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Liquid phase blending of metal-organic frameworks
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The liquid and glass states of metal–organic frameworks (MOFs) have recently become of

interest due to the potential for liquid-phase separations and ion transport, alongside the

fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we

show that the MOF liquid state can be blended with another MOF component, resulting in a

domain structured MOF glass with a single, tailorable glass transition. Intra-domain con-

nectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and

pair distribution function measurements. The interfacial binding between MOF domains in

the glass state is evidenced by electron tomography, and the relationship between domain

size and Tg investigated. Nanoindentation experiments are also performed to place this new

class of MOF materials into context with organic blends and inorganic alloys.
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Metal–organic frameworks (MOFs), or networked struc-
tures of inorganic nodes connected by organic ligands,
are flexible materials1, 2 that can be broadly separated

into two classes according to their porosity. Those that contain
high internal surface areas are of intense interest for gas separa-
tions and catalysis3–6, while dense MOF materials are investigated
for their potential in other applications, e.g., conduction and
magnetism7–9.

The zeolitic imidazolate framework (ZIF) family of MOFs
contains structures of tetrahedral Mn+ nodes, (M= e.g., Zn, Co,
Li, B, Ni, Mg) linked through the N atoms of imidazolate
ligands10–12. Several members, e.g. ZIF-4-Zn, have been observed
to possess accessible melting temperatures (Tm) between 400 and
600 °C13. The melting process proceeds via a
dissociation–association mechanism of Zn-N coordination
bonding and associated ligand switching between Zn2+ centres14.
This becomes sub-nanosecond at Tm, in a manner analogous to
the switching between hydrogen bonds in liquid water.

Such liquid states will be of particular intrigue in the devel-
opment of alternatives to solid-state compounds for industrial-
scale gas sorption and separations, due to the better handling and
ease of installation compared to their classical solid-state coun-
terparts15. Additionally, the intrinsic instabilities of micro-
crystalline MOF structures often preclude processing into the
physical forms and bodies required by industry16, 17. Solution
casting techniques combine the processability of organic poly-
mers with selective MOF additives18, though drop-casting, fibre
drawing or melt spinning of single-component MOF liquid states
would circumvent chemical compatibility concerns.

Cooling of (strongly associated) MOF liquids from above Tm
results in a family of melt-quenched glasses chemically different
from the inorganic, organic and metallic glass categories known
at present. Accordingly, the formation of the liquid and glass
phases of MOFs has recently emerged as a new area in an ever-
expanding field13, 14, 19–22. The reactivity of these ‘MOF liquids’
has not yet been studied. Possibilities also exist in the production
of novel MOF glasses, given the potential to incorporate multiple,
designed chemical functionalities within a single glass, or in the
creation of hybrid equivalents of alloys, blends and ceramics.
Progress in the preparation of crystalline materials containing
multiple inorganic or/and organic functionalities within a single
framework structure has already been made23, 24. These multi-
variate MOFs25, 26 arise from the interaction of several chemical
components during solvothermal or mechanochemical synthesis,
though not in the liquid state.

Here we are interested in how a MOF liquid behaves when
combined with a secondary MOF component and the funda-
mental possibilities that this may afford in new materials' dis-
covery. Specifically, we hypothesize that this may result in the
formation of a glass containing interlocking MOF domains.
Motivated by the concept of forming this type of material, which
we term ‘MOF blends’, we investigated the high temperature
reactions within mixtures of ZIF-4 [M(Im)2] and ZIF-62 [Zn
(Im)1.75(bIm)0.25] (M= Co2+, Zn2+, Im: C3H3N2

−, bIm:
C7H5N2

−). Previously, it has been observed that, upon heating,
both ZIF-4-Zn and ZIF-4-Co undergo a transition to a high-
density amorphous phase and a dense crystal on heating to 300 °
C and 450 °C, respectively. The zinc framework melts at 550 °C,
unlike the dense cobalt crystal, which remains intact until thermal
decomposition at ca. 570 °C. ZIF-62 remains in the room tem-
perature crystalline state until liquid formation at 410 °C13, 27.

Results
Differential scanning calorimetry. Samples of ZIF-4-Zn and
ZIF-62 were synthesized and evacuated according to previously

reported solvothermal procedures (Fig. 1a)27–29. A physical
mixture of the two frameworks in equal weight portions, hereby
referred to as (ZIF-4-Zn)(ZIF-62)(50/50), was prepared by ball-
milling to ensure sample homogeneity (see Methods). Differential
scanning calorimetric (DSC) experiments were then performed
up to 590 °C in an argon atmosphere, beyond which thermal
decomposition of the liquid state occurred. The first endothermic
feature at 225 °C is coincident with a mass loss of ca. 9% and
ascribed to desolvation. As expected, two endothermic features
belonging to the respective melting points of ZIF-62 and ZIF-4-
Zn (445 °C and 580 °C, respectively) were noted, identical to
those recorded from pure samples (Fig. 1b)13. The melting
enthalpy of ZIF-62 was recorded as ca. 3 kJ mol−1. Quenching
after isothermal treatment for 2 min at 590 °C yielded a glassy,
amorphous product (Supplementary Figure 1).

Re-heating of this amorphous sample revealed a single glass
transition, glass transition temperature (Tg)= 306 °C (Fig. 1b,
blue solid line), whereas two separate features at 292 °C (ZIF-4-
Zn) and 318 °C (ZIF-62) would have been anticipated13. A
physical mixture of the two glasses formed separately yielded the
expected two Tgs (Supplementary Figures 2 and 3). Such a
markedly different, single value is indicative of liquid phase
mixing, as is also the case in e.g. metallic glasses30, inorganic
oxides and phosphates31, or miscible polymer blending in
organics32. We name the blend produced (ZIF-4-Zn)0.5(ZIF-
62)0.5. The ability to tailor Tg was explored through analysis of a
further set of (ZIF-4-Zn)1−x(ZIF-62)x mixtures. The results from
DSC experiments on the glasses formed upon quenching the
liquids from 590 °C (Supplementary Figure 4) show a
composition-dependent shift in Tg (Fig. 1c). The increase in Tg
with increasing ZIF-62 content follows a linear relation,
analogous to the trends observed in binary organic mixtures
exhibiting mass additivity behaviour (ΔTg= 0) e.g. poly(1,3-
trimethylene adipate) and poly(vinyl methyl ether)32.

In order to facilitate the use of electron microscopy as a
characterization technique for the blended glass, a physical
mixture of ZIF-4-Co and ZIF-62, hereby referred to as (ZIF-4-
Co)(ZIF-62)(50/50), was analysed. A pure sample of ZIF-4-Co
was synthesized by following prior literature33. As expected27, it
possesses a stable amorphous region from 325 to 500 °C
(Supplementary Figure 5), before the expected recrystallization
to a dense ZIF at ca. 510 °C. No melting above this temperature is
observed. DSC experiments on (ZIF-4-Co)(ZIF-62)(50/50) con-
firmed these transitions, along with the expected Tm of ZIF-62
(Fig. 1d). Quenching of the sample from 425 °C, i.e. a region
containing amorphous ZIF-4-Co and liquid ZIF-62, yielded a
glass (Supplementary Figure 6). A subsequent DSC of the
quenched glass again demonstrated a single Tg, at ca. 300 °C
(Supplementary Figure 7), despite the fact that it was formed
from an interaction between an amorphous solid and a liquid. A
second measurement using a slower heating rate again yielded
only one Tg (Supplementary Figure 1). Differences between (ZIF-
4-Co)0.5(ZIF-62)0.5 and (ZIF-4-Zn)0.5(ZIF-62)0.5 are perhaps
expected to be small, given the very high viscosities for both
ZIF-4-Zn and ZIF-62 reported previously14, 34.

Structural characterization. Small-angle X-ray scattering (SAXS)
has previously been used to reveal information on the pore sur-
face and characteristics of MOF-535, HKUST-136 and monitor
particle evolution and growth in situ37, 38. Combined with wide-
angle X-ray scattering (WAXS), it provides a powerful tool that
has also been used to study the collapse of some MOFs to
amorphous states21.

The temperature-resolved WAXS profile of ZIF-62 (Fig. 2a)
shows consistent Bragg diffraction from the sample, which
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reduces in intensity and then disappears at ca. 340 °C upon
gradual formation of the liquid state. Decomposition of this MOF
liquid is then evidenced at ca. 550 °C by the emergence of several
Bragg features at relatively large q values. The temperature-
resolved WAXS profile of (ZIF-4-Co)0.5(ZIF-62)0.5 (Fig. 2b)
contains a region in which amorphous ZIF-4-Co and the ZIF-62
liquid are co-existent, between ca. 340 °C and ca. 400 °C.
Recrystallization of amorphous ZIF-4-Co to a dense phase is
then observed. These observations are broadly consistent with the
DSC results presented in Fig. 1, though these differ because of the
dissimilar temperature–time profiles of the two experiments.

The decay in SAXS signal at room temperature was extracted
from the three-dimensional, variable temperature plot of the
SAXS intensity ISAXS for ZIF-62 and follows power law behaviour
of the form q−α, where α= 3.9 (Supplementary Figure 9). At ca.
440 °C, a decrease to α= 3.4 is observed, consistent with the
formation of rougher internal surfaces upon melting. Computa-
tion of the volume-weighted fraction of the particles (Supple-
mentary Figure 9) shows an initial expansion in particle radii
from 5 nm at the point of melting, which is consistent with
interfacial particle coalescence. The radii then drop drastically
and the volume fraction tends to zero, as homogeneous melting of
the sample occurs. The increase in particle size at ca. 460 °C then
marks the onset of gradual thermal decomposition.

The variable temperature plot of the SAXS intensity ISAXS for
(ZIF-4-Co)(ZIF-62)(50/50) (Fig. 2c) was also fitted and displays a
lower initial value of α= 3.66, consistent with the presence of
different internal pore structures and particle sizes within the
ball-milled mixture of MOFs. This value increases to 4 on heating

to 340 oC when ZIF-4-Co amorphizes, before decreasing to 3.1
due to both recrystallization of ZIF-4-Co and melting of ZIF-62.
The volume-weighted fraction of the particles also reveals that the
distribution of particle scatterers is much broader in the initial
instance, consistent with the inhomogeneity in sample composi-
tion. Like ZIF-62, the particles disappear rapidly upon liquid
formation at 340 °C. The broad distribution of particles that starts
to appear at ca. 450 °C is ascribed to the known formation of
crystallites of a dense ZIF from ZIF-4-Co at these higher
temperatures (Fig. 2d).

Liquid-state 1H nuclear magnetic resonance (NMR) was
carried out by digesting samples of (ZIF-4-Co)(ZIF-62)(50/50)
and (ZIF-4-Co)0.5(ZIF-62)0.5 (produced by quenching from 445 °
C) in a mixture of deuterium chloride (DCl; 35%)/deuterium
oxide (D2O; 100 µL) and DMSO-d6 (500 µL) (Supplementary
Figure 10). Resonances in both spectra are fairly broad, arising
from the substantial paramagnetic broadening induced by the
presence of Co2+, predominantly in an octahedral complex
coordinated by either H2O or dimethyl sulphoxide (DMSO)39

giving the metal centre a likely electronic arrangement of t2g5eg2

and three unpaired electrons40. This prevents the integration of
most of the aromatic signals of the imidazolate ligands. Both
NCHNIm and NCHNbIm peaks are, however, well resolved in the
9–9.7 ppm high-field region and are used to determine the Im:
bIm ligand concentration ratios; values of 1:0.076 ± 0.010 and
1:0.054 ± 0.015 are obtained for (ZIF-4-Co)(ZIF-62)(50/50) and
(ZIF-4-Co)0.5(ZIF-62)0.5, respectively (Supplementary Figure 10).
Within error, these values are both in agreement with the
expected 1:0.066 stoichiometric ratio. Additionally, in the glass
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sample, a second resolved peak of the bIm ligand (CHCNbIm) can
be integrated relative to NCHN in Im, giving a 1:0.12 ± 0.01 ratio
(expected integration from stoichiometry is 1:0.13), confirming
that any loss of ligand in the amorphization process is negligible
and/or below the detection limit of NMR. The absence of
impurity peaks in the 7–9 ppm region indicates minimal
decomposition of imidazolates during digestion/amorphization.

The chemical structure of the blend was probed through
synchrotron neutron and X-ray total scattering. Whereas the X-
ray structure factor S(Q) of (ZIF-4-Co)(ZIF-62)(50/50) contained
Bragg diffraction, that of (ZIF-4-Co)0.5(ZIF-62)0.5, as expected,
did not. This rules out small regions of crystallinity in the latter
(Fig. 3a). After appropriate data corrections (see Methods
section), the data were converted to the corresponding pair
distribution functions (PDFs) (Fig. 3b), which are weighted
histograms of the atom pair distances present in both samples.
Interatomic distances at 1.3, 2, 3, 4 and 6 Å were common
between both crystal and blend samples, consistent with previous
conclusions on near-identical short-range order between crystal
and glass ZIFs14.

Above this distance, oscillations at high r were present from the
crystalline mixture (ZIF-4-Co)(ZIF-62)(50/50), though the PDF

of (ZIF-4-Co)0.5(ZIF-62)0.5 was relatively featureless. A dual-
phase refinement in PDFGUI41 of the PDF for (ZIF-4-Co)(ZIF-
62)(50/50) was performed in the range 1–15 Å, confirming the
presence of both crystalline phases (Fig. 3b inset). Neutron total
scattering was also carried out on a deuterated sample of (ZIF-4-
Co)0.5(ZIF-62)0.5 (Supplementary Figures 11 and 12). The
expected C-D peak below 1 Å was not visible in the PDF, due
to the sample containing a higher hydrogen content than
expected. Above this distance and below 6 Å, the PDF was
similar to those previously reported for deuterated Zn(Im)2
polymorphs42.

To probe the evolution in domain structure or size upon
heating, synchrotron X-ray diffraction data were collected on a
sample of (ZIF-4-Co)0.5(ZIF-62)0.5 heated from room tempera-
ture to 460 °C (Fig. 3c). The first sharp diffraction peak in the S
(Q) varied little in intensity or position. While the second and
third peaks also remained approximately invariant on heating,
some ‘flattening’ of features at high Q values occurred upon
heating above 300 °C. This temperature corresponds to the Tg of
(ZIF-4-Co)0.5(ZIF-62)0.5, and the flattening is consistent with
formation of a more liquid-like state. The peak in the D(r) at r=
1.3 Å, which only contains contributions from C-C and C-N pairs
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and no contributions from pairs involving Co or Zn, remained
constant in intensity and position (Fig. 3d). Those peaks arising
mainly from M-N1 (‘B’~2 Å), M-C (‘C’~3 Å), M-N2 (‘D’~4 Å)
and M-M (‘E’~6 Å) correlations, however, were observed to
undergo a reduction in intensity upon heating. The intensity
recovered upon cooling back to ambient temperature, showing
that no permanent change in short-range order had taken place.

To investigate the suitability of transmission electron micro-
scopy as a characterization technique for MOF glasses, pure
samples of crystalline ZIF-62, (ZIF-4-Co)(ZIF-62)(50/50) and
(ZIF-4-Co)0.5(ZIF-62)0.5 were investigated by electron energy loss
spectroscopy (EELS, Fig. 4a, Supplementary Figures 13 and 14).
The K (1s) ionization edges for C and N atoms exhibited high-
intensity π* peak features, which are a signature of conjugated
heterocycles and consistent with the π* signature previously
reported for EELS of molecular imidazole43. These observations
demonstrated that the ligands were not damaged under the
selected electron beam conditions used. A sample of (ZIF-4-
Co)0.5(ZIF-62)0.5 was subsequently investigated using annular
dark field (ADF) scanning transmission electron microscopy
(STEM) exhibiting thickness and atomic number contrast and
EELS and X-ray energy dispersive spectroscopy (EDS) for
chemical mapping at similar or lower electron beam exposures.

EELS performed on a single shard of the glass (Fig. 4a) clearly
showed the presence of Co and Zn (Fig. 4b) along with an
interfacial region. EDS was performed to yield more insight into
the domain structure and interfacial bonding present in the glass
particles too thick for EELS analysis (Fig. 4b, c). These revealed a
more extended network exhibiting relatively sharp interfaces
between Co and Zn domains. Domain sizes were observed
ranging from 200 nm to >1 µm in width. This is markedly
different to (ZIF-4-Co)(ZIF-62)(50/50), where separate particles
of each framework, without domain mixing, were located

(Supplementary Figure 15). In STEM analyses, the electron probe
is transmitted through the sample, resulting in EELS and EDS
signals that arise from the entire volume through the three-
dimensional sample. As a result, these two-dimensional analyses
alone were not sufficient to fully characterize the interfaces
between the lamellar domains of Co and Zn MOFs. Two-
dimensional interface regions with mixed signal composition are
not distinguishable from single-phase compositional domains
overlapping along the electron beam direction.

EDS tomography was performed in order to address this
uncertainty and to characterize the sharpness of the interface
between the Co- and Zn-containing regions (Fig. 5). A single-
piece shard of (ZIF-4-Co)0.5(ZIF-62)0.5 was located that contained
two large domains of predominantly Co and Zn, respectively. At
the interface, there were two regions (labelled 1 and 2 in Fig. 5)
characteristic of heterogeneous mixing between the Co and Zn
phases and exhibiting a similar interlocked microstructure as
those observed in Fig. 4b, c. Inspection of the tomographic
reconstruction volumes at these features revealed that, at feature
1, the Co protrusion is present in a region with negligible Zn
content. At feature 2, both Co and Zn were found in the same
three-dimensional region, suggesting some minor homogeneous
mixing. While some regions of the three-dimensional interface
exhibited micro-scale mixing of Co and Zn, the majority were
segregated into single-metal domains within an interlocked
network microstructure.

Mechanical properties. Nanoindentation has previously been
used to probe the Young’s moduli, E, of crystalline and amor-
phous MOFs44, though it often results in significant differences
between the identified values and those gained from computa-
tional studies. The Young’s moduli provides a descriptor of the
stiffness of a structure under strain and is highly dependent on
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the molecular structure. Nanoindentation experiments were thus
performed on two independent samples of (ZIF-4-Co)0.5(ZIF-
62)0.5. The existence of both constituent phases in a single glass
monolith, in domain sizes smaller than the indenter tip, was
confirmed by the consistency across measurements of E. Average
values of E (7.5 ± 0.5 GPa and 7.1 ± 0.4 GPa, Fig. 6a) were
recorded from the load–displacement data (Fig. 6b) of indenta-
tions on polished glass monoliths (Fig. 6a inset) between 100 nm
and 500 nm. These values lie roughly intermediate between the
upper bound of that expected for organic polymers and the lower
bound for inorganic glasses (Fig. 6c).

The blend is of comparable pycnometric density to single-
phase samples of aZIF-4-Co and the ZIF-62 glass13, 27, though it
exhibits less compliant behaviour under the indenter tip. The
increase in E relative to the pure samples (aZIF-4-Co, E= 6.6
GPa and ZIF-62 glass, E= 6.1 GPa) is ascribed to the isothermal
treatment of 2 min above Tm, which is necessary for blend
formation. This is similar to the increase in E from quenching a
ZIF-62 liquid from Tm (E= 6.6 GPa) and 572 °C (E= 8.8 GPa)13.
It should also be noted that the relatively poor agreement between
calculated and experimental values of E for MOFs has been
ascribed to various factors including the large surface effects from
small single crystals or monoliths, structural defects and
macroscale sample cracking45. The prior values of E reported
for aZIF-4-Co were gained from non-coalesced single-crystal

samples, and the extent of defects in all three systems has not
been the subject of investigation.

Discussion
We have demonstrated that the two MOF liquids derived from
ZIF-4-Zn and ZIF-62 can be blended or alloyed together. The
resultant melt-quenched glass shows a single Tg, the position of
which can be controlled according to the sample composition.
The resultant glass structure was probed through electron
microscopic measurements on a glass derived from ZIF-4-Co and
ZIF-62, finding heterogeneous domain formation. Binding
between the domains was investigated using electron tomo-
graphy, showing regions of homogeneous Co and Zn con-
centration—indicative of liquid–liquid reactivity. The absence of
complete homogeneous mixing is in this instance ascribed to the
high viscosity of both molten phases. The interfacial binding of
the separate MOF domains to one another is entirely consistent
with the observed mechanism of MOF melting, which proceeds
via imidazolate dissociation from a M2+ centre, and subsequent
association of a different imidazolate ligand. We therefore ascribe
the domain interlocking mechanism to ligand ‘swapping’ between
the liquid MOF phase and amorphous solid, resulting in the
heterometallic MOF glasses shown14. Similar heterogeneous
structures are also found in SiO2-Al2O3 glasses, where SiO2-rich
domains are embedded within Al2O3-rich phases46.
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The relationship between domain size and Tg was investigated
through the synthesis of two further (ZIF-4-Co)(ZIF-62)(50/50)
samples with both larger and smaller initial particle sizes. The
first sample was formed through light grinding of ZIF-62 and
ZIF-4-Co in a mortar and pestle and compared to a second
sample, where the two crystalline frameworks were ball-milled for
20 min together (as opposed to the 5 min used initially). EDS
experiments provided qualitative support for the differences in
domain sizes of each component using these three different
methods of sample preparation (Supplementary Figure 15).
Furthermore, DSC experiments confirmed that the sample
formed through light grinding contained two distinct Tgs (Sup-
plementary Figures 16 and 17), while that formed by ball-milling
for a longer time (Supplementary Figure 18) possesses only one,
in a near identical position to the original blend sample (ca. 300 °
C).

The binary MOF blend formed and characterized here belongs
to the compatible polymer blend category, due to the chemically
compatible interactions between the two components and the
observation of a single glass transition47. A mixture of two che-
mically incompatible MOF liquids would therefore be expected
give rise to an immiscible blend with two or more Tgs. The results
will prove important in understanding the possibilities afforded
by the glass and liquid states of MOFs, demonstrating that
blended materials containing two or more MOFs can be

produced. We have also shown that the reactivity of the liquid
MOF state may be utilized in binding to other MOF components
and that the Tg of MOF glasses may be tailored according to
blend composition.

Methods
Synthesis. All crystalline samples studied here crystallize in the Pbca space group,
with cell volumes of 4342 Å3, 4280 Å3 and 4466 Å3 for ZIF-4-Zn, ZIF-4-Co and
ZIF-62, respectively. The preparation of mixed samples was done in 0.5 g quan-
tities. For example, for a 50/50 ratio mixture, 0.25 g of each MOF was placed in a
10 ml stainless steel jar, along with 2 × 7mm diameter stainless steel balls. The
mixture was then milled for 5 min (or, to produce a finer particle size for one
control sample, for 20 min) in a Retsch MM400 grinder mill operating at 25 Hz.
Powder X-ray diffraction patterns of both ball-milled mixtures are shown in
Supplementary Information, demonstrating the lack of amorphization.

Differential scanning calorimetry. DSC characterizations were conducted using a
Netzsch STA 449 F1 instrument in platinum crucibles at a 10 °C min−1 heating
rate. The simultaneous DSC–thermogravimetric analysis in Supplementary Fig-
ure 5 was performed using a TA instruments Q-600 series differential scanning
calorimeter, with the sample (~7 mg) held on an aluminium pan under a con-
tinuous flow of dry Ar gas. The data were obtained using a heating rate of 10 °C
min−1. Tgs were determined by the method described elsewhere48.

X-ray powder diffraction. Data were collected with a Bruker-AXS D8 dif-
fractometer using Cu Kα (λ= 1.540598 Å) radiation and a LynxEye position
sensitive detector in Bragg–Brentano parafocussing geometry.

Co Zn

1

2

a b

c d

1 2

Fig. 5 EDS tomography of a (ZIF-4-Co)0.5(ZIF-62)0.5 glass particle. a Two-dimensional analyses by ADF-STEM showing the particle morphology and EDS
chemical maps of Co and Zn. Scale bar is 500 nm. b A volume rendering of the tomographic reconstructions for the Co and Zn signals (two orthogonal
viewing directions). c, d Discrete two-dimensional slices from the three-dimensional volume reconstruction for Zn plotted with the transected volume
rendering of the Co reconstruction. Two protrusions from the principal Co domain are highlighted with the numbers 1 and 2. These highlight the extent of
three-dimensional spatial overlap in Co and Zn in c, d
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Combined SAXS and WAXS. X-ray data were collected at the I22 beamline at the
Diamond Light Source, UK (λ= 0.9998 Å, 12.401 keV). The SAXS detector was
positioned at a distance of 9.23634 m from the sample as calibrated using a 100 nm
period Si3N4 grating (Silson, UK), giving a usable Q range of 0.0018–0.18 Å−1. The
WAXS detector was positioned at a distance of 0.16474 m from the sample as
calibrated using a standard CeO2 sample (NIST SRM 674b, Gaithersburg, USA),
giving a usable Q range of 0.17–4.9 Å−1. Samples were loaded into 1.5 mm dia-
meter borosilicate capillaries under argon inside a glovebox and sealed with Blu-tac
and Para-film to prevent the ingress of air. Samples were heated using a Linkam
THMS600 capillary stage (Linkam Scientific, UK) from room temperature to 600 °
C at 10 °C min−1. Simultaneous SAXS/WAXS data were collected every 1 °C. Data
were reduced to one dimensional using the DAWN package49, 50 and standard
reduction pipelines51. Values for the power law behaviour of the samples were
found using the power law model of SASView 4.1.152. Data were fitted over the
range 0.003 ≤ q ≤ 0.005 Å−1. Particle size distributions were calculated using the
McSAS package53, 54, a minimal assumption Monte Carlo method for extracting
size distributions from small-angle scattering data. Data were fitted over the range
0.002 ≤ q ≤ 0.18 Å−1 with a sphere model.

NMR spectroscopy. NMR samples were prepared by digesting ~8 mg of sample in
100 μL of 35 wt% DCl in D2O (purchased from Sigma Aldrich, 99% deuterated)
then dissolved in 500 μL of DMSO-d6 (purchased from Sigma Aldrich, 99.9%
deuterated). All 1H NMR spectra were recorded on a Bruker Avance III 400MHz
spectrometer.

Total scattering measurements. X-ray data were collected at the I15-1 beamline
at the Diamond Light Source, UK (λ= 0.161669 Å, 76.7 keV). A sample of (ZIF-4-
Co)(ZIF-62)(50/50), and a small amount of the (ZIF-4-Co)0.5(ZIF-62)0.5 sample
used in the neutron total scattering experiment were loaded into borosilicate glass
capillaries of 1.17 mm (inner) diameter. Data on the samples, empty instrument
and capillary were collected in the region of ∼0.4 <Q <~ 26 Å−1. Corrections for
background, multiple scattering, container scattering, Compton scattering and
absorption were performed using the GudrunX program55, 56. Variable tempera-
ture measurements were performed using an identical set-up, though the capillaries
were sealed with araldite. Data were taken upon heating at 25 °C, 100 °C, 200 °C,
280 °C and then in 10 °C steps to 340 °C. Further data were collected in 20 °C

intervals to 460 °C, before cooling and a final data set taken at room temperature.
Data were corrected using equivalent measurements taken from an empty capillary
heated to identical temperatures. Published structures for ZIF-4-Co and ZIF-62
were used to refine data in PDFGUI10, 33. The values U11, U22 and U33 were set to
0.003 Å2 and constrained to be isotropic. Cross-diagonal terms were set to 0, and
data beyond 15 Å were not fitted because of the lack of intensity. The final Rw value
was 0.34, due to some disordering in the initial mixture introduced by ball-milling.

Deuterated samples of ZIF-4-Co and ZIF-62 were prepared by equimolar
replacement of the hydrogenated benzimidazole and imidazole in their respective
syntheses, by the deuterated equivalents, supplied by the ISIS Deuteration Facility.
A glass sample of (ZIF-4-Co)0.5(ZIF-62)0.5 was then produced as reported in the
manuscript. Data were measured at room temperature using the NIMROD
diffractometer at ISIS57. A sample was placed into an 8-mm diameter thin-walled
vanadium can, and data from an empty vanadium can, empty instrument, 8 mm
V-5.14% Nb rod was used to correct the data in the Gudrun software55.

Gas pycnometry. Pycnometric measurements were carried out using a Micro-
meritics Accupyc 1340 helium pycnometer. The typical mass used was 200 mg; the
values quoted are the mean and standard deviation from a cycle of 10
measurements.

Electron microscopy and spectroscopy. STEM data were acquired using an FEI
Osiris microscope equipped with a high-brightness X-FEG electron source and
operated at 80 kV. The beam convergence was set to 11.0 mrad. EELS was acquired
using a post-column Gatan Enfinium spectrometer. A 2.5 mm entrance aperture
was selected, defining a collection semiangle of 19.4 mrad. Spectra were acquired in
dual EELS mode: electrons undergoing no inelastic scattering (the zero loss peak)
and those undergoing low energy losses were recorded with a fast acquisition time
(0.0001 s) and nearly simultaneously electrons undergoing inelastic scattering at
element-specific core loss ionization edges were recorded at longer exposures times
(100 ms exposure at C and N K edges and 500 ms at Co and Zn L23 edges). Probe
currents in this electron optical configuration were typically <150 pA. X-ray EDS
was acquired using a ‘Super-X’ EDS detector system with four detectors mounted
symmetrically about the optic axis of the microscope (200 ms per pixel). For all
spectroscopic data, images were also simultaneously recorded on ADF detectors.
These images contain atomic number and thickness contrast, giving structural
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information in parallel with the chemical mapping obtained in the EELS and EDS
data. For EDS tilt-series tomography, EDS spectrum images were acquired from
−70° to 70° in 10° increments.

Data were processed using Hyperspy58, an open-source software coded in
Python. For EELS data, the spectra were first aligned to the ZLP, initially by shifting
the maximum intensity channel to zero followed by cross-correlation-based sub-
pixel alignment. Spikes due to X-rays striking the charge-coupled device detector
were removed using a routine that automatically identified outlying high-intensity
pixels and performed interpolation in the spectral region after removal of the spike.
Independent component analysis was likewise performed in Hyperspy. For tilt-
series tomography, Zn and Co chemical maps were initially combined for
alignment of the tilt-series image-stack. In order to correct for detector shadowing
as a function of tilt angle, the chemical maps were re-normalized to maintain
constant integrated intensities at all tilts. This procedure was based on the constant
total quantity of Zn and Co in the particle recorded within the field of view at all tilt
angles. The combined Zn and Co image-stack was aligned using Scikit-Image, an
open-source image processing software coded in Python, first using cross-
correlation, and then the tilt axis was subsequently aligned by applying shifts and
rotations to minimize artefacts in back projection reconstructions. The alignments
were then applied to each of the Zn and Co tilt series. A compressed sensing
reconstruction algorithm coded in MATLAB (Mathworks) was then used to
perform the final independent reconstructions of the Zn and Co tilt series. Broadly,
compressed sensing tomography approaches make use of prior knowledge of the
sparsity of the signal undergoing reconstruction in a particular transform domain
(the sparsity is given as the number of non-zero intensities) in order to recover
high-fidelity tomographic reconstructions from highly undersampled tilt-series
data59, 60. This compressed sensing tomography implementation used three-
dimensional total generalized variation61 regularization for the sparsity constraint
in conjunction with a real-space projection operator from the Astra toolbox62 and
using the primal-dual hybrid gradient method63 to solve the reconstruction
problem. Reconstructions were further processed in ImageJ and FEI Avizo software
for visualization. The total particle shape recovered in the tomographic
reconstruction was used to threshold the volume to remove spurious signals due to
noise in the reconstruction volume outside the particle sub-volume. No further
processing was applied to the intensities within the particle.

Nanoindentation. The Young’s modulus (E) of the samples was measured using an
MTS Nanoindenter XP at ambient conditions. Samples were mounted in an epoxy
resin and polished using increasingly fine diamond suspensions. Indentation
experiments were performed under the dynamic displacement controlled mode, at
a constant strain rate of 0.05 s−1. All tests were conducted using a three-sided
pyramidal (Berkovich) diamond indenter tip, to a maximum surface penetration
depth of 500 nm. The load–displacement data collected were analysed using the
Oliver and Pharr method64. A Poisson’s ratio of 0.2 was used, in accordance with
prior studies on ZIF materials65.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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