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Abstract

In practical applications of data-driven Structural Health Monitoring (SHM),

recording labels for each of the measured signals can be infeasible and expen-

sive. In consequence, conventional methods for (supervised) machine learning

can become irrelevant in certain applications of damage classification. Semi-

supervised methods, however, allow algorithms to learn from information in

the available unlabelled measurements as well a limited set of labelled data.

As such, this paper suggests a semi-supervised Gaussian mixture model for

probabilistic damage-classification, informed by both labelled and unlabelled

signals. The generative statistical model is shown to improve the classifi-

cation performance, compared to supervised learning, with simulated and

experimental SHM data, while requiring no further inspections of the system.

Specifically, semi-supervised learning leads to 3.87% and 3.83% reductions in

the classification error for the simulated and experimental datasets respec-

tively. These results indicate that, through semi-supervised learning in SHM,

the cost associated with labelling data could be managed, as the information

in a small set of labelled signals can be combined with larger sets of unlabelled

data.
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1. Introduction

In the data-driven approach to Structural Health Monitoring (SHM) [1],2

pattern recognition (i.e machine learning [2–4]) algorithms are used to inform

the detection and classification of damage. Generally, this problem requires4

the classification of measured data into groups – corresponding to condition

states of the monitored system. While there may be an abundance of measured6

data, descriptive labels for every recorded observation are often unavailable.

These labels are critical, as they define the current operating, environmental,8

or damage condition. In almost all applications, however, labelling each

observation becomes impracticable, as this information requires an engineer10

to inspect the system, often manually; this can be expensive, infeasible, and

potentially impossible [1]. The absence of labels is significant in engineering12

applications of machine learning, as labelled data are required to learn with

conventional supervised algorithms [2]. In consequence, most practical SHM14

strategies rely on unsupervised techniques (or one-class classifiers [5]); these

methods enable damage detection, but do not allow for the classification of16

multiple data groups, which can inform SHM beyond novelty detection.

An alternative set of techniques, referred to as partially-supervised [6],18

offer another approach; specifically, the algorithms can simultaneously utilise

measurements with and without descriptive labels. Semi-supervised learning,20

a subset of the partially-supervised methods, is applied in this work. Semi-

supervised learning allows for information in a subset of labelled data to be22

used in conjunction with any unlabelled data.

A probabilistic and semi-supervised algorithm is proposed for multi-class24

classification in SHM, through a generative mixture model. The classifier is

applied to simulated and experimental SHM data for demonstration, where26

incorporating information in the unlabelled data is shown to increase the

diagnostic performance. In other words, the information in a set of unlabelled28

measurements can improve predictive performance of a classifier, alongside

the available labelled data.30

The layout of the paper is as follows. Section 2 provides an overview of

conventional pattern recognition and introduces semi-supervised learning for32

SHM. Section 3 introduces Gaussian Mixture Models for damage classification,

including semi-supervised updates (via. Expectation Maximisation) within34
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Figure 1: A framework for pattern recognition within SHM.

the probabilistic framework. Section 4 presents application of the algorithm

to simulated and experimental data. Section 5 offers concluding remarks and36

future work.

2. Semi-supervised Learning for SHM38

SHM strategies involve monitoring an engineering structure or system

using observed sensor data to make informed predictions about the current40

(and future) condition of that system. In consequence, SHM can be viewed as

a multi-class classification problem, such that measurements are categorised42

according to the correct operational, environmental, or damaged condition.

Generally speaking, the ith measured data point (or observation), xi ∈ X,44

is categorised according to a descriptive label, yi ∈ Y , which corresponds to

the ground truth of the classification problem. For SHM, each (potentially46

multivariate) observation, xi, represents features extracted from the raw

measurements following pre-processing, while the descriptive labels, yi, are48

used to specify the condition of the system, directly or indirectly; if indirectly,

diagnostic labels can be inferred through some post-processing of the pattern50

recognition outputs yi. The steps within a typical SHM strategy are shown

in Figure 1.52

Considering a probabilistic approach, it is assumed that the features

are defined by some random vector in a D-dimensional feature-space X,54

such that xi ∈ X and X ∈ R
D. Furthermore, for a discrete classification

problem, the descriptive labels are defined by a discrete random variable,56

such that yi ∈ Y = {1, ..., K}. K is the number of classes which define the

operational, environmental, and health conditions, while Y denotes the label58

space. Conventionally, there are two main frameworks for learning patterns

from data in SHM; these are unsupervised and supervised learning [1].60
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2.1. Conventional machine learning for SHM

Supervised learning algorithms require a fully-labelled dataset for training,

such that,

Dl = {(xi, yi)}
n

i=1
(1)

The training-set Dl includes both observation data and descriptive labels for62

n measured signals. As such, a supervised classifier can learn a mapping

between the feature-space and the label-space, f : X → Y . The classifier64

f , can then be used to predict the label of future measurements and inform

diagnostic decisions in an SHM context.66

Unsupervised learning, however, is applied when labels are unavailable.

In this case, the training-set is [6],

Du = {x̃i}
m

i=1
(2)

with m observations. x̃i is used herein to denote the measured data that are

unlabelled. Various data analysis and machine learning tools can be applied68

to unlabelled datasets. Some examples of methods include: dimensionality

reduction, novelty detection or outlier analysis, and clustering [2]. These tech-70

niques aim to find patterns within a dataset from the information contained

within the measured observations alone; therefore, the learning process must72

be informed by a cost function that does not utilise any of the information

from the label space, Y , as this information is not available [6].74

As discussed, fully-labelled datasets are rarely feasible in practical SHM.

Currently, this fact forces a dependence on conventional unsupervised tech-76

niques, such as novelty detection or one-class classifiers [5]. When working

with engineering data, however, it is often possible to include labels for a small78

subset of measurements [7]. In this case, it is illogical to apply supervised

learning to the small subset of labelled data, while ignoring information in80

a (potentially large) set of unlabelled data. Similarly, it is unjustified to

ignore the available labels, in order to apply unsupervised algorithms. In this82

scenario, partially-supervised methods become relevant to SHM.
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2.2. Partially-supervised learning84

Partially-supervised algorithms [6] make use of both labelled data and

unlabelled data, such that the training-set becomes,

D = Dl ∪ Du (3)

where Dl are labelled data, and Du are unlabelled data. Two of the main

partially-supervised methods are semi-supervised and active learning. Active86

algorithms query and annotate the unlabelled data in Du to automatically

extend the labelled set Dl, such that the resultant increase in the classification88

performance is maximised. As such, only the most informative observations

are queried, to make the most out of a limited labelling budget. Active90

learning has been applied to SHM data in the past, in the offline [7] and

online setting [8]. The focus of this work, however, considers semi-supervised92

variants of partially-supervised learning.

Semi-supervised learning94

Semi-supervised learning utilises both the labelled and unlabelled data to

inform the classification mapping, f : X 7→ Y . Typically, a semi-supervised96

learner will use information in Du to further update the classifier learnt from

Dl. Unlabelled data can be incorporated in various ways. The most simple98

approach, self-labelling [7, 9], trains a classifier using Dl, and then predicts

the labels for the unlabelled set x̃i. The classifier is then retrained using the100

labelled and unlabelled data. In the new training-set, some labels in D are

the ground truth, from the supervised data, and the others are pseudo-labels,102

predicted by the classifier. Self-labelling is simple and can be applied to any

supervised algorithm; however, the effectiveness is highly dependent on the104

method of implementation, and the supervised algorithm within it [9].

A more defined perspective considers low-density-separation [9]; this as-106

sumption implies that the decision-boundary of a classifier lies in low density

regions of the feature-space; as such, the distances between the decision-108

boundary and its closest points in X are maximised. The use of a maximum-

margin algorithm, such as the Support Vector Machine (SVM) [10], is most110

common in this setting; for example, the Transductive SVM (TSVM) [11]

uses both the labelled data and the unlabelled data to maximise the margin112

of the classifier – through iterative self-labelling steps.
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Generative mixture models provide an alternative framework to incor-114

porate unlabelled data [12, 13]. Specifically, generative models utilise the

cluster assumption: ‘if points are in the same cluster, they are likely to be116

of the same class’ [9]. (Note, this does not necessarily imply that each class

is represented by a single, compact cluster in the feature-space; instead, it118

implies that observations from different classes are unlikely to appear in the

same cluster [9].) When following this approach to density estimation [4], a120

mixture of base-distributions are used to estimate the underlying distribution

of the data, defined by p(xi, yi). Generative models can naturally account122

for labelled and unlabelled data, as the Expectation Maximisation (EM)

algorithm (used to learn mixture models in the unsupervised case [2, 14]) can124

be modified to incorporate labelled data [12, 15]. A strength of generative

methods is that knowledge of the data structure can be incorporated by126

modelling it – this is often available a priori in engineering applications.

However, if the assumptions of the generative model prove to be unreasonable128

(e.g unsuitable base-distributions), the structure imposed by the model can

decrease the predictive accuracy.130

More recent developments in the literature include graph-based learners

[16]; this involves building a graph, where the nodes represent observed132

data (labelled and unlabelled), and the edges represent the similarities be-

tween observations [17]. The manifold assumption is relevant here: ‘the134

(high-dimensional) data lie (roughly) on a low-dimensional manifold’ [9]. Con-

veniently, the manifold assumption addresses the curse-of-dimensionality [4],136

which leads to an increasingly sparse feature-space in high dimensions; in this

setting, statistical learning and density estimation (through generative mix-138

ture models) becomes problematic. Generally, graph-based methods inform

semi-supervised learning through the smoothness assumption (for supervised140

learning), applied to the manifold: if two observations are close in a high-

density region, they are likely to share the same label [9]. In view of this, the142

graph structure can be used to propagate labels from the labelled signals to

the unlabelled instances.144

2.3. Applications to SHM

Semi-supervised methods can bring significant advantages to SHM. For146

example, consider a wind turbine in an offshore windfarm. It is only possible
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to provide labels describing the condition of various components (such as148

the turbine blades) following manual inspection; this involves travelling to a

remote offshore location, which is a high-cost procedure. By utilising semi-150

supervised tools, the cost associated with labelling data can be managed, as

the information in a small set of labelled data can be combined with larger152

sets of unlabelled data, recorded from the monitored system.

Related work154

Semi-supervised learning has been applied to SHM in previous work. In

the context of bridge monitoring, Chen et al. introduce a graph-based ap-156

proach for label propagation [17, 18]. Specifically, the objective-function

of a multi-resolution classifier [19, 20] is modified, such that the weighting158

parameters are optimised over the labelled and the unlabelled data; addi-

tionally the graph-based classifier [17] within the heuristic is semi-supervised.160

The Shannon entropy [21] is used to approximate an uncertainty associated

with the confidence vector over the predicted labels for the unlabelled data;162

this information is included in the cost function, which learns the weights

of the multi-resolution classifier, as well as the filter-coefficients within each164

graph-based classifier [17].

Further work concerns the application of K-means [22] and fuzzy-C-means166

[23] for semi-supervised SHM. (Fuzzy-C-means [24] is an adaptation of K-

means clustering [2, 10], such that each signal can belong to more than one168

cluster, according to membership weights.) Firstly, Huang et al. [23] use

fuzzy-C-means within an online SHM strategy; the proposed method becomes170

partially-supervised during a label-matching step, where the unsupervised

clusters are compared to known classes from the supervised data. Bouzenad172

et al. [22] define a similar online heuristic using K-means; in this case, new

clusters are created when a distance-based threshold is broken within the174

unsupervised algorithm. These heuristics can be considered as clustering

with constraints [9]; an alternative view of semi-supervised learning, where176

partial-supervision is introduced through constraints on an unsupervised

algorithm.178

7



Contribution

This work suggests an alternative perspective, through generative-mixture-180

models for probabilistic and semi-supervised damage classification. Provided

certain assumptions hold, generative methods allow for predictions with well-182

defined uncertainty, under Kolmogoroff’s axioms [25] – a significant advantage

in risk-based applications1. Additionally, in an engineering context, prior184

knowledge of the structure of the measured data is often available (e.g. drifting

data streams or uni-modal clusters in the feature-space). As discussed, this a186

priori knowledge is easy to include within a generative framework, through

the model definition.188

3. Probabilistic Mixture Models for Semi-supervised SHM

For engineering datasets, assuming a parametric-statistical model (for190

density estimation) can be justified, given prior knowledge of the application.

For example, SHM data recorded from a mechanical system or structure192

should remain relatively consistent for a given operating, environmental, or

health condition – synonymous with the consistent underlying physics2 [1].194

As such, in this work, each class associated with the monitored system is

assumed to define a unimodal (single and compact) cluster in the feature196

space, X.

Specifically, the data are assumed to be generated by a Gaussian Mixture

Model (GMM) [2, 4]. Therefore, the underlying distribution of the measured

data xi ∈ X, for each class k, is described by a Gaussian distribution,

p (xi | yi = k) = N (xi |µk,Σk) (4)

where k is used to index the class group, such that k ∈ {1, ..., K}; therefore,198

µk is the mean and Σk is the covariance of the data xi with label k (i.e. there

are K Gaussian base-distributions). If the Gaussian distribution proves too200

restrictive in describing the data in each component (e.g. the class clusters

1For example, consider a certain prediction, which states an oil-rig is safe to use; this

differs significantly to an uncertain prediction, leading to the same statement.
2In turn, this justifies the cluster-assumption for semi-supervised mixture-models.
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are multi-modal), an alternative base-distribution should be selected. The202

examples in this work, however, are appropriately described by a GMM.

The discrete random variable, yi ∈ {1, ..., K}, which describes the labels

is assumed to be categorically distributed [3],

p (yi) = Cat(yi |λ) (5)

λ is vector of mixing proportions, which is a histogram over the label values,

such that λ = {λ1, ..., λK} and p (yi = k) = λk. Bayes’ rule can be applied

using (4) and (5) to define a generative classifier, used to predict the class

associated with an unseen signal, x∗
i [2],

p(y∗i = k |x∗

i , θ) =
p (x∗

i | y
∗
i = k, θ) p (y∗i = k |θ)

p(x∗
i |θ)

(6a)

θ , {Σ,µ,λ} (6b)

p(x∗

i |θ) ,
K
∑

k=1

p (x∗

i | y
∗

i = k, θ) p (y∗i = k |θ) (6c)

To learn the model by semi-supervised learning, the parameter-set θ is learnt204

using both labelled data Dl and unlabelled data Du.

3.1. Supervised Gaussian Mixture Models206

The first step in the semi-supervised GMM follows conventional supervised-

learning [2, 4]. In this work, Bayesian estimates of θ are defined by treating208

each parameter as a random variable, and placing prior distributions over

the possible outcomes. Bayesian estimates of θ exhibit a number of desirable210

properties for this application: the model becomes self-regularising, to prevent

overtraining and aid generalisation for accurate predictions given new data;212

additionally, a priori information about the structure of the data can be

included, and the zero-count problem [2] or black swan paradox [3], can be214

accommodated for.

Considering Gaussian-distributed observations in the feature-space X,

and a categorical distribution over the label-space Y , a natural choice in the

prior is a Normal-Inverse-Wishart (NIW) over Σ and µ, and a Dirichlet (Dir)

9
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Figure 2: Graphical model for the GMM p(xi, yi,θ) over the labelled data Dl. As the

dataset is supervised, both xi and yi are observed variables. (Shaded and white nodes are

the observed and latent variables respectively; arrows represent conditional dependencies;

dots represent constants (i.e. hyperparameters).)

distribution over λ [2, 3].

p(µk,Σk) = NIW(µk,Σk |m0, κ0, ν0,S0) (7)

p(λ) = Dir(λ |α) (8)

α , {α1, . . . , αk} (9)

For the hyperparameters of the NIW, m0 is the prior mean for the location of216

µk, while κ0 defines the strength of that prior; S0 is proportional to the prior

mean of the covariance Σk, while ν0 defines the strength of that prior [2]. For218

the Dirichlet distribution, the hyperparameter α incorporates prior belief in

the mixing proportions for each class, λk. As such, αk can be viewed as a220

vector of pseudo-counts, corresponding to the expected number of observations

per class. These distributions are suitable, as they are conjugate to (4) and222

(5), leading to analytically-tractable solutions of the parameter estimates,

defined in (10) and (11). A graphical model, corresponding to the labelled224

data Du, is shown in Figure 2.

In this application, the prior distributions encode the belief that the226

measured data are expected to be unit-variance and zero-mean (i.e. the

feature-space is normalised), while each class in the mixture model is equally228

likely. In consequence, the hyperparameters are: p(µk,Σk) = NIW(0, 1, D, I),

where I is a [D × D] identity matrix, and 0 is a D-dimensional vector of230
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zeros; and p(λ) = Dir(λ |α), αk = n/K, ∀k. These prior assumptions are

justified in this application, as it is possible to normalise the observation data232

in the feature-space X (both online and offline); furthermore, to represent a

general case, if a class of data is observed infrequently in the labelled data,234

this does not (necessarily) imply that the class is less likely in the unlabelled

data, or future measurements. However, if application specific knowledge is236

available, relating to the likelihood of a given class yi, this information should

be included via the Dirichlet prior. (For example, a group of data relating to238

abnormal temperatures might be associated with a low marginal probability

p(yi) through the prior.)240

Following these assumptions, the posterior distribution over the parameters

µ and Σ, given the labelled data Dl, is Normal-Inverse-Wishart [2, 3],

p(µk,Σk | Dl) = NIW (µk,Σk |mn, κn, νn,Sn) (10a)

mn =
κ0

κ0 + nk

m0 +
nk

k0 + nk

x̄k (10b)

nk ,

n
∑

i=1

δk,yi (10c)

x̄k ,

∑n

i=1
δk,yi xi

nk

(10d)

κn = k0 + nk (10e)

νn = ν0 + nk (10f)

Sn = S0 + Sk + κ0m0m
⊤

0
− κnmnm

⊤

n (10g)

Sk ,

n
∑

i=1

δk,yi xix
⊤

i (10h)

where δk,yi is the Kronecker delta function, equal to 1 when k is equal to the

observed class yi, corresponding to observation xi. The bar notation x̄k is the242

empirical mean of the data in group k, and nk is the number of observations

in that group; finally, Sk is the uncentered sum-of-squares matrix for the data244

in class k (10h).

The Bayesian estimates of µk (10b) and Σk (10g) are interpretable: the246

posterior mean mn is a complex combination of the prior and the maximum-

likelihood estimate; the posterior scatter matrix Sn is the prior scatter matrix,248
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plus the empirical scatter matrix, plus an additional term associated with

uncertainty in the mean [2].250

The posterior distribution over λ given the labelled data is [2],

p (λ | Dl) = Dir(λ | {α1 + n1, . . . , αK + nK}) (11)

Intuitively, the posterior is obtained by adding the pseudo-counts from the

prior αk to the empirical counts nk.252

The maximum a posteriori (MAP) estimate of the parameters θ̂ corre-

sponds to the mode of the posterior distribution,

θ̂ | Dl = {µ̂, Σ̂, λ̂} = argmaxθ {p(θ | Dl)} ∴ (12a)

µ̂k = mn (12b)

Σ̂k =
Sn

νn +D + 2
(12c)

λ̂k =
αk + nk − 1

∑K

k=1
αk + n−K

(12d)

The posterior predictive equations are found by marginalising out the param-

eters from the model [2]; these equations are used to estimate (4) and (5)

given the labelled data, Dl, for the predictive classifier defined in (6),

p (x∗

i | y
∗

i = k,Dl) =

∫ ∫

p(x∗

i |µk,Σk)p(µk,Σk | y
∗

i = k,Dl) dµkdΣk

= T

(

x∗

i |mn,
κn + 1

κn (νn −D + 1)
Sn, νn −D + 1

)

(13)

p (y∗i = k | Dl) =

∫

p(y∗i = k |λ)p(λ | Dl) dλ

∝
αk + nk

∑K

k=1
αk + n

(14)

where T is the Student-t distribution [2]. At this stage, the parameters that

define equations (4) and (5) have been learnt using information in the labelled254

data only.
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Figure 3: Graphical model of the GMM over both the labelled data Dl and the unlabelled

data Du. For the unsupervised set, the only observed variable is x̃i, while ỹi is a latent

variable.

3.2. Semi-supervised updates: Expectation Maximisation (EM)256

The distribution over the parameters θ is now updated using the unla-

belled data Du. For the unlabelled observations, the label yi can be considered258

a latent variable, herein denoted ỹi. In this situation, the maximum a poste-

riori (MAP) estimate is more challenging to compute [2]. The Expectation260

Maximisation (EM) algorithm [14] is one method that solves this issue. The

appropriate implementation of semi-supervised EM [15, 16] is similar to the262

unsupervised case, however, the log-likelihood of the model (and therefore

the E/M-steps) are modified, such that the log-likelihood is maximised over264

both the labelled and the unlabelled data.

Specifically, the learning problem is defined to approach the MAP estimate

of the parameters θ given the labelled and unlabelled subsets, which is,

θ̂ | D = argmaxθ

{

p(D |θ)p(θ)

p(D)

}

= argmaxθ

{

p(Du |θ)p(Dl |θ)p(θ)

p(Du,Dl)

}

(15)

D , Du ∪ Dl (16)

As such, it is assumed that Du and Dl are conditionally independent. In this

case, the assumption proves appropriate, as the training data are random

samples from the underlying distribution: implicitly, random-sampling selects

13



representative data that are independent and identically distributed (i.i.d) [4].

For numerical stability, the MAP estimate is implemented as a maximisation

of the expected joint log-likelihood of (15) across the complete dataset [9],

L(θ | D) = L(θ | Du,Dl)

∝
m
∑

i=1

log
K
∑

k=1

p (x̃i | ỹi = k,θ) p(ỹi = k |θ) . . .

+
n

∑

i=1

log [p (xi | yi = k,θ) p(yi = k |θ)] + log p(θ) (17)

(The constant terms have been dropped for convenience.) As there exists266

a label yi for each xi ∈ Dl, yi is an observed variable for the term in (17)

associated with the labelled data. However, in Du the labels are unknown;268

therefore, the latent variable ỹi is marginalised out from the likelihood – this

appears as a sum over k in (17). The model dependencies, including the270

observed and latent variables for each set, are illustrated in Figure 3.

In the EM algorithm, during each E-step, the unlabelled observations are272

classified using the current estimate of the model parameters and the classifier

defined by (6). The M-step corresponds to finding the θ̂ 3, given the predicted274

labels for unlabelled cases as well as the labelled data.

E-step. Initially, during the E-step, the responsibility matrix r is computed

for the unlabelled data; this is the posterior distribution from the classifier

defined in (6), thus, it is a n×K matrix,

rik = p(ỹi = k | x̃i,θ) =
p (x̃i | ỹi = k,θ) p (ỹi = k |θ)

p(x̃i |θ)
, ∀ x̃i ∈ Du (18)

The effective counts per class in Du is the weighted number of points assigned

to class k – this is the sum of the kth column in the responsibility matrix,

rk =
∑m

i=1
rik [2]. For the Dl, however, the ground truth of p(yi = k | xi) is

given by the training labels yi; therefore, the posterior distribution is known

3Note, the initial estimate of θ̂ is estimated from the labelled data only, and equations

(10), (11), (12).
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for the labelled points, which are discrete delta functions in the known class

label [4],

p(yi = k |xi) = δk,yi , ∀ (xi, yi) ∈ Dl (19)

again, δk,yi is the Kronecker delta function, which equals 1 when k is the

observed label yi. In summary, the total (effective) counts per class over the

complete dataset are,

Nk = nk + rk (20a)

N = |Dl|+ |Du| = n+m (20b)

M-step. In each M-step, the equations used to update θ̂ involve modifications

to the supervised case, as defined in equations (10), (11), (12). Firstly, the

vector of mixing proportions λ̂, for each element is,

λ̂k =
αk +Nk − 1

∑K

k=1
αk +N −K

(21)

The mean and covariance estimates are found by modifying (10), to give

the parameters,

mn =
κ0

κ0 +Nk

m0 +
Nk

k0 +Nk

x̄k (22a)

x̄k ,

∑n

i=1
δk,yi xi +

∑m

i=1
rikx̃i

Nk

(22b)

κn = k0 +Nk (22c)

νn = ν0 +Nk (22d)

Sn = S0 + Sk + κ0m0m
⊤

0
− κnmnm

⊤

n (22e)

Sk ,

n
∑

i=1

δk,yi xix
⊤

i +
m
∑

i=1

rik x̃ix̃
⊤

i (22f)

Leading to the same equations for MAP estimation,

µ̂k = mn (23a)

Σ̂k =
Sn

νn +D + 2
(23b)
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The semi-supervised updates turn out to be simple and interpretable. The276

MAP estimates are similar to the supervised case in (10); however, information

in Du contributes to the counts (N and Nk), as well as the mean x̄k and278

scatter Sk estimates.

EM learning. The EM algorithm iterates between steps, leading to a hill-280

climbing search, which finds a local maximum in the parameter space. EM

is sensitive to the initial estimate of θ̂; to deal with this, the algorithm is282

normally initialised (randomly) many times. In this application, however, the

starting point can be informed by the labelled data; as such, the initial guess284

is the MAP estimate given the labelled data, calculated with (10) and (11).

This additional information mitigates the need to re-initialise the algorithm.286

Learning proceeds to iterate between E-steps (equations (18), (19)) and M-

steps (equations (22), (23)), until the log-likelihood of the model, defined in288

(17), converges [14]. Semi-supervised EM is summarised in Algorithm 1.

Algorithm 1: Semi-supervised EM for a Gaussian Mixture Model

Input : Labelled data Dl, unlabelled data Du

Output : Semi-supervised MAP estimates of θ̂ =
{

µ̂, Σ̂
}

1 Initilise θ̂ using the labelled data, θ̂ = argmaxθ {p(θ | Dl)}. Supervised

GMM equations (10), (11) and (12);

2 while the joint log-likelihood L(θ | D) (17) improves do

3 E-step: use the current model p(xi, yi, θ̂) to estimate

class-membership for the unlabelled data Du (18);

4 M-step: update the MAP estimate of θ̂ given the component

membership for all observations θ̂ := argmaxθ {p(θ | Dl ∪ Du)}.

Semi-supervised GMM equations (21), (22) and (23);

5 end

Following semi-supervised EM, the updated MAP estimates θ̂ define the290

predictive classifier (6); this is used to predict the distribution over the class-

labels for new observations p(y∗i |x
∗
i ). Code for the semi-supervised GMM292

applied in this work is available via GitHub: https://github.com/labull?

tab=repositories.294
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m1 m2 m3 m4 m5 m6 m7 m8k1 k2 k3 k4 k5 k6 k7 k8

c1 c2 c3 c4 c5 c6 c7 c8

f1(t) z̈8(t)

Figure 4: The simulated 8-DOF system

4. Experiments

Probabilistic and semi-supervised damage classification is applied to a296

simulated example and measured data from aircraft experiments. The simu-

lated data demonstrate and visualise the model, while the experimental data298

present a more realistic and practical application.

4.1. Simulated Dataset300

The simulated data represent measurements from an eight-degree-of-

freedom (8-DOF) system. The system is defined to represent an experimental302

rig designed at the Los Alamos National Laboratory (LANL) [1]. A schematic

of the 8-DOF system is shown in Figure 44. The input forcing on mass i at304

time t is fi(t), and zi(t) is the system response (output) of mass i at time t.

The system parameters – mass m, stiffness k, damping c – are summarised306

in Table 1. The values for critical damping, cc, are defined using the decoupled

equations of motion. The system is set with approximately 3% of critical308

damping. The spring constant k1 is set to near zero, as this corresponds to a

rigid-body mode of the experimental rig. The forcing, f1(t), is a white-noise310

excitation applied to mass 1, while the response, z̈(t), is simulated for all

masses. Additive Gaussian noise is applied to the outputs, such that the312

signal-to-noise ratio (relative to variance) is 40dB.

It is expected that damage will manifest itself as alterations in the funda-314

mental structural parameters; in this case, a reduction in stiffness [1]. Changes

4Note: there is repeated notation for the physical parameters m and k, however, the

context and use of indices (1− 8) should make this clear.
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Table 1: 8DOF system parameters

m1 : 0.5993 kg

{m2, ...,m8} : 0.4194 kg

k1 : 10−6 kN/m

{k2, ..., k3} : 56.7 kN/m

{c1, ..., c8} : 0.03× cc Ns/m

in stiffness will alter the dynamic characteristics of the system; therefore, fre-316

quency domain observations can be used to (indirectly) monitor any physical

changes that might relate to damage. In an attempt to represent SHM data,318

only the system outputs z̈(t) are used to define observations in the frequency

domain. As such, the transmissibility between masses one and eight T8,1(ω)320

is used a the frequency domain observation; this is a complex-valued function

of frequency, which is the ratio of the spectrum of the output at mass eight,322

z̈8(t), to the spectrum of the output at mass one, z̈1(t). The transmissibility is

approximated via the discrete Fourier transform of the output time series. A324

Hanning window is applied to each signal, sampled at 400.45Hz for 8 seconds.

The transmissibilities are truncated, such that there are 1040 bins in the326

frequency domain, ranging from 0 - 130 Hz.

In terms of the SHM strategy, each transmissibility is an observation of328

the system; a transmissibility is generated every 8s from the time series data,

and these data are used for monitoring. For demonstration, it is useful to330

compress the transmissibility data (1040-dimensions) onto two-dimensions

using Principal Component Analysis (PCA) [10], to visualise the model5. The332

principal components are a linear combination of the original features, such

that the variance is maximised in the projected space [2, 10]. As a result of334

PCA, observations xi are two-dimensional, such that xi ∈ R
2.

Linear damage is simulated as reductions in the spring constant k5; the336

normal condition is when k5 is at 100%, and a damage class is associated

with each reduction in stiffness: there are five damage classes6. Generally, a338

5The algorithm is applied to more realistic engineering data in the next experiment.
6Combinatorial damage could be considered for different spring locations; if included,

these classes should have separate, distinct labels.
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Table 2: Simulated data

Class label (yi) Observation index (i) % k5

1 1 - 500 100%

2 501 - 1000 97%

3 1001 - 1500 93%

4 1501 - 2000 88%

5 2001 - 2500 82%

6 2501 - 3000 70%

continuous parameter problem should not be framed as classification; however,

discrete-steps are suitable to define a multi-class problem for this example.340

The data define a six-class problem, with 500 observations in each group; the

data are summarised in Table 2, and the feature-space is shown in Figure 5.342

Model visualisation: supervised learning vs. semi-supervised

The dataset is split (at random) into a training-set (2/3 of the total data,344

D) and a test-set (1/3 of the total data, x∗
i ). 10% of the training-data D are

labelled (the subset Dl), while 90% remain unlabelled (the subset Du). The346

training subsets are shown in the feature-space in Figure 5.

Figure 5 plots the GMM for the supervised and semi-supervised case.348

In both plots, the prior is included to visualise it’s influence on the base

distributions of the mixture model. Specifically, with few data available for350

training, the prior should have a large influence on the posterior distributions,

to regularise the model, as the parameters defined in (10b) and (10g) are a352

complex combination of the prior and the maximum-likelihood estimate.

Figure 5a shows the GMM given the labelled data only, i.e. p(xi, yi | θ̂)354

where θ̂ = argmaxθ {p(θ | Dl)}. Here, the training data are a small subset,

and, as a result, the prior has a large influence on base-distribution estimates.356

The influence of the prior is strong, as there is not enough information to

appropriately model data, while avoiding overtraining. On the other hand,358

Figure 5b shows the mixture model can better represent the data distribution

when unlabelled instances are used to inform the MAP estimates, such that360

θ̂ = argmaxθ {p(θ | Dl,Du)}. Here, the base-distributions better represent

each class, and the influence of the prior is reduced, while the model remains362

19



(a) (b)

Figure 5: The GMM p(xi, yi | θ̂): (a) supervised learning, i.e. θ̂ = argmaxθ {p(θ | Dl)} (b)

semi-supervised learning, i.e. θ̂ = argmaxθ {p(θ | Dl,Du)}. Ellipses represent the MAP

of the covariance (two-sigma), + markers represent the MAP of the mean, and the blue

ellipse represents the prior.

self-regularised and robust.

It should be clear that the model is representative, as the density is well364

approximated by a GMM. If the data have multi-model class components,

or the classes cannot (at least approximately) be represented by a Gaussian366

distribution, semi-supervised learning via a Gaussian mixture model will

break down. In this case, an alternative base-distribution must be selected.368

Classification test-procedure

The performance of the model (for classification) is assessed for an increas-370

ing number of labelled to unlabelled data. The proportion of labelled data in

the training-set is increased in 5% increments, from 20% – 100%. For each372

proportion of labelled to unlabelled data, the GMM is initially learnt given
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the labelled data only. Equation (6) is then used to classify the test-data,374

such that the predicted labels are the MAP of the posterior-distributions,

ŷ∗i = argmaxk {p(y
∗
i = k |x∗

i ,Dl)}. At this stage, the classification perfor-376

mance provides a benchmark for standard supervised learning.

The model is then updated via semi-supervised EM, given the labelled and378

unlabelled data. Label predictions are now the MAP estimates conditioned on

the whole dataset, ŷ∗i = argmaxk {p(y
∗
i = k |x∗

i ,Dl,Du)}. The classification380

performance is re-assessed for the semi-supervised model.

The metric used to assess classification performance is the f1-score: this is

a weighted balance of precision (P ) and recall (R), which can be defined in

terms of true positives (TP ), false positives (FP ) and false negatives (FN)

for each class, k ∈ Y [2],

Pk =
TPk

TPk + FPk

, Rk =
TPk

TPk + FNk

(24)

The macro f1-score is then defined by [2],

f1,k =
2PkRk

Pk +Rk

, f1macro =
1

K

∑

k∈Y

f1,k (25)

The macro-averaged f1 is used, as this weights each class equally, mitigat-

ing any class-imbalance in the dataset. Therefore, newly-discovered groups in

Y contribute equally to the performance metric, despite potentially infrequent

observations; i.e. the novel measurements relating to damage or environmen-

tal conditions. For interpretability, in the context of SHM, the (balanced)

misclassification error e (from type-I errors for each class) is also used as a

performance metric,

ek =
FPk

FPk + TPk

e =
1

K

∑

k∈Y

ek (26)

Results382

Figures 6 and 7 show the classification performance (f1-score and error)

for supervised and semi-supervised learning, while increasing the proportion384
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Figure 6: Classification performance assessed by the f1-score for the supervised GMM vs.

the semi-supervised GMM. Left: classification performance for an increasing proportion

of labelled data. Right: the gain in f1 score through semi-supervised updates, the red

highlights zero-gain.

of labelled data to unlabelled data; the curves represent the average over

50 repeats. Semi-supervised learning consistently improves the classification386

performance, particularly for low proportions of labelled observations. No-

tably, at 2.49% labelled data, there is a 0.0380 improvement in the f1-score,388

corresponding to a 3.87% reduction in the classification error.

For very low proportions of labelled data (< 0.995%), semi-supervised390

learning can decrease the classification performance – shown by a negative gain

in f1-score (or error reduction) in Figures 6 and 7. It hypothesised that the392

performance drops for large quantities of unlabelled data (m ≫ n), because

the natural wighting in the log-likelihood leads to the labelled instances being394

effectively ignored [9, 15]. To accommodate for much larger sets of unlabelled

data (m ≫ n), a re-weighted version of the joint-likelihood has been suggested396

[9, 12]; the investigation of this approach is suggested for future work.

Intuitively, as the proportion of labelled data reaches 100% (m ≪ n),398
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Figure 7: Classification error (e) for the supervised GMM vs. the semi-supervised GMM.

Left: classification error for an increasing proportion of labelled data. Right: error reduction

through semi-supervised updates, the red line highlights zero-error-reduction.
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improvements through semi-supervised learning reduce, as there is less infor-

mation gain from smaller sets of unlabelled signals. Considering the chosen400

method for density estimation, and the structure of the simulated data, these

results are to be expected: as discussed, the underlying density is well approx-402

imated by the chosen mixture model (a GMM in this case, Figure 5b). The

validity of this assumption is critical when using generative mixture models404

for semi-supervised learning.

4.2. Gnat aircraft data406

The Gnat data are an experimental dataset, concerning the wing of a

Gnat aircraft [26]. During ground-vibration tests, the wing was excited using408

an electrodynamic shaker and band-limited white-noise. A network of sensors

recorded the acceleration response at different points on the wing, shown410

in Figure 8b. During the experiments, artificial damage was introduced by

sequentially removing one of nine inspection panels; the panels are shown in412

Figure 8a. (It is acknowledged that the removal of each panel represents a

fairly large and significant fault.) The data represent a nine-class damage414

classification (location) problem; one class is associated with the removal of

each panel.416

The network of sensors are split into groups A, B and C; each group has

one centrally-placed reference transducer (AR, BR, CR) and three response418

transducers (A/B/C1-3), labelled in Figure 8b. As with the simulated example,

transmissibilities are used to monitor any changes that might relate to damage;420

specifically, the ratio of the response (transmitted) spectrum, to that of the

reference spectrum. As such, there are nine transmissibilities – three for each422

group, represented by dotted lines in Figure 8b. In all cases 1024 spectral

lines were recorded, from 1024 to 2048Hz [26].424

The are 1782 observations for each transmissibility – 198 for each damage

condition. To reduce the dimensionality of the dataset, each transmissibility426

is reduced to a single novelty index through a Mahalanobis-squared-distance

(MSD) novelty detector [1, 26]. To build the novelty detectors, regions of428

spectral lines from each transmissibility are selected with the aid of a Genetic

Algorithm (GA). Briefly, the GA iterates though a population of MSD novelty430

detectors, learnt with different sets of spectral lines. The fitness of each
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(c)

Figure 8: Wing schematics: (a) panel locations, (b) sensor layout, (c) experimental setup.
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set is assessed using the inverse classification error on a validation-set for a432

simple multilayer perception [10]. The ‘fittest’ sets are passed on to the next

generation by combining their solutions. Mutation is also included by the434

occasional random switch of a feature. For a detailed discussion of the feature

selection procedure, the reader is referred to [27].436

In summary, the data represent a nine-class classification problem, con-

cerning damage location. As such, the label space is yi ∈ {1, . . . , 9}. The438

measured signals were converted to the frequency domain, to define nine

transmissibilities; each transmissibility is then represented by a single novelty440

index, compressing the observation data to nine dimensions, thus xi ∈ R
9.

Results442

The same classification test-procedure (applied to the simulated data)

is now applied to the Gnat data; results are shown in Figures 9 and 10.444

Again, semi-supervised updates through EM consistently improve the f1-

score and reduce the classification error, while, in this application, the data446

represent more practical SHM data. As with the simulated example, for very

low proportions of labelled data < 1.26% (m ≫ n), semi-supervised model448

updates decrease the predictive performance, as the effect of the unlabelled

data appear to outweigh the labelled instances in the likelihood cost function.450

The general improvements through the semi-supervised GMM indicate that the

experimental data can be (at least approximately) represented with a mixture452

of Gaussians; the maximum increase in the f1-score is 0.0405, corresponding

to a 3.83% reduction in the classification error for 2.94% labelled data.454

For both tests, it is believed that semi-supervised improvements should

increase if the data is approximated by some more flexible likelihood, i.e.456

p(xi |θ). A nonparametric representation, or a discriminative approach, would

be a natural way to achieve this.458

5. Conclusions and future work

An alternative method for semi-supervised learning, which utilises both460

labelled and unlabelled measurements, has been introduced to Structural

Health Monitoring (SHM). The probabilistic approach impiments Expec-462

tation Maximisation (EM) over a generative mixture model, to improve
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Figure 9: Classification performance assessed by the f1-score for the supervised GMM vs.

the semi-supervised GMM. Left: classification performance for an increasing proportion of

labelled data. Right: the gain in f1 score through semi-supervised updates, the red line

highlights zero-gain.
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Figure 10: Classification error (e) for the supervised GMM vs. the semi-supervised GMM.

Left: classification error for an increasing proportion of labelled data. Right: error reduction

through semi-supervised updates, the red highlights zero-error-reduction.
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the performance of damage classification under well-defined uncertainty – a464

significant advantage in risk-based applications. In the proposed method,

a Gaussian Mixture Model (GMM) – learnt form both labelled and unla-466

belled measurements – is used to describe the underlying distribution of

data from a simulated example and measured data from aircraft experiments468

(ground-tests). The classification accuracy (based on the GMM) is shown

to improve significantly when the likelihood is maximised over the labelled470

and unlabelled data (semi-supervised learning), rather than the labelled data

alone (supervised learning). More specifically, semi-supervised updates lead472

to 3.87% and 3.83% reductions in the classification error for the simulated

and experimental datasets respectively. These improvements correspond to474

labelling just 2.49% of the measurements for the simulated data, and 2.94%

of the measurements for the experimental data – low proportions of labelled476

data bring significant advantages to SHM, as investigating the structure to

label the measured signals can be a high-cost procedure.478

While the proposed method is successful, care must be taken to ensure

that the assumed (parametric) mixture model – a GMM in this case – appro-480

priately models the underlying distribution of data. If the imposed structure

is inappropriate, the inclusion of unlabelled data will decrease the model482

quality. Considering this limitation, future work will apply the proposed

semi-supervised methodology to nonparametric mixture models, in order to484

describe (more complex) underlying distributions of SHM data. Additionally,

the proposed semi-supervised methodology should be incorporated within an486

online framework, such that streaming SHM signals – recorded from systems

in operation – can be used to update the semi-supervised model of the data.488
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