41]. NF-κB-dependent SASP com-
ponents are sufficient to aggravate autocrine and paracrine senescence
[31,42], however, it appears highly probable that additional factors re-
leased from senescent cells including exosomal miRNAs [43,44] and
pro-oxidants [30,40,45] may also contribute to senescence-induced by-
stander senescence. Recent data show the relevance of the bystander ef-
fect for the accumulation of senescent cells and development of
functional defects with age: Injection of small numbers of senescent
cells intomuscle or skin ofmice resulted first in locally enhanced senes-
cence of tissue-resident cells, which was not seen when non-senescent
cells were transplanted [39]. Transplantation of slightly larger numbers
of senescent cells into visceral fat (still not more than about 0.1‰ of all
fat cells in the recipients) was sufficient to cause increased senescence
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organism-wide, resulting in persistent physical dysfunction [46]. Impor-
tantly, these consequences of senescent cell transplantation became ev-
ident at a time point when practically all transplanted senescent cells
had already been cleared from the recipient tissues [39,46], indicating
that senescence-induced bystander senescence is a significant cause
for accumulation of senescent cells in vivo. This was confirmed compar-
ing accumulation rates of native senescent hepatocytes in ‘normal’ and
multiple immunocompromised mice during ageing and under dietary
restriction [39]. These data suggest that a ‘one-off’ localised induction
of senescence (e.g. by chemo- or irradiation tumour therapy) may be
expected to result in a continuously accelerated accumulation of senes-
cent cells. Conversely, ablation of senescent cells should not just reduce
senescent cell numbers but in addition reduce rates of senescent cell ac-
cumulation to a youthful state (Fig. 1).
Fig. 1. The bystander effect shifts the balance between generation and surveillance of
senescent cells. A) In young animals, immune-mediated turnover compensates for cell-
autonomous (stress-induced) generation of senescent cells as well as for a minor
bystander effect. B) Temporal induction of senescence (e.g. by tumour therapy) or
decreasing efficiency of immunosurveillance disturb the balance causing growth of the
senescent cell fraction. The bystander feedback will aggravate the imbalance, even if
immunosurveillance would not further decline with age. C) By killing a significant
fraction of senescent cells, senolytics also reduce bystander signals and regenerate a
steady state with low senescent cell numbers. D) Senostatics suppress the bystander
effect and enable the immune system to reduce senescent cell frequencies.
3. Senolytics versus senostatics

In addition to the activation of stress responses, senescent cells are
characterized by the induction of multiple anti-apoptotic pathways. In
recent years, an increasing number of drugs has been identified that in-
hibit those pathways, inducing apoptosis more or less specifically in se-
nescent cells [47–50]. So far, these senolytic drugs (or drug
combinations) show significant variation in their cell type specificity
due to differential use of anti-apoptotic mechanisms in senescent cells
originating from different cell types. However, a good number of publi-
cations report a significant overlap in the beneficial effects of first-
generation senolytics amongst each other and with pharmacogenetic
approaches that specifically ablate p16-overexpressing cells (Table 1).
While there are first data indicating that a single dose of senolytic can
result in long-lasting physical improvement, these data were generated
inmice transplantedwith senescent cells [46], and strong evidence for a
curative effect of a single course of senolytic intervention is as yet
missing.

In contrast to senolytics, senostatics donot kill senescent cells but in-
hibit paracrine signalling and thus block the ‘proliferation’ of senescence
due to the bystander effect. Antioxidants or inhibitors of NF-κB can be
efficient senostatics [30,40], and there is evidence that multiple flavo-
noids, polyphenols and other phytochemicals may have senostatic ac-
tivity [68,69]. Given the essential role of SAMD for the development of
the senescent phenotype including the SASP [29,30],mTOR pathway in-
hibitors and other interventions that improvemitochondrial (especially
complex I) function have significant senostatic potential. This includes
rapamycin and other mTOR inhibitors [70], metformin [71–73] and
prominently dietary restriction [74]. It is interesting to note that while
none of these interventions ablates senescent cells in in- vitro assays,
short-term (2 to 4 months) treatment of mice with either rapamycin
[75], metformin (Miwa et al., in prep) or dietary restriction [39,61,74]
decreased frequencies of cells positive for multiple senescence markers
below the levels measured before the intervention. This was dependent
on intact immunosurveillance: in contrast towild-typemice, dietary re-
striction of severely immunocompromised NSD mice resulted only in a
slowing of accumulation of senescent hepatocytes in the liver, but not
an actual decrease of their numbers [39]. Importantly, reduction of
Table 1
Ageing phenotypes that have been improved by anti-senescence intervention. Pharmaco-
genetic approaches are underlined, pharmacologic treatments are shown in italics.

Examined conditions Treatment Reference

Premature muscle weakness, cataract,
lipodystrophy

INK-ATTAC [51]

Cardiovascular function,
radiation-induced muscle weakness

D+Q [49]

Lipodystrophy INK-ATTAC [52]
Median lifespan, Tumour incidence,
Cardiac stress tolerance

INK-ATTAC [53]

Atherosclerosis 3-MR, INK-ATTAC, INK-NTR,
ABT263 INK-ATTAC, D+Q

[54]
[55]

Irradiation-induced haematoxicity,
age-related HSC dysfunction

ABT263 [56]

Pulmonary fibrosis ARF-DTR [57]
INK-ATTAC, D+Q [58]

Lung emphysema ABT263 [59]
ARF-DTR [60]

Liver steatosis (incl. Human correlative
data)

INK-ATTAC, D+Q [61]

Osteoarthritis (incl. Human ex-vivo
intervention)

3-MR, ABT263 [62]

osteoporosis ABT263 [63]
Chemotherapy-induced multimorbidity
(incl. human correlative data)

3-MR [64]

Chemotherapy-induced liver toxicity
Age-related frailty, renal function loss

FOXO4-DRI [65]

Age-related pathology, lifespan fisetin [50]
Tau-dependent neurodegeneration INK-ATTAC, ABT263 [66]
Obesity-induced anxiety INK-ATTAC, D + Q [67]
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senescent cell frequencies under dietary restriction remained irrevers-
ible (at least for three months) when animals were returned to ad
libitum feeding [61]. This suggested that senostatic drugsmight actually
exert a net senolytic effect in immunocompetent hosts (Fig. 1). If this is
true, one might expect similar beneficial effects of relatively short
senostatic interventions aswith senolytics. This would be advantageous
given the on average better safety profiles of senostatic drugs. However,
essential experiments are yet lacking; the persistence of reduced fre-
quencies of senescent cells after short or medium term senostatic inter-
ventions other than dietary restriction has not been shown. However,
there is good evidence for long-term beneficial healthspan effects fol-
lowing not only short-term dietary restriction [76,77] but also short-
term rapamycin treatment [78].

4. Senescence as tumour suppressor and tumour promoter

In a tumour context, senescence plays important roles. Overexpres-
sion of oncogenes in otherwise normal cells triggers oncogene-induced
senescence via replicative stress [79,80]. This constitutes an important
natural tumour suppression mechanism [81,82] (see [83] for a recent
review). Furthermore, DNA-damaging treatments induce not only apo-
ptosis but also senescence in tumour cells [84]. This therapy-
induced senescence was shown to contribute significantly to successful
chemotherapy outcomes in mouse tumour models [85], not only by
inhibiting tumour cell proliferation but also by triggering an immune re-
sponse eliminating neoplastic (senescent and non-senescent) cells [86].
Accordingly, senescence-inducing drugs (specifically CDK4/6 inhibi-
tors) have shown promise in mouse xenografts [87] and in clinical
anti-cancer studies [88] and novel drugs that trigger senescence are
being sought [89]. However, one or more of the major cell cycle check
point pathways (p53-, p21-, p16-, Cdc2/cdk1- or pRb-dependent) are
usually genetically or epigenetically downregulated in cancer cells.
While this generally reduces efficiencies of therapy-induced senescence
and apoptosis, multiple pathways still remain active for senescence in-
duction in check point-compromised tumour cells, including for in-
stance metabolic [90] or cytosolic DNA sensing [91]. However,
suppression of typical cell cycle check points will compromise the sta-
bility of the senescent growth arrest. Accordingly, tumour cells can es-
cape from therapy-induced senescence with relative ease [36,92–94].
Unfortunately, these ‘escapers’may have gained increased tumorigenic
and possibly metastatic potential [33,35,36] by both cell-autonomous
and non-autonomous mechanisms.

Cell-autonomously, it has been well established that senescence
drives epigenetic and gene expression changes that overlap to a signif-
icant amount with those found in cancer [95]. Thus, epigenetic
reprogramming during induction of senescence might promote more
aggressive growth in cells that manage to escape from proliferation
arrest. In fact, when senescence was induced in B-cell lymphoma from
Eμ-MYC transgenicmice,Wnt signalling pathway and stem cell markers
were upregulated. If these cells were released from senescence, they
showed strongly enhanced, Wnt-dependent clonogenic growth poten-
tial and a much higher tumour initiation potential in vivo. Temporary
enforcement of senescence reprogrammed non-stem leukaemia cells
into self-renewing, leukaemia-initiating stem cells in a mouse model
[35].

In addition, DNA-damaging and senescence-inducing therapies also
induce senescence in somatic cells surrounding the tumour, both via di-
rect hits, especially in systemic therapies, and via bystander effects [96].
While the senescent proliferation arrest in stromal bystander cells is sta-
ble, senescence is spread around as a bystander effect, causing acceler-
ated ageing in mice over the long term [39,46]. Importantly, cancer
cells respond differently to bystander signals: Instead of senescence
and growth arrest, SASP signals from senescent tumour or niche cells
cause epithelial-to-mesenchymal transition and enhanced proliferation
of (pre-)cancerous cells [97,98]. The pro-inflammatory cytokines IL-6
and IL-8 have been shown to control liver tumour progression in mice
[99]. The early SASP component TGFβ is specifically efficient as inducer
of EMT [100,101]. Moreover, cancer cell invasiveness is supported by
the secretion of multiple matrix metalloproteinases as part of the SASP
[102], which facilitate translocation of cancer cells from their original
place. Thus, despite theirmajor therapeutic benefits, DNA-damaging tu-
mour therapies do create niches that are more supportive for tumour
(stem) cell growth [103]. Moreover, the system-wide spread of by-
stander senescence enables the creation of more effective niches away
from the original tumour even after localised therapy.

So far, the relative importance of cell-autonomous (tumour cell) se-
nescence versus non cell-autonomous (niche) senescence for tumour
relapse has just begun to be addressed in mouse models. Their impor-
tance for tumour therapy in humans is still wide open.

5. Anti-senescence as adjuvant tumour therapy

As summarized in Section 4 above, senescence induction is a two-
edged sword in tumour therapy: While it frequently, and often signifi-
cantly, contributes to therapeutic inhibition of tumour growth, it
also prepares the ground for relapse with potentially enhanced
tumourigenicity.We propose that thismaypresent a specifically serious
problem in tumours where anatomical constraints prohibit surgical re-
moval, making radio- and chemotherapy first and main therapeutic in-
terventions, for instance high-grade invasive glioblastoma. Recognizing
the problematic of tumour and niche cell senescence in therapy, recent
reviews suggested using senolytics as secondary therapy to selectively
kill the senescent cells generated by the first line (adjuvant) DNA-
damaging therapies [83,89,103,104] (Fig. 2). The potential advantages
are impressive: present best-use therapies can be used unmodified
and would just need to be followed by a senolytic intervention, which,
targeted to long-term non-dividing cells, could be done as a one-off
treatment and would not be expected to suffer from adaptation and
drug resistance.

Unfortunately, at present the actual experimental and clinical evi-
dence that such an approach can make a difference is yet very slim.
Wang [89] identified a number of novel compounds to induce senes-
cence in tumour cells, and showed that one of the known senolytics,
ABT263, which targets BCL-2 family-dependent anti-apoptotic path-
ways, can kill a range of senescent cancer cells, independent of how se-
nescence was induced. An in vivo study showed that elimination of
chemotherapy-induced senescent cells by ABT263 reduced cancer re-
currence and metastasis in mouse models [64]. This study also showed
that chemotherapy induced senescence specifically in non-tumour cells
promoted growth and metastasis of implanted tumour cells, and that
the senolytic drug ABT 263 was able to reduce them. However, in an-
other study [105] the senolytic cocktail dasatinib + quercetin did not
induce apoptosis in senescent hepatocellular carcinoma (HCC) cells
and did not reduce the growth of doxorubicin-treated xenotransplanted
HCC beyond the effect of doxorubicin alone.

Many senolytics induce apoptosis not only in senescent cells but also
(albeit with reduced efficiency) in non-senescent cancer cells. One ex-
ample is navitoclax (ABT 263), which causes considerable toxicity in-
cluding thrombocytopenia [106] and has been used with limited
success and significant side effects in clinical trials in patients with leu-
kaemia and lymphoma (NCT00406809), lung (NCT00445198) and
other cancers. Interestingly, its ability to enhance the activity of other
chemotherapeutic agents, even in tumours where navitoclax had no
single agent activity, was recognised already at its first description
[106]. However, it is still not clear whether this is due to its senolytic ac-
tivity. In general, results from clinical studies in which senolytics have
been specifically administered following senescence-inducing radio-
or chemotherapy are still awaited for.

Better evidence than for senolytics is available for synergistic effects
of potential senostaticswith established tumour therapies.With respect
to dietary restriction, a meta-analysis evaluated its impact acrossmulti-
ple cancer types and through a variety of preclinical rodent tumour
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models [107]. Overall, dietary restriction resulted in a 75.5% reduction in
tumour incidence. Part of this beneficial effect might be due to reducing
systemic chronic inflammation: increasing preclinical and human evi-
dence suggests that dietary restriction reduces inflammation
[108,109]. The reduction of energy intake reduces the amount of adi-
pose tissue, a major endocrine organ that secretes pro-inflammatory
factors including leptin, adiponectin, monocyte chemo-attractant
protein-1, tumour necrosis factor, and interleukin-6 [110]. Short-term
fasting also improves outcomes of chemotherapeutic treatment with
etoposide [111], mitoxantrone, oxaliplatin [112], cisplatin, cyclophos-
phamide, and doxorubicin [113], in transgenic and transplant mouse
models of neuroblastoma, fibrosarcoma, glioma [114], melanoma, and
breast and ovarian cancers. Finally, alternate day fasting has been
shown to enhance the radiosensitivity of mammary tumours in mice
[115,116].

The dietary restriction mimetic metformin has long been prescribed
for the treatment of Type 2 diabetes and polycystic ovary syndrome. In
recent years, metformin has been demonstrated to function as a
senostatic, inhibiting the pro-inflammatory secretory phenotype of se-
nescent cells [73]. This appears to operate through inhibition of NF-κB
signalling, with inhibition of nuclear translocation of NF-κB complexes,
as well as activation of NF-κB signalling in response to lipopolysaccha-
ride in fibroblasts and macrophages. The pro-growth effect of condi-
tioned media from senescent cells on prostate cancer cells was
reduced in media from senescent cells treated with metformin [73].

There is considerable epidemiological evidence on cancer incidence
and treatment response in patients taking metformin. Diabetics taking
metformin displayed reduced rates of some cancers (breast, lung and
colorectal) compared to diabetic patients under other treatments, and
a slight reduction in all types of cancer when compared to the general
population [117]. Analysis of metformin use after lung cancer diagnosis
has shown an improvement in overall survival and progression free
survival [118]. However, studies and meta-analyses vary with respect
to the effect size ofmetformin on survival benefits. They differ by cancer
stage, sub-type, andpatient groupwith stronger effects in East Asianpa-
tients possibly driving significance while Western patients show more
heterogeneous results especially in lung and pancreatic cancers
[118–123]. A meta-analysis of metformin use in diabetics by Gandini
et al. [119], focusing on confounders and biases such as body mass
index, showed a reduction in overall cancer incidence and mortality
with metformin use when adjusted for body mass index. With all stud-
ies considered this decreasewas even larger, suggesting that theweight
loss under metformin treatment regimens may also play a role [119].
However, the differences between studies and populations were con-
siderable, suggesting possible reductions in cancer mortality at sites
such as lung and liver cancers, but not others [119].

A number of studies have shown improvements in response to ra-
diotherapy with metformin, with a reduction in three year biochemical
relapse rates in localised prostate cancer [124] and in pathologic com-
plete response rates in esophageal [125] and rectal [126] adenocarci-
noma. In mice, metformin has been shown to both inhibit growth of
non-small cell lung cancer cells and xenografts, and sensitising them
to irradiation. Metformin treatment acted synergistically with irradia-
tion, leading to increased DNA damage signalling, growth arrest, inhibi-
tion of mTOR signalling and increased apoptosis markers in tumours
[127]. In prostate cancer xenografts treatment with metformin
inhibited oxygen consumption by tumour cells and increased tumour
oxygenation; in mice treated with subcurative IR doses, metformin did
not have a significant effect alone, but acted synergistically with IR to
slow xenograft growth [124]. Low concentrations of Metformin alone
have been suggested to induce senescence in cancer hepatoma cells,
while higher doses promote apoptosis [128]. In cell culture, metformin
treatment following irradiation led to increased apoptosis of nasopha-
ryngeal carcinoma [129] and hepatoma cancer cells [130].
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The mechanisms by which metformin enhances radiosensitivity of
various cancers are not clear. While we suggest a net senolytic activity
in vivo (see Section 3 above) as potential root cause, others assumed
that itmay act through inhibition of double-strand break repair proteins
(or an increase in initial damage generated by irradiation), leading to in-
creased damage and apoptosis of tumour cells following irradiation.
This would then suggest that metformin would increase damage, and
senescence, in non-target cells. However, while metformin combined
with irradiation reduced G2/M arrest, promoted sub-G1 phase cell fre-
quencies and increased ROS levels, all indicating apoptosis in hepatocel-
lular carcinoma cells, it only showed amoderate effect in non-cancerous
hepatocytes [131]. Additionally, there is evidence for a radio-protective
effect by metformin on cultured human normal blood lymphocytes
[132]. In mice, metformin prior and immediately after whole body irra-
diation ameliorated long-term hematopoietic stem cell injury [133].
Similar effects have been seen in other cultured cells, with metformin
and irradiation leading to lower levels of senescent cells and inflamma-
tory cytokines compared to irradiation alone [134]. Metformin has also
been shown to reduce lung fibrosis, immune infiltration and structural
changes following high dose lung irradiation in mice [135], which may
be due to a similar anti-senescence effect, as senescence in lung cells
has been associated with these changes and chronic lung disease
[58,136].

In conclusion, while the mechanisms of action for potential
senostatic interventions are far from clear, synergisms with conven-
tional chemo- and radiotherapy are strongly suggested by the available
data. This warrants further translational research, given the generally
significantly better safety profiles of senostatic as compared to senolytic
interventions.
Tumour

Irradiation/chemotherapy

DNA damage

Primary cell senescence

Systemic secondary cell senescence

Premature frailty

Multi-morbidity and mortality

Fig. 3. A testable hypothesis for the pathogenesis of therapy-induced frailty and
multimorbidity. We propose that primary, therapy-induced senescence and its
perpetuation by bystander effects is the root cause for accelerated ageing and thus for
premature frailty, multi-morbidity and enhanced mortality in long-term cancer
survivors. If correct, anti-senescence interventions (using senolytics or senostatics)
should at least prevent, if not cure, this syndrome.
6. Anti-senescence to relieve frailty and multimorbidity in long-
term cancer survivors

The numbers of cancer survivors is rising due to improvements in
treatment outcomes and population size. Although many survivors
were already in middle to advanced age at the time of diagnosis, a sub-
stantial number of children and adolescents become long-term survi-
vors of cancer. In developed countries such as the United States and
United Kingdom, the vast majority (83–84%) of children and adoles-
cents survive for ≥ 5 years post diagnosis (although this varies consider-
ably by cancer subtype); with survival rates remaining relatively
constant (81.3%) over the past 10 years [137].

Long-term survivors of childhood and adult cancers undergo awide-
range of negative health and quality of life outcomes that lead to in-
creased frailty andmulti-morbidity compared to the general population
[3,4,138]. As reviewed by Robison et al. [3], survivors who have under-
gone radiation therapy see both increased risk of secondary neoplasms
and a wide-range of dose-dependent organ-specific effects, including
cardiovascular, gastrointestinal, pulmonary, hepatic, musculoskeletal
and neurological effects. Similar effects are seenwith chemotherapeutic
agents, especially those that directly target DNA such as alkylating
agents and anthracyclines, generally increasing with cumulative dose
[3]. These adverse effects can manifest soon after treatment, but also
with considerable latency, and in total represent a premature ageing
phenotype (see Cupit-Link et al. [4] for review); young adult survivors
of childhood cancer show an 8.4 fold increase in frailty compared to sib-
lingswithout cancer. Indeed, they show comparable rates of frailty to el-
derly people living in the community, with increased co-morbidity and
a 2.76 fold increase in mortality of frail individuals [139]. Long-term fol-
low up of adult survivors of childhood cancer showed worse general
and mental health, with higher rates of functional impairment com-
pared to siblings [140]. While long-term longitudinal data continue to
be collected, it appears that cancer survivors experience increased
multi-morbidity and frailty and reduced lifespan compared to the gen-
eral population [3,4]. Taken together, these data suggest an acceleration
of ageing in cancer survivors [4], as such, exploring the use of identified
anti-ageing compounds in cancer survivors is of interest.

Recent reviews proposed a number of biological processes as candi-
date drivers of therapy-induced premature ageing, namely cell senes-
cence, telomere attrition, epigenetic alterations, stem cell exhaustion
and somatic mutations and macromolecular (DNA) damage including
loss to mitochondrial DNA fidelity [4,141]. Given that most of these
are part of the senescent phenotype (see Section 2 above) and given re-
cent evidence of cell senescence as the causal factor in a wide range of
(premature) ageing phenotypes (Table 1), we propose cell senescence
as the focal pathogenetic mechanism of therapy-induced premature
frailty and ageing (Fig. 3). We hypothesize that DNA-damaging radio-
or chemotherapies induce a primary surge of senescent cells, both tu-
mour and non-tumour cells. While these senescent cells will be ablated
by the immune system within weeks to months, this time frame is suf-
ficient to start spreading of senescence from the originally targeted cells
[39], which is sufficient to cause loss of physiological resilience [46] and
to perpetuate an enhancement of senescence that finally overwhelms
the capacity of immunosurveillance systems. This hypothesis suggests
that long-term cancer survivors will not only carry higher loads of se-
nescent cells at steady state, but will also suffer from persistent higher
rates of accumulation of such cells, presumably in relation to the sever-
ity of their premature ageing.

If this hypothesis is true, it would follow that a one-off senolytic in-
tervention at an early time point after tumour therapy should be suffi-
cient to reduce senescent cell frequencies to pre-treatment levels,
block accelerated senescence accumulation and persistently prevent
premature ageing and frailty. First data in mice show that various
senolytic interventions reduce or postpone the onset of acute
radiation- or chemotherapy-induced disease [56,64,65]. Preliminary
data (Miwa et al. in prep) suggest that senolytics given at one month
after sub-lethal whole-body irradiation are sufficient to maintain frailty
for long times at levels similar to unirradiated controls and to efficiently
block tumour incidence. It is however still completely unclear whether
established premature frailty can be successfully treatedwith senolytics
at late timepoints after therapy. However, it might be expected that late
senolytic treatment should at least be able to slow further progression
of accelerated ageing. Given that presently there is no treatment other
than lifestyle counselling on offer for long-term cancer survivors, there
is an urgent need to progress towards clinical trials. An interventional
trial in hematopoietic stem cell transplant survivors (NCT02652052) is
now in the recruiting phase to investigate the impact of a senolytic ther-
apy with the combination Dasatinib and Quercetin on frailty over a
6 months follow-up period. Moreover, a phase II trial has been started
to measure whether the senolytic fisetin may alleviate frailty, inflam-
mation, and related measures in older adults (NCT03675724).
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Regarding the use of senostatic agents against premature frailty,
there is promising data from mice. Long-term treatment with metfor-
min in male C57Bl/6 mice showed an extension of both healthspan
and lifespan, but significant toxicity at very high doses, far in excess of
reported ‘therapeutic doses’ and serum Cmax levels in human patients
[142]. Reported improvements, including changes in insulin sensitivity
and cholesterol, gene transcription patterns, mitochondrial function,
cognition and lower tumour incidence, were similar to those seen
under caloric restriction, despite there being no reduction in calorie
intake [142] [143]. Gender and strain dependent effects have been
reported. For instance, a reduction in tumour rates followingmetformin
was reported in female 129/Sv mice, but no effect on tumour incidence
and in fact a reduced lifespan was seen in males [144].

In older diabeticmen,metformin usagewas associatedwith a reduc-
tion in age-related co-morbidity and frailty, with considerable effects in
patients clustered as High Cancer and High Frailty risk [135]. A meta-
analysis by Campbell et al. of metformin studies suggested that it may
have a protective effect against all-cause mortality and age-related dis-
eases [117]. Diabetics using metformin show a reduction in all-cause
mortality compared to diabetics using other treatments; while this
may be driven by metabolic alterations (as the effect is even more pro-
nouncedwhen compared to diabetics only taking insulin), there is still a
reduction in all-cause mortality when comparing diabetics using met-
formin to the general and non-diabetic population not usingmetformin
[117]. Additionally, diabetics using metformin show a reduction in a
number of age-relatedmorbidities,with reduced risk of fracture relative
to rosiglitazone treatment in women and metformin users having a
lower risk of fracture compared to the general population, with the
effect increasing with long term treatment [145]. When compared to
other diabetics, those using metformin for 6 or more years show
lower levels of cognitive impairment [146]. In diabetic patients, lower
rates of frailty syndrome and better performance in balance andmuscle
strength tests were seen in those treated with metformin [147]. Simi-
larly, in a larger study of US veterans, metformin users showed signifi-
cantly lower risk of frailty (OR 0.66, 95%CI 0.61–0.71) which was
associated with lower mortality [148].

However, there are still too few data on the effect of metformin on
frailty and multi-morbidity in cancer survivors, and most of the avail-
able data are limited to overall and cancer specific survival. Given the
background of most studies on diabetes, multi-morbidity is often
corrected for, rather than looked at specifically. Early (phase II – III) clin-
ical studies on the effects of metformin on frailty are now coming
underway (NCT02570672, NCT03451006, NCT02325245). Large clinical
studies in whichmetformin is being tested for its capacity to reduce the
onset of age-related multi-morbidity (the TAME trial, [149]) will pro-
vide better evidence as to its potential to treat cancer therapy-related
frailty and premature ageing.

7. Outstanding questions

Combination tumour therapies with senolytics as second-line adju-
vant therapeutics show significant promise. However, specificity and
sensitivity of senolytics are not sufficiently well known. This is already
so for senescent cells arising from different normal tissues, and will be
more pertinent for senescent tumour cells harbouring multiple genetic
and epigenetic aberrations, frequently in genes highly relevant for effi-
cient apoptosis induction.

An important and so far essentially un-tackled issue for combination
therapies involving senolytics will be the question of timing. Obviously,
for senolytic interventions to be most effective, cells should have
reached a mature senescent phenotype following first-line therapy,
and tumour cells should not yet have escaped from senescence. Patients
should have sufficiently recovered from first line therapies. A starting
point to address this questionmight be that both the induction of a ma-
ture senescent phenotype following irradiation [22] and recovery from
acute radiation sickness typically takes around 3 to 4 weeks.
The type(s) of tumour that should primarily be tested in combina-
tion therapies with senolytics is another important issue. We suggest
diffuse high-grade glioblastoma because they are not amenable to sur-
gery and success rates for conventional combined radio-and chemo-
therapy are very low and have not improved for decades. It seems
very well possible that therapy-induced tumour and niche cell senes-
cence is a significant driver of the essential limiting factor, tumour
relapse.

In the context of senostatic interventions, clarification of the relevant
mechanism(s) of action appears to be the most relevant issue. While it
appears that DR,mTOR inhibitors ormetformin reduce local and/or sys-
temic inflammation, it is far from clear whether this is their primary
mode of action or a secondary consequence of, for instance, reduction
of senescence. Do they actually reduce numbers of senescent cells in a
tumour therapy context as suggested in Section 3 above? How impor-
tant are metabolic impacts? Is there a single primary target or are
these interventions effective because they target multiple diverse
mechanisms in parallel?

Finally, if anti-senescence interventions are ever to become relevant
in acute tumour therapy and long-term post-tumour care, the availabil-
ity of senescencemarkers that can be assessed in humanswill be crucial.
At present, this is largely an unmet need. It is unclear whether and to
what extent blood-based biomarkers for immunosenescence or inflam-
mation might be informative for the senescence status in other tissues,
and non-invasive markers for cell senescence do not exist to our
knowledge.

Search strategy and selection criteria

Data for this Review were identified by searches of MEDLINE,
PubMed, and references from relevant articles using the search terms
“senescence”, “senolytic”, “senostatic”, “cancer”, “suvivor” and related
search terms as well as by searching based on names of investigators
in the field. Abstracts and reports from meetings were not included.
Only articles published in English between 1980 and 2019 were
included.
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