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Abstract
Structure plays a key role in learning performance. In centralized computational systems, hyperparameter optimization and

regularization techniques such as dropout are computational means to enhance learning performance by adjusting the deep

hierarchical structure. However, in decentralized deep learning by the Internet of Things, the structure is an actual network

of autonomous interconnected devices such as smart phones that interact via complex network protocols. Self-adaptation of

the learning structure is a challenge. Uncertainties such as network latency, node and link failures or even bottlenecks by

limited processing capacity and energy availability can significantly downgrade learning performance. Network self-

organization and self-management is complex, while it requires additional computational and network resources that hinder

the feasibility of decentralized deep learning. In contrast, this paper introduces a self-adaptive learning approach based on

holarchic learning structures for exploring, mitigating and boosting learning performance in distributed environments with

uncertainties. A large-scale performance analysis with 864,000 experiments fed with synthetic and real-world data from

smart grid and smart city pilot projects confirm the cost-effectiveness of holarchic structures for decentralized deep

learning.
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1 Introduction

Smart citizens’ devices with increasing processing power

and high energy autonomy are becoming pervasive and

ubiquitous in everyday life. The Internet of Things

empowers a high level of interconnectivity between smart

phones, sensors and wearable devices. These technological

developments provide unprecedented opportunities to

rethink about the future of machine learning and artificial

intelligence: Centralized computational intelligence can be

often used for privacy-intrusive and discriminatory services

that create ‘filter bubbles’ and undermine citizens’ auton-

omy by nudging [12, 17, 31]. In contrast, this paper envi-

sions a more socially responsible design for digital society

based on decentralized learning and collective intelligence

formed by bottom-up planetary-scale networks run by cit-

izens [18, 40].

In this context, the structural elements of decentralized

deep learning processes play a key role. The effectiveness

of several classification and prediction operations often

relies heavily on hyperparameter optimization [27, 53] and

on the learning structure, for instance, the number of layers

in a neural network, the interconnectivity of the neurons,

the activation or deactivation of certain pathways i.e.

dropout regularization [51], can enhance learning perfor-

mance. Controlling and adjusting a deep hierarchical

structure in a centralized computing system is straightfor-

ward in the sense that all meta information for model

generation is locally available. However, in decentralized

learning the challenge of optimizing the learning structure

is not anymore exclusively a computational problem. Other

challenges such as network latency, node and link failures
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as well as the overall complexity of building and main-

taining an overlay network [36] in a distributed environ-

ment perplex the feasibility of decentralized learning.

This paper introduces the concept of holarchy in deep

hierarchical structures as the means to adapt to the afore-

mentioned uncertainties of distributed environments. A

learning process can be localized and performed over a

holarchic structure in a recursive way without changing the

core learning logic and without employing additional

mechanisms to reconfigure the network. This is the pro-

posed self-adaption approach to decentralized learning that

is by design highly reactive and cost-effective as it maxi-

mizes the utilization of the available communication and

computational resources, in contrast to a complementary

and more proactive self-organization approach that

requires additional interactions between agents and there-

fore can increase communication and computational cost.

By using holarchies for learning, forward propagation and

backpropagation become recursive in nested levels over the

deep hierarchical structure as the means to (i) explore

improving solutions, (ii) mitigate learning performance in

case part of the network is disconnected or even (iii) boost

learning performance after the default learning process

completes. These three scenarios are formalized by three

holarchic schemes applied to a multi-agent system for

decentralized deep learning in combinatorial optimization

problems: I-EPOS, the Iterative Economic Planning and

Optimized Selections [40].

A large-scale performance analysis with 864,000

experiments is performed using synthetic and real-world

data from pilot projects such as bike sharing, energy

demand and electric vehicles. Several dimensions are

studied, for instance, topological properties of the deep

hierarchical structure, constraints by the agents’ prefer-

ences and the scale of the holarchic structures, i.e. number

of nested layers. Results confirm the cost-effectiveness of

the holarchic learning schemes for exploration, mitigation

and boosting of learning performance in dynamic dis-

tributed environments. Nevertheless, in stable environ-

ments the localization of the learning process within

holarchic structures may result in lower performance

compared to a learning applied system-wide.

In summary, the contributions of this paper are the

following:

– A novel self-adaptation approach to decentralized deep

learning as the means to decrease or avoid the

communication and computational cost of self-organi-

zation in distributed environments with uncertainties.

– The concept of holarchy as a self-adaptation approach

for decentralized deep learning.

– The introduction of three holarchic schemes as self-

adaptation means to explore, mitigate and boost deep

learning performance.

– The applicability and extension of I-EPOS with the

three holarchic schemes to perform collective decision-

making in decentralized combinatorial optimization

problems.

– An empirical performance analysis of 864,000 bench-

mark experiments generated with synthetic and real-

world data from Smart Grid and Smart City pilot

projects.

This paper is organized as follows: Sect. 2 introduces the

concept of holarchy in decentralized learning as well as

three holarchic schemes to explore, mitigate and boost

deep learning performance under uncertainties of dis-

tributed environments. Sect. 3 illustrates a case study of a

decentralized deep learning system to which the three

holarchic schemes are applied: I-EPOS. Sect. 4 shows the

experimental methodology followed to conduct a large-

scale performance analysis of the three holarchic schemes.

Section 5 illustrates the results of the experimental evalu-

ation. Section 6 summarizes and discusses the main find-

ings. Section 7 positions and compares this paper with

related work. Finally, Sect. 8 concludes this paper and

outlines future work.

2 Holarchic structures for decentralized
deep learning

This paper studies decentralized deep learning processes in

which the deep hierarchical structure is fully distributed

and self-organized by remote autonomous (software)

agents that interact over a communication network. In

other words, the learning process is crowd-sourced to cit-

izens, who participate by contributing their computational

resources, for instance their personal computers or smart

phones. The agents reside on these devices and collectively

run the decentralized learning process. For example, in

contrast to a conventional model of a centralized neural

network, which performs training by locally accessing all

citizens’ data, a collective neural network consists of

neurons that are remote citizens’ devices interacting over

the Internet to form an overlay peer-to-peer network [36].

It is this overlay network that represents the hierarchical

neural network structure.

Methods for hyperparameter optimization of the hier-

archical structure to improve the learning performance of a

model are usually designed for centralized systems in

which all information, including input data, the network

structure and the learning model itself are locally available.

This provides a large spectrum of flexibility to change the
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deep hierarchical structure offline or even online [16, 42]

and determine via hyperparameter optimization the settings

that maximize the learning performance. In contrast to

learning based on centralized computational systems, in

decentralized deep learning the structure cannot arbitrary

change without paying for some computational and com-

munication cost. Network uncertainties such as node and

link failures, latency as well as limited resources in terms

of bandwidth, computational capacity or even energy in

case of sensors and smart phones can limit performance,

interrupt the learning process and increase the design

complexity of decentralized hyperparameter optimization.

The aforementioned uncertainties of distributed envi-

ronments introduce endogenous constraints in parts of the

deep hierarchical structure: the learning process is inter-

rupted and becomes localized within branches of the

hierarchical structure. For instance, node and link failures

or suspension of the learning processes due to conservation

of resources [2, 52] in nodes are scenarios under which

learning can be localized. This paper poses here the fol-

lowing question: How to preserve the learning capacity of a

decentralized system, whose learning process is interrupted

and localized by aforementioned uncertianties in dis-

tributed environments? On the one hand, it is known that

localization and greedy optimization can underperform

with search becoming trapped to locally optimum solutions

that have a significant divergence from global optimality

[3]. On the other hand, limiting the learning units of hier-

archical structures can also increase learning performance

by preventing overfitting as known by the dropout concept

in neural networks [51]. This paper sheds light on the role

of localization in decentralized learning.

In this context, the management of the learning perfor-

mance of an algorithm is no longer entirely a computa-

tional challenge but rather a multifaceted self-adaptation

process: Other aspects such as performance exploration,

mitigation and boosting come to the analysis foreground.

Exploration adapts the learning process and the search

space to improve learning performance under localization.

Mitigation is the maintenance of a high learning perfor-

mance under a localization of the learning process. Finally,

the feasibility of boosting the learning performance under

localization is subject of this study as well.

This paper introduces the concept of holarchy in deep

learning hierarchical structures to study the performance

exploration, mitigation and boosting potential under the

aforementioned uncertainties of distributed environments.

A holarchy is a recursive hierarchical network of holons

that represent part of the deep hierarchical structure as well

as the whole structure. In the case of a tree topology, every

possible branch (part) in the whole tree topology is also a

tree topology (whole). When an agent (parent) connects

two branches, it forms another nested holon that is the next

level of the holarchic structure. This recursive process

starts from the parents of the leaves in the tree and pro-

gresses up to the root as shown in Fig. 1. Learning itera-

tions can be independently executed in every holonic

branch before the process progresses to the next level of the

holarchic structure, in which a new series of learning

iterations are executed. The top holonic branch is actually

the whole tree topology and therefore the execution of

learning iterations at this top level corresponds to the

learning iterations without a holarchic structure. In other

words, the concept of holarchy introduces multiple local-

ized, nested and incremental learning processes.

The nested learning processes of a holarchic system

enable the management of each level independently from

the higher and lower levels, which further allows the

management separation between the agents at each level.

This is a divide-and-conquer approach to complex system

management and hence improves localization, parallelism,

reusablity and diversity with a potential in improving

system performance and robustness while decreasing costs

[7]. From a software engineering perspective, the following

key properties of a holonic design are identified [7, 9]:

(i) Bottom-up abstraction that represents the aggregation of

information from lower levels. (ii) Partial isolation within

and among levels—ensuring an agent’s decision results

from the aggregation of agents’ decisions at a lower level

and results in the agent’s decision at a higher level, hence

other agents do not influence. (iii) Inter-level time tuning—

ensuring that the relative execution times at different hol-

archic levels are set in order to avoid cross-level oscilla-

tions and divergence.

This paper studies whether learning processes structured

within holarchies are cost-effective countermeasures to

adapt to the uncertainties of distributed environments.

Holarchies can provide the following operational flexibility

and adaptation: (i) The learning process can be limited to a

targeted part of the network to prevent a network-wide use

of computational and communication resources, i.e. agents

can participate in the learning process on-demand. Any

failure to serve the participation does not disrupt the

learning process that can continue within part of the net-

work. (ii) The mapping and deployment of holarchies on

the network can be designed according to the network

heterogeneity, i.e. varying latency, computational and

battery capacities. For instance, higher performing nodes

can be placed at the bottom of a holarchy to serve their

more frequent recurrent use in bottom-up learning

interactions.

This paper studies three self-adaptation scenarios of the

holarchic concept in decentralized deep learning each

designed for performance exploration, mitigation and

boosting respectively: (i) holarchic initialization, (ii) hol-

archic runtime and (iii) holarchic termination. Assume a
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baseline scheme that involves a tree structure with agents

interacting in a (i) bottom-up phase and a (ii) top-down

phase that both complete a learning iteration. The former

phase may represent a fit forward learning process starting

from the leaves and completing to the root while the latter

phase a backpropagation starting from the root and reach-

ing back the leaves. Without loss of generality, an exact

decentralized learning algorithm realizing these concepts is

presented in Sect. 3. Learning iterations repeat to decrease

a cost function. Learning converges when a certain number

of iterations is performed or when the cost function cannot

be decreased further. Figure 2a illustrates the baseline

scheme.

Figure 1c depicts one baseline learning iteration, while

within each nested holon formed during the bottom-up

phase several learning iterations are performed. This pro-

cess is common in all holarchic schemes. Holarchic ini-

tialization is applied before baseline to perform an

exploration of the search space. Several learning iterations

can be performed before switching to baseline as illustrated

in Fig. 2b. In contrast, holarchic runtime applies holarchic

learning throughout runtime without switching to baseline

as shown in Fig. 2c. This scheme is applicable in self-

adaptation scenarios of failures or conservation of resour-

ces to mitigate losses of learning performance. Finally,

holarchic termination is applied after the baseline conver-

gence as the means to further boost the baseline perfor-

mance. This self-adaptation scheme is shown in Fig. 2d.

3 Applicability of holarchic schemes

This section illustrates a case study for the applicability of

holarchic structures in decentralized deep learning for

combinatorial optimization problems: I-EPOS,1 the Itera-

tive economic planning and optimized selections [35, 40].

I-EPOS consists of agents that autonomously plan resour-

ces they consume and produce. Planning is a process of

resource scheduling or resource allocation. For instance

agents may represent smart phone apps (personal assis-

tants), cyber-physical controllers or smart home informa-

tion systems with the capability to plan the energy

consumption of residential appliances, the charging of

electric vehicles or the choices of bike sharing stations.

Planning serves the local resource requirements of users as

well as system-wide objectives, for instance, the decrease

of demand oscillations in the whole power grid to prevent

blackouts [39], the synchronization of power demand with

the availability of renewables [1] or the load-balancing of

bike sharing stations to decrease the operational costs of

manual bike relocations [40, 50].

I-EPOS introduces the computational model of locally

generated possible plans that represent users’ operational

flexibility on how resources can be consumed or produced.

For instance, a user may turn on a laundry machine earlier

or later in time, can choose among two or more stations to

return a shared bike, etc. Computationally, plans are vec-

tors of real values and agents need to collectively choose

one and only one of these plans to execute so that the

summation of all these selected plans satisfies a system-

wide objective measured by a global cost function. This

paper focuses on the computational problem of the vari-

ance minimization that is a quadrtic cost function, which

cannot be locally minimized: coordination and collective

decision-making is required [43]. Choosing the optimum

combination of plans, whose summation minimizes a

quadratic cost function is a non-convex combinatorial

optimization problem known to be NP-hard [41].

Among the global cost that captures system-wide

objectives, agents can also assess a local cost of their

possible plans that may represent a notion of discomfort or

inconvenience [37]. For instance, the longer the time period

a user shifts the energy consumption earlier or later in time
1 Available at www.epos-net.org (last accessed: September 2018)

(a) Learning iterations
between the leaves and
their parents.

(b) Progress to the next
level. Learning iterations
are performed within tree
branches.

(c) Holarchic learning
completes with learning
iterations performed over
the whole tree structure.

Fig. 1 The concept of holarchic

learning. Learning iterations are

performed in nested branches,

the holons. c Actually depicts

the default baseline learning

strategy, while a and b show the

earlier learning iterations

performed within the holons
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to prevent a power peak (global cost reduction) the higher

the level of disruption is in the regular residential activities

of a user (local cost increase). The agents’ choices can be

autonomously parameterized to increase or decrease the

priority of minimizing the local cost over the global cost.

This trade-off is regulated by the k parameter for each

agent. A k ¼ 0 results in choices that exclusively minimize

the global cost, i.e. variance, and ignores the local cost. In

contrast, a k[ 0 biases the agents’ choices to favor plans

with a lower local cost.

Learning is performed as follows: agents self-organize

[36] in a tree network topology over which collective

decision-making is performed—a plan is chosen by taking

into account the following aggregate information (element-

wise summation of vectors): (i) the aggregate plan choices

of the agents in the branch underneath made available

during the bottom-up phase and (ii) the aggregate plan

choices of all agents at the previous learning iteration made

available during the top-down phase. Note that decision-

making remains highly localized and decentralized as the

planning information of the other agents is always at an

aggregate level, i.e. the possible plans of other agents are

not explicitly required.

Several of the following factors influence the learning

performance defined by the level of the global cost

reduction and the number of learning iterations required to

minimize variance: (i) the positioning of the agents in the

tree that determines the order of the collective choices

made, (ii) the k parameter that regulates the trade-off of

global versus local cost and (iii) the overall topological

structure and specifically in this paper the number of

children c in balanced trees is studied.

(a) Baseline : Throughout runtime a fixed number of learning iterations is performed
during which convergence is potentially achieved. The bottom-up phase starts from the
leaves and progresses level-by-level up to the root, while the reverse process (backpropaga-
tion) is performed in the top-down phase. In both phases, the parent-children interactions
always progress to the next level, in contrast to the holarchic strategies in which learning
iterations are performed in nested tree branches as shown below.

(b) Holarchic initialization : Before the baseline execution, holarchic learning is per-
formed.

(c) Holarchic runtime : Holarchic learning is performed throughout the runtime. Note
that one learning iteration corresponds to multiple holarchic iterations performed in each
holon.

(d) Holarchic termination : Holarchic learning is activated after convergence is reached
with baseline to potentially discover improved solutions.

Fig. 2 The four learning

schemes studied and compared

in this paper
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Improving the learning performance by repositioning

the agents in the tree or adapting the topology is complex

and costly in distributed environments as the aforemen-

tioned self-organization methodologies are based on sup-

plementary distributed protocols that consume resources,

i.e. exchange of messages, computational power, energy,

etc. Moreover, any node or link failure limits the compu-

tation of the aggregate plans at a branch level and therefore

the collective decision-making cannot be anymore per-

formed over all participating agents. The applicability of

the holarchic schemes does not require any change in the

logic of I-EPOS. The algorithm is localized and applied

within multiple nested and connected branches even when

the network becomes disconnected due to node and link

failures: a disconnected agent triggers adaptation by chil-

dren that turn to roots of holons and initiate the top-down

phase of I-EPOS. The fact that a number of agents is iso-

lated and does not participate in the learning process is the

self-adaptation means to traverse the optimization space

via alternative pathways. This has the potential to explore

improving solutions, mitigate performance loss compared

to a total interruption of I-EPOS, or even boost the

reduction of the global cost that cannot be decreased any-

more with I-EPOS.

Note that I-EPOS is selected to evaluate the applica-

bility of holarchic schemes as it is a fully decentralized and

hierarchical learning algorithm. The goal of learning in

terms of whether it is designed for classification, predic-

tion, pattern recognition, etc. or whether textual or image

data are used, do not influence the applicability of hol-

archic schemes. The rest of this paper illustrates an

empirical performance analysis of the three holarchic

schemes and their applicability to I-EPOS.

4 Experimental methodology

This section illustrates the system prototyping, the varying

dimensions in the experiments and the experimental set-

tings. It also illustrates the evaluation metrics used to

assess the holarchic learning schemes.

4.1 Prototyping and test runs

An open-source implementation of I-EPOS2 is used for the

prototyping of the holarchic schemes.3 The software is

implemented using the Protopeer distributed prototyping

toolkit [13] and is designed to run in a simulation and live

mode. A software artifact4 of EPOS for the broader sci-

entific community is available for further research and

evaluations [35, 40]. The actual experiments are deployed

and parallelized in the Euler5 cluster computing infras-

tructure of ETH Zurich.

4.2 Varying dimensions and performed
experiments

The following system dimensions are studied: (i) applica-

tion scenarios, (ii) holarchic schemes, (iii) scale of hol-

archy, (iv) number of children c in the tree network, (v)

different agent preferences k.
Synthetic and empirical plans are generated for 1000

agents using data from real-world pilot projects. These four

application scenarios are referred to as follows: (i) syn-

thetic, (ii) bike sharing, (iii) energy demand and (iv)

electric vehicles.

The synthetic dataset consists of 16 possible plans of

size 100 generated from a standard normal distribution

with a mean of 0 and a standard deviation of 1. A random

local cost is assigned to the plans, i.e. the index of the plan

represents its cost.

The bike sharing dataset6 of the Hubway bike sharing

system7 in Paris is used to generate a varying number of

plans of size 98 for each agent based on the unique historic

trips performed by each user. Therefore, the plans represent

the trip profiles of the users and they contain the number of

incoming/outgoing bike changes made by each user in

every station [38]. The local cost of each plan is defined by

the likelihood of a user to not perform a trip instructed in

the plan [40]. For instance, if three plans are chosen 4, 5

and 1 days during the measured time period respectively,

the local cost for these plans is 0.6, 0.5 and 0.9

respectively.

The energy demand dataset8 is generated via disaggre-

gation of aggregate load obtained from the Pacific

2 Available at https://github.com/epournaras/EPOS (last accessed:

September 2018).
3 Available at https://github.com/ysrivatsan/EPOS/tree/Srivatsan

(last accessed: September 2018).

4 Available at http://epos-net.org/software/exemplar/ (last accessed:

September 2018).
5 Available at https://scicomp.ethz.ch/wiki/Euler (last accessed:

September 2018).
6 Available at http://epos-net.org/shared/datasets/EPOS-BICYCLES.

zip (last accessed: September 2018).
7 The plans are generated using the dataset made available in the

context of the Hubway Data Visualization Challenge: http://

hubwaydatachallenge.org/ (last accessed: September 2018).

Although this dataset does not contain personalized records, user trips

are extracted from user information: zip-code, year of birth and

gender. All trips that have common values in these fields are assumed

to be made by the same user. The timeslot is chosen from 8:00 a.m. to

10:00 a.m. All historic unique trips a user did in the defined timeslot

of a week day are considered as the possible plans for that day.
8 Available at http://epos-net.org/shared/datasets/EPOS-ENERGY-

SUBSET.zip (last accessed: September 2018).
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Northwest Smart Grid Demonstration Project (PNW) by

Battelle.9 The disaggregation algorithm and the raw data

are illustrated in earlier work [39]. The generated dataset

contains 5600 agents representing residential consumers.

Every agent has 10 possible plans, each with length 144

containing electricity consumption records for every 5 min.

The first plan corresponds to the raw data. The next three

possible plans are obtained via the SHUFFLE generation

scheme [39] that randomly permutes the values of the first

plan. The next three plans are generated with the SWAP-15

generation scheme [39] that randomly picks a pair of val-

ues from the first plan and swaps their values. The process

repeats 15 times. Respectively, the last three plans are

generated by SWAP-30 [39] that applies the same process 30

times. The local cost of each plan represents the level of

perturbation introduced on the first plan, i.e. on the dis-

aggregated data, by the plan generation scheme. It is

measured by the standard deviation of the difference

between the raw and the perturbed plan values, element-

wise: rðx1 � y1; . . .; x144 � y144Þ.
The plans10 for the electric vehicles are generated using

data11 from the Household Travel Survey of the California

Department of Transportation during 2010–2012. The

plans concern the energy consumption of the electric

vehicles by charging from the power grid. Four plans per

agent with size 1440 are generated by extracting the

vehicle utilization using the historical data and then com-

puting the state of charge by redistributing the charging

times over different time slots. The methodology is out-

lined in detail in earlier work [38]. The local cost of each

plan is measured by the likelihood of the vehicle utilization

during the selected charging times.

The learning schemes studied are the baseline that is

default I-EPOS and the three holarchic schemes: Holarchic

initialization is used as an exploration strategy to evaluate

its likelihood to improve the learning capacity. Holarchic

runtime is used as a mitigation strategy to evaluate the

maintenance of learning capacity in distributed environ-

ments under uncertainties. Finally, holarchic termination is

used as a boosting strategy to evaluate the likelihood of

improving the learning capacity. In each holon of the

holarchic schemes within one main learning iteration, s ¼
5 holarchic iterations are executed.

Two holarchic scales are evaluated: (i) full and (ii)

partial. The full scale uses all levels of the baseline tree

network to apply a holarchic scheme as also shown in

Fig. 1. In contrast, partial scale is applied in one branch

under the root.

The influence of the topological tree structure and agent

preferences on the learning capacity is studied by varying

respectively the number of children as c ¼ 2; . . .; 5 and the

k parameter as k ¼ 0; 0:25; 0:5; 0:75. Table 1 summarizes

the dimensions and their variations in the performed

experiments.

The total experiments performed are calculated as fol-

lows: For the dimension of application scenarios, 4 varia-

tions are counted and 3 variations for the learning schemes

given that the baseline and the holarchic termination can be

generated within one experiment. The partial scale uses all

possible branch combinations: 2þ 3þ 4þ 5 ¼ 14 varia-

tions plus 4 variations for the full scale result in 18 total

variations for the two dimensions of holarchic scale and

number of children. Finally, 4 variations are counted for

the dimension of agent preferences. The total number of

4 � 3 � 18 � 4 ¼ 864 variation combinations is the total

number of experiments performed. Each experimental

combination is repeated 1000 times by (i) 1000 samples of

possible plans in the synthetic scenario and (ii) 1000 ran-

dom assignments of the agents in the tree network in the

other three application scenarios. Therefore, the total

number of experiments performed is

864 � 1000 ¼ 864; 000.

4.3 Evaluation metrics

Performance is evaluated with the following metrics: (i) s-

tandardized global cost, (ii) improvement index and (iii)

communication cost.

The standardized global cost is the variance of the

global plan at convergence time. The minimization of the

variance is the optimization objective and therefore the

variance is used as the criterion of the learning capacity.

Standardization12 is applied on the variance so that the

learning capacity among different datasets can be

compared.

The improvement index I measures the reduction or

increase of the global cost at convergence time for the

holarchic schemes compared to the baseline. Positive val-

ues indicate an improvement of the baseline, while nega-

tive values show a deterioration. The improvement index is

measured as follows:

I ¼ Cb � Ch

Cb þ Ch
ð1Þ

where Cb is the global cost for the baseline and Ch is the

global cost for a holarchic scheme, both at convergence

9 Available upon request at http://www.pnwsmartgrid.org/partici

pants.asp (last accessed: September 2018)
10 Available at http://epos-net.org/shared/datasets/EPOS-ELEC

TRIC-VEHICLES.zip (last accessed: September 2018).
11 Available at www.nrel.gov/tsdc (last accessed: September 2018).

Electric vehicles equipped with GPS are selected.

12 Standardization transforms the global cost values to have zero

mean and units of variance as follows: x�l
r
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time. The improvement index is calculated based on the

principle of the symmetric mean absolute error, which

compared to the mean absolute error can handle single zero

values, it is bound to ½�1; 1� and eliminates very large

values originated by low denominators [21].

The communication cost measures the number of mes-

sages exchanged to complete a learning iteration and can

be distinguished to total and synchronized. The total

communication cost counts all exchanged messages

between the agents during a learning iteration and it is

calculated for the baseline Mb as follows:

Mb ¼ 2ðc0 þ � � � þ cl � 1Þ ð2Þ

where c is the number of children in a balanced tree.

Equation 2 sums up the number of agents in each level of

the tree and substracts 1 to count the number of links.

Multiplication by 2 counts both bottom-up and top-down

phases. The total communication cost of a holarchic

scheme can be measured as follows:

Mt ¼ 2s
Xl

j¼0

cl�jðc0 þ � � � þ c j � 1Þ ð3Þ

where c is here again the number of children in a balanced

tree/holarchy and s is the number of holarchic iterations.

The summation starts from leaves (level j ¼ 0), and pro-

gresses to the root of the holarchy (at level j ¼ l). Equa-

tion 3 multiplies the number of agents cl�j at each level

l� j with 2s times (s bottom-up and s top-down holarchic

iterations) the number of agents in the branches under-

neath: c0 þ � � � þ c j � 1. For example, j ¼ 0 corresponds to

Fig. 1a with a communication cost of

2s22ð20 þ 21 � 1Þ ¼ 16s. j ¼ 1 corresponds to Fig. 1b

with a communication cost of 2s21ð20 þ 21 þ 22 � 1Þ ¼
24s and respectively, for j ¼ 2 and Fig. 1c communication

cost is calculated as 2s20ð20 þ 21 þ 22 þ 23 � 1Þ ¼ 28s.
These nested calculations for the full holarchy sum up to

Mt ¼ ð16þ 24þ 28Þs ¼ 68s messages.

The synchronized communication cost counts the

number of messages exchanged within holons, while

counting this number only once for holons at the same level

which can exchange messages in parallel. For instance,

Fig. 1a illustrates four parallel holons with a total com-

munication cost of 2s22ð20 þ 21 � 1Þ ¼ 16s messages.

Instead, the synchronized communication cost counts for

2sð20 þ 21 � 1Þ ¼ 4s messages. The synchronized com-

munication cost of a full holarchy can be measured as

follows:

Ms ¼ 2s
Xl

j¼0

ðc0 þ � � � þ c j � 1Þ ð4Þ

where c is the number of children and s the number of

holarchic iterations. Note that the synchronized commu-

nication cost considers holons performing in parallel and

not individual agents, that is why within each holon all

messages exchanged are counted. For the same reason, the

synchronized communication cost for baseline is not

defined for a fairer comparison with holarchic schemes.

4.4 Computational challenge

To better understand the computational challenge and

context in which the performance of the holarchic schemes

is studied, the performance characteristics of the baseline

are illustrated in this section. Figure 3 illustrates the

Table 1 Dimensions and their variations in the total of 864,000 experiments

Dimension Variation 1 Variation 2 Variation 3 Variation 4

Application scenario Synthetic Bike sharing Energy demand Electric vehicles

Learning scheme Baseline Holarchic initialization Holarchic runtime Holarchic termination

Holarchic scale Full Partial – –

Number of children (c) c ¼ 2 c ¼ 3 c ¼ 4 c ¼ 5

Agent preferences (k) k ¼ 0 k ¼ 0:25 k ¼ 0:5 k ¼ 0:75

Total experiments: 864,000
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Fig. 3 Learning curves of I-EPOS for the four benchmark application

scenarios with 1000 agents generating 4 plans and choosing a plan

with k ¼ 0
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learning curves of the baseline in the four application

scenarios.

The learning performance of I-EPOS shows the fol-

lowing behavior: Global cost decreases dramatically in

very few iterations in all application scenarios, while the

decrease is monotonous. Therefore, I-EPOS has a superior

efficiency to learn fast combinations of plans that minimize

the variance by executing 10–15 iterations. Convergence

does not necessarily mean that the globally optimum

solution is found. The evaluation of the global optimality in

a system with 1000 agents and more than 4 plans per agents

is computationally infeasible given the exponential com-

plexity of the combinatorial space: 41000. For this reason,

the global optimality is evaluated using brute force search

in a small-scale system of 10 agents with 4 plans per agent

and k ¼ 0. Therefore the total number of solutions is 410.

Each experiment is repeated 10 times by shuffling the

agents over a binary tree. Fig. 4 illustrates the global

optimality results for each application scenario.

I-EPOS finds the 0.007%, 0%, 0.017% and 0.153% top

solution in each of the application scenarios of Fig. 4. Note

that such a significant optimality may not be achieved for

systems with thousands of agents and several plans. Nev-

ertheless, designing a new learning scheme to overpass this

performance level, without introducing additional com-

plexity and resources is a challenge and potentially not an

endeavor worth pursuing. Instead this paper studies hol-

archic structures as learning strategies to explore, mitigate

and boost the cost-effectiveness of I-EPOS in distributed

environments and in this sense the notion of holarchy is the

means for decentralized learning to tolerate their

uncertainties.

5 Experimental evaluation

This section illustrates the learning capacity of the three

holarchic schemes followed by the trade-offs and cost-ef-

fectiveness of the holarchic runtime. All main experimental

findings are covered in this section and an appendix

provides supplementary results that cover the broader

range of the varying parameters. The results in the

appendix are included for the sake of completeness of the

paper and future reference.

5.1 Learning capacity

Figure 5 illustrates the learning curves for the four appli-

cation scenarios and learning schemes. The partial scale

with k ¼ 0 and c ¼ 2 is illustrated. The learning curves for

the full scale, k ¼ 0:5 and c ¼ 5 are illustrated in Fig. 12 of

Appendix 1.

The following observations can be made in Fig. 5:

Holarchic runtime achieves the fastest convergence speed

given the several multi-level holarchic iterations performed

within a main learning iteration. However, a performance

sacrifice in global cost is observed, which is though low

and observable for the scenario of electric vehicles in

which the global cost is 10% higher than the baseline.

Moreover, within 7–8 iterations all holarchic schemes

achieve the global cost reduction of the baseline. The

convergence speed of the holarchic initialization is 1–2

iterations slower than the baseline, though this insignificant

difference is not anymore observable in the scenario of

electric vehicles.

Figure 6 illustrates the improvement index of the hol-

archic schemes for different application scenarios and

different k values. The exploration potential of the hol-

archic initialization is indicated by the error bars above the

mean. Moreover, holarchic initialization does not influence

significantly the global cost reduction, however, for higher

k values, i.e. k ¼ 0:75, an average increase of 0.5% is

observed in the improvement index. This means that in

more constrained optimization settings, the exploration

strategy of the holarchic initialization contributes a low

performance improvement. In contrast, the mitigation

strategy of the holarchic runtime manages to preserve the

baseline performance with an improvement index of values

close to 0. An average performance boosting of 1.65% is

observed via the holarchic termination in the bike sharing
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scenario that has sparse data, while in the other scenarios

no significant improvement is observed.

Figure 7 illustrates the improvement index of the hol-

archic schemes for different application scenarios and

different c values. Holarchic initialization retains an aver-

age improvement index of � 0:008 while it can scale up the

improvement index to values of 0.225 on average. The

number of children does not influence the performance of

this holarchic scheme. In contrast, the holarchic runtime

shows an average increase of 4.1% in the improvement

index by increasing c from 2 to 5, while this holarchic

scheme serves well its performance mitigation role: an

average improvement index of � 0:041. Finally, holarchic

termination boosts performance by 1.1% in the bike shar-

ing scenario.

Figure 8 demonstrates the higher performance that the

partial scale shows compared to full scale: 0.25% higher

improvement index for holarchic initialization and 6.5%

for holarchic runtime.

Figure 13, 14 and 15 of Appendix 1 show the proba-

bility density of the improvement index for different k,
c values and holarchic scales respectively. In these fig-

ures one can study in more detail the density of the

improvement index values behind the error bars of the

respective Fig. 6, 7 and 8.
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Fig. 5 Learning curves. Dimensions learning schemes, application scenarios. Settings partial scale, k ¼ 0, c ¼ 2
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Fig. 6 Improvement index. Dimensions holarchic schemes, application scenarios, different k values. Settings partial scale, c ¼ 2
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The rest of this section studies the trade-offs and the

cost-effectiveness of the holarchic runtime designed for the

mitigation of the learning performance.

5.2 Trade-offs and cost-effectiveness

Figure 9a illustrates the communication cost per iteration

of the baseline versus the total and synchronized commu-

nication cost of the holarchic runtime. This is a worse case

scenario as applying the holarchy to a smaller branch or for

a fewer than 5 holarchic iterations can make the commu-

nication cost equivalent13 to the one of the baseline. In

Fig. 9a, the communication cost of the holarchic runtime

decreases as the number of children increases given that the

recursion of the holarchy is limited to a lower number of

levels in the tree, i.e. fewer holons are formed. The syn-

chronized communication cost is on average 45% lower

than the total communication cost.

The cost-effectiveness of the holarchic runtime is stud-

ied by fixing the communication cost for both baseline and

holarching runtime and looking into the global cost

reduction achieved for the same number of messages

exchanged. Figure 9b, c illustrate this process for total and

synchronous communication cost. Two cases are deter-

mined: (i) case 30,000 and (ii) case 50,000. Each case runs

for a given number of iterations that is determined by the

intersection with the horizontal dashed lines for each of the

c ¼ 2 and c ¼ 5. Then, the global costs can be compared

for the same number of exchanged messages as shown in

Fig. 10.

The following observations can be made in Fig. 10a–d

for the total communication cost: When c ¼ 5, the hol-

archic runtime achieves a highly equivalent performance

with the baseline. This also holds for c ¼ 2 in the scenarios

of synthetic and electric vehicles. The performance miti-

gation becomes 13.64% more significant when the syn-

chronized communication cost is counted in Fig. 10e–h.

This is also shown by the shifted probability densities of

the improvement index in Fig. 16 of Appendix 1.

These findings can be generalized further for the broader

range of communication cost as shown in Fig. 11 for c ¼ 2.
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13 The communication cost of the holarchic runtime can even

become lower than baseline assuming a holarchy at partial scale with

the agents that do not belong to the holarchy being disconnected.
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The key observation that confirms the mitigation capability

of the holarchic runtime is the comparable global cost

achieved using the communication cost required for base-

line to converge. This mitigation potential is also demon-

strated by the probability density of the relative global cost

between baseline and holarchic runtime in Fig. 17 of

Appendix 1.

Figure 11 can also be compared with Fig. 18 of

Appendix 1 that shows the cost-effectiveness under c ¼ 5.
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Fig. 10 Global cost. Dimensions baseline versus holarchic runtime, total versus synchronized communication cost, application scenarios, c ¼ 2

versus c ¼ 5, number of iterations given a communication cost, case 30,000 versus case 50,000. Settings partial scale, k ¼ 0
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Fig. 11 Cost-effectiveness. Dimensions baseline versus holarchic runtime, application scenarios, total versus synchronized communication cost.

Settings partial scale, k ¼ 0, c ¼ 2
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The performance mitigation is even higher with this

setting.

6 Summary of results and discussion

The following key observations can be made about the

learning capacity of holarchic structures: (i) The limitation

to contribute improvements in terms of global cost as

motivated in Figs. 3 and 4 is confirmed in the performed

experiments. (ii) The performance exploration, mitigation

and boosting for which the holarchic schemes are designed

are confirmed: a low and sporadic performance improve-

ment is observed by holarchic initialization, especially in

constrained environments of high k values that justifies the

exploration potential of this scheme. Similarly, the miti-

gation potential of the holarchic runtime is also confirmed

by the fast convergence and preservation of the perfor-

mance, especially for trees with a higher number of chil-

dren c. Performance boosting by holarchic termination is

scarce but observable in the bike sharing scenario that has

sparser data. (iii) Strikingly, holarchies applied at a partial

scale demonstrate higher cost-effectiveness than full scale

in all holarchic schemes, i.e. lower cost due to the higher

localization that limits communication cost and higher

effectiveness in terms of higher improvement index.

In the trade-offs of cost-effectiveness, the synchronized

communication cost is almost half of the total communi-

cation cost via a parallel execution of the learning process

using holarchic structures. Moreover, for the same com-

munication cost in baseline and holarchic runtime, the

global costs become equivalent, especially in terms of the

synchronized communication cost and for trees with a

higher number of children c.

Overall the results suggest that several parallel and

small-scale holarchic structures decrease the probability of

trapping to local optima, require a lower parallelizable

communication cost, while they better serve the purpose

they are designed for: make decentralized deep learning

more resilient to the uncertainties of distributed environ-

ments. Because of the high efficiency of I-EPOS to which

holarchic structures are applied, conclusions cannot be

reached whether the learning capacity of other mechanisms

can be enhanced using holarchic structures. Nevertheless,

another promising use case of holarchies is the multi-level

optimization of complex techno-socio-economic systems

formed by agents with different goals. In other words, the

localization of the learning process in part of the deep

hierarchical structure can represent the collective effort of a

community to meet its goal that can differ or even oppose

the goal of another community, i.e. another part of the deep

hierarchical structure.

7 Positioning and comparison with related
work

Earlier work [48, 49] identifies the key role that hierar-

chical design plays in dealing with the complexity [8] of

large-scale and highly dynamic systems. More specifically,

it is studied how such hierarchies can address the challenge

of limited rationality, which stems from the combinatorial

explosion of alternative system compositions. In the con-

text of this paper, the combinatorial explosion results from

the multitude of resource planning alternatives. Such

hierarchies are later on introduced as ‘holarchies’ by

emphasizing their recursive and self-encapsulated nature

[22] that represent both an entire system (whole) and a

mere subsystem (part).

General-purpose holonic designs that integrate the

above principles are proposed via holonic multi-agent

system platforms [44, 45]; multi-level modeling and sim-

ulation approaches [14]; and hierarchical problem solving

[24]. Customised holonic designs are been applied to var-

ious domains, including hierarchical planning [33], traffic

control [10], manufacturing [6, 15] and smart grids

[11, 25, 47]. The success of these applications motivate the

adoption of similar holonic principles for designing deep

learning systems for large-scale distributed environments.

The design of I-EPOS [35, 40], used in this paper as case

study and performance baseline, adopts a hierarchical

approach, featuring: (i) bottom-up abstraction—via the

aggregation of plans from the lower level; (ii) partial iso-

lation—as different tree branches operate in parallel; and

(iii) time tuning—by synchronizing the execution of hier-

archical levels. However, the learning process in I-EPOS

executes over the entire hierarchy—sequentially, level-by-

level—rather than being nested within multiple holarchic

levels.

Various deep learning techniques employ a hierarchical

structure for different purposes. This depends on the nature

of the learning problem, e.g. classification or prediction,

and on the context within which the learning process

executes, i.e. amount of input data and availability of

computational resources. Hierarchical models are

employed to deal with complex processing of data, by

performing learning tasks progressively within incremental

modelling levels, e.g. image classification [20, 46] and text

categorisation [23]. Hierarchical structures are employed to

process online large amounts of distributed input data,

hence scaling up machine learning techniques [28, 34].

Such learning approaches rely on data partitions—pre-ex-

isting or artificially created—over which they distribute the

learning process. The partial results from each partition are

then collected and aggregated into an overall learning
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outcome. The work of this paper is positioned and com-

pared below with some of these approaches.

An earlier survey [34] compares distributed learning

approaches with respect to their capability to (i) combine

learning outcomes among heterogeneous representations of

data partitions and (ii) deal with privacy constraints. The

studied approaches feature a two-layer hierarchy: one layer

for distributed learning across data partitions and a second

layer for collecting and aggregating the results. In contrast,

the holarchic learning design proposed in this paper

introduces multiple levels to further to enhance the learning

capacity in distributed environments under uncertainties.

The localized holons operating in parallel reuse their

learning outcomes even when the topology is clustered by

node or link failures.

MLNet [28] introduces a special-purpose communica-

tion layer for distributed machine learning. It uses tree-

based overlay networks to aggregate progressively partial

learning results in order to reduce network traffic. This

approach draws parallels with the design proposed here,

while it is more applicable at the lower communication

layers.

In dynamic environments, rescheduling, or reoptimiza-

tion [29] becomes a critical function for dealing with

unpredictable disturbances. It usually raises the additional

constraints of minimizing reoptimization time as well as

the distance between the initial optimization solution and

the one of reoptimization, e.g. dynamic rescheduling in

manufacturing systems [26] or shift rescheduling [29]. For

instance, a two-level holarchy is earlier adopted to combine

global optimization scheduling with fast rescheduling

when dynamic system disturbances occur [29]. In contrast,

the holarchic schemes of this paper do not undermine the

learning performance, while adding resilience by localizing

the learning process without reinitiating it.

Another line of relevant related work concerns the initial

selection and maintenance of the topology over which the

distributed learning process operates. Multi-agent approa-

ches often rely on self-organization by changing their

interactions and system structure at runtime. A holonic

multi-agent approach for optimizing facility location

problems is earlier introduced [32]. Facilities include dis-

tribution of bus stops, hospitals or schools within a geo-

graphical area. The agents react to mutual attraction and

repulsion forces to self-organize into a holarchy.

Stable solutions represent optimal facility localization

distributions. This self-organization process has a consid-

erable computational and communication cost, in case of

remote agents’ interactions. In contrast, the holarchic

schemes studied in this paper preserve the agents’ organi-

zational structure, while the decentralized learning process

used for system optimization is self-adapted by localizing

the learning span within part of the tree network.

The experimental work of this paper shows how dif-

ferent topological configurations, i.e. agents’ positioning

and number of children, influence learning performance.

The key role that such hyperparameters play in ensuring

the effectiveness of learning approaches is also confirmed

by related work on the optimization of the hierarchical

structure and its configuration variables. Some examples

include exhaustive search of all possibilities, (which,

however, suffers from exponential combinatorics), random

search, Bayesian optimization, e.g. in neural networks and

deep belief systems [4, 5] as well as gradient-based opti-

mization [27]. This is also relevant for deep learning

applications via unsupervised pre-training [53] and evolu-

tionary algorithms, e.g. in deep learning neural networks

[30, 54]. In the context of this work, such approaches can

be used to determine the most effective holarchic structures

and hyperparameter configurations.

8 Conclusion and future work

This paper concludes that holarchic structures for decen-

tralized deep learning can be a highly cost-effective orga-

nizational artifact for managing learning performance

under uncertainties of distributed environments. The

communication cost of self-organization can be eliminated

by self-adapting the span of the learning process at a more

localized level within the hierarchical structure as the

means to cope with failures, latency and constrained

computational resources. An extensive experimental eval-

uation with more than 864,000 experiments fed with syn-

thetic and real-world data from pilot projects confirm the

potential to explore, mitigate and boost the learning per-

formance using three respective holarchic schemes applied

to the I-EPOS decentralized deep learning system for

solving combinatorial optimization problems.

Results show that the exploration of improving solutions

is feasible and more likely to happen under stricter agents’

constraints, while performance mitigation is more effective

in balanced tree topologies with higher number of children.

Boosting the learning performance via holarchic structures

is challenging yet consistently observed under computa-

tional problems with sparse data, i.e. the bike sharing

application scenario. The partial scale of the holarchic

structures is more cost-effective than the full scale. Nev-

ertheless, when the uncertainties of distributed environ-

ments are not anymore a constraint, holarchic schemes

cannot outperform the cost-effectiveness of learning sys-

tems that make use of the whole hierarchical structure,

which is a finding consistent with earlier work on greedy

optimization and suboptimum heuristics trapped in local

optima [3].
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Mechanisms for an automated activation and deactiva-

tion of holarchic schemes as well as the applicability of

these schemes in other more complex hierarchical struc-

tures than tree topologies are subject of future work.

Applying the concept of holarchy in non-hierarchical

structures such as the unstructured learning network of

COHDA [19] can provide new means to control high

communication costs, while preserving a high learning

performance.

Acknowledgements This work is supported by the European Com-

munitys H2020 Program under the scheme ‘INFRAIA-1-2014-2015:

Research Infrastructures, Grant Agreement #654024 ‘SoBigData:

Social Mining & Big Data Ecosystem (http://www.sobigdata.eu) and

the European Communitys H2020 Program under the scheme ‘ICT-

10-2015 RIA’, Grant Agreement #688364 ‘ASSET: Instant Gratifi-

cation for Collective Awareness and Sustainable Consumerism’.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix 1: Detailed experimental results

Figure 12 compares with Fig. 5 by varying partial scale to

full (Fig. 12a–d), k ¼ 0 to k ¼ 0:5 (Fig. 12e–h) and c ¼ 0

to c ¼ 5 (Fig. 12i–l).
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scale, λ = 0, c = 2
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full scale, λ = 0,
c = 2
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cles, full scale, λ = 0,
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(e) Synthetic, par-
tial scale, λ = 0.5,
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Fig. 12 Learning curves for comparison with Fig. 5. Dimensions holarchic schemes, application scenarios, full versus partial scale, different k
values, varying number of children
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Figure 13 elaborates on the Fig. 6. It illustrates the

probability density function of the improvement index by

fixing the holarchic scale to partial, c ¼ 2 and varying all

other dimensions.

Figure 14 elaborates on the Fig. 7. It illustrates the

probability density function of the improvement index by

fixing the holarchic scale to partial, k ¼ 0 and varying all

other dimensions.

Figure 15 elaborates on the Fig. 8. It illustrates the

probability density function of the improvement index by

fixing k ¼ 0, c ¼ 2 and varying all other dimensions.

Figure 16 contrasts the improvement index of the hol-

archic runtime on the basis of total versus synchronized

communication cost. Results show an average increase of

the improvement index by 9.5%, indicated by the shift to

the right for synchronized communication.
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Fig. 13 Probability density of the improvement index that elaborates on Fig. 6. Dimensions holarchic schemes, application scenarios, different k
values. Settings partial scale, c ¼ 2
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The contrast of total versus synchronized communica-

tion cost is illustrated in Fig. 17 via the relative perfor-

mance that is defined as follows:

P ¼ C
ð1Þ
h � C

ðTÞ
h

C
ð1Þ
b � C

ðTÞ
b

ð5Þ

where C
ð1Þ
h , C

ð1Þ
b is the global cost at the first iteration t ¼ 1

for holarchic runtime and baseline respectively, while C
ðTÞ
h ,

C
ðTÞ
b is the global cost at convergence t ¼ T . This metric

encodes the additional information of the improvement

extent during the learning iterations. For instance, while

Fig. 16f shows a density with improvement index values
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Fig. 14 Probability density of the improvement index that elaborates on Fig. 7. Dimensions holarchic schemes, application scenarios, varying

number of children. Settings partial scale, k ¼ 0
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around � 0:7, the relative performance values in Fig. 17f

spread very close to 100%, which means that a perfor-

mance peak is achieved.

Figure 18 compares with Fig. 11 by varying c ¼ 2 to

c ¼ 5. In this case, the global cost of the baseline and

holarchic runtime is equivalent for the required commu-

nication cost to converge. The global cost of the holarchic

runtime requires fewer messages to drop for c ¼ 5 com-

pared to c ¼ 2 as indicated by the respective line shifted to

the left.
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Fig. 16 Probability density of the improvement index. Dimensions total versus synchronized communication cost, application scenarios, varying

number of children. Settings holarchic runtime, partial scale, k ¼ 0
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