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Abstract 12 

Background: Conventionally, frequentist approach has been used to model health state valuation data. Recently 13 

researchers started to explore the use of Bayesian methods in this area. 14 

Objectives: This paper presents an alternative approach to modeling health state valuation data of the EQ-5D-3L and 15 

EQ-5D-3L+Sleep descriptive systems, using a Bayesian framework and demonstrates its superiority to conventional 16 

frequentist methods.  17 

Methods: The valuation study composed of 18 EQ-5D-3L health states and 18 EQ-5D-3L+Sleep health states valued 18 

by 160 members of the general public in South Yorkshire, UK using the time trade-off technique. Three different 19 

models were developed for EQ-5D-3L and EQ-5D-3L+Sleep accordingly using Bayesian Markov chain Monte Carlo 20 

simulation methods. Bayesian methods were applied to models fitted included a linear regression, random effect and 21 

random effect with covariates. The models are compared based on their predictive performance using mean 22 

predictions, root mean squared error (RMSE) and deviance information criterion (DIC). All analyses were performed 23 

using Bayesian Markov chain Monte Carlo simulation methods.  24 

Results: The random effects with covariates model performs best under all criterions for the two preference-based 25 

measures, with RMSE (0.037) and DIC (637.5) for EQ-5D-3L and RMSE (0.019), DIC (416.4) for EQ-5D+Sleep. 26 

Compared with models previously estimated using frequentist approach, the Bayesian models reported in this paper 27 

provided better predictions of observed values. 28 

Conclusion: Bayesian methods provide a better way to model EQ-5D-3L valuation data with and without a sleep 29 

‘bolt-on’ and provide a more flexible in characterizing the full range of uncertainty inherent in these estimates.  30 
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Background  32 

There has been a growing use of quality-adjusted life-years (QALYs) as a measure of health in economic 33 

evaluations. It helps inform decisions about the allocation of resources between technologies and interventions 34 

competing for resources. The QALY is a measure which multiplies the quality adjustment for health by the time period 35 

endured in a given health state [1], from which the modification to the quality weight is generated using a preference-36 

based measure. The latter consists of a classified structure to define health along with a value set denoting a utility 37 

value for every defined health state by that system.  38 

Several preference-based measures of health-related quality of life (HRQoL) are currently available, 39 

including: the EQ-5D-3L [2], EQ-5D-5L [3], HUI2 [4] and HUI3 [5], AQoL [6], QWB [7], and the SF-6D [8], in 40 

addition to condition specific health surveys [9, 10]. The EQ-5D-3L has become the most widely used measure of 41 

health status and it is the preferred measure of HRQoL for health technology assessment in many countries, 42 

particularly in Europe [11-13], although it has also gained widespread use in North America [14], Asia and Australia 43 

[15, 16]. The EQ-5D-3L also has been used in population health studies and incorporated into many multinational 44 

clinical trials. A key problem for these measures has been the large number of unique health states that they define 45 

and the consequent need to model health state values from a valuation of a subset of possible states.  46 

Health state values present a significant challenge for conventional statistical modelling procedures due to 47 

their nature, namely: skewed, truncated, non-continuous and hierarchical [8].  Previous statistical models of these data 48 

have met with some success in the SF-6D [8], EQ-5D-3L [17] and HUI2 [18]. In the main, these conventional 49 

statistical models used in previous analyses have been frequentist. A number of researchers have investigated the use 50 

of Bayesian methods for modelling health state preference data. For example, Kharroubi et al. [19-21] proposed a 51 

nonparametric Bayesian model and applied it to SF-6D standard gamble (SG) health state valuation data. This model 52 

has also been applied to the UK EQ-5D-3L with time trade-off (TTO) valuation data [22]. Further, it has been extended 53 

further to handle the joint US-UK EQ-5D-3L data set [23] and joint UK-Hong Kong and UK-Japan SF-6D data [24, 54 

25], including a richer structure for covariate effects. Chan et al. [26] fitted a Bayesian model with random effects for 55 

respondents and health states to the US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-56 

3L scoring algorithm. Pullenayegum et al. [27, 28] also used a Bayesian approach for quantifying parameter 57 

uncertainty in EQ-5D-3L value sets and its impact on studies that use the EQ-5D-3L to measure health utility. 58 



[3] 

 

This paper focuses on the application of three different hierarchical Bayesian model specifications of 59 

increasing complexity to estimate health state utility values for the EQ-5D-3L with and without a sleep ‘bolt-on’ i.e. 60 

the EQ-5D-3L and EQ-5D-3L+Sleep. The results are compared with the conventional frequentist random effect 61 

regression models for each data set which have been reported previously [29]. This paper contributes to the 62 

understanding of the application of Bayesian approach on modelling health state valuation data.  63 

The next section of this paper provides a brief description of the EQ-5D-3L descriptive system and the 64 

addition of the “sleep” dimension, as well as the UK EQ-5D-3L and EQ-5D-3L+Sleep valuation study and data used 65 

in this paper. It also provides the models used for the analysis of the data, including evaluation of model complexity, 66 

fit and prediction. The results of the different models are then presented. Finally, the implications of the results, 67 

including some directions for further research studies conclude the paper.  68 

Methods 69 

The EQ-5D-3L descriptive system 70 

The EQ-5D-3L, a multi-dimensional questionnaire, comprises five health dimensions: mobility (MOB), self-care 71 

(SC), usual activities (UA), pain or discomfort (PAIN), and anxiety or depression (ANX). Each dimension has three 72 

levels as follows: “no problems” as level 1, “some/moderate problems” as level 2, and “extreme problems/unable 73 

to/confined to bed” as level 3; hence their combination generates 243 different health states, ranging from 11111 for 74 

full health and 33333 for the worst state [30]. 75 

For EQ-5D-3L to be used as a preference-based measure of HRQOL to calculate QALYs, every health state 76 

should be assigned with a utility value. In theory, the full health state has a utility of 1, while being dead has 0 as 77 

utility; furthermore, negative scores are given to health states judged worse that being dead. The utility values were 78 

estimated by the Measurement and Valuation of Health (MVH) group at the University of York in the UK, using a 79 

variant of the visual analog scale (VAS) and the time trade-off (TTO) techniques [31].  80 

The EQ-5D-3L+Sleep descriptive system: a sleep “bolt-on” for the EQ-5D-3L 81 

The EQ-5D-3L+Sleep descriptive system has a bolt-on  to the generic conventional EQ-5D-3L developed by 82 

Yang and colleagues in 2014 [29] at the University of Sheffield in the UK. In this questionnaire, an additional sixth 83 
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dimension “sleep” (SL) has been incorporated using the same format of the three levels (no problems, some problems, 84 

and extreme problems with sleep) as used for the dimensions of the original EQ-5D-3L. This new six-dimensional 85 

system generates a total of 729 unique health states. The best health is 111111 and the worst health state is 333333.  86 

Valuation study  87 

A valuation study on selected EQ-5D-3L and EQ-5D+Sleep health states was conducted among the general 88 

population in South Yorkshire, UK, using the MVH TTO protocol. Details of the valuation study was reported 89 

elsewhere [29], and we briefly summarize it as below:   90 

Selection of health states: The 18 EQ-5D-3L states and EQ-5D-3L+Sleep health states were identified using an 91 

orthogonal design (by applying the Orthoplan procedure of SPSS) which generated 18 states each for estimating an 92 

additive model. The best state defined by each instrument was included in both sets and was used as the upper anchor 93 

in the TTO valuation task. For each instrument, a further 17 (intermediate) states were selected for valuation, stratified 94 

into severity groups, and then randomly allocated to blocks of either 8 or 9 states (2 EQ-5D-3L blocks and 2 EQ-5D-95 

3L+Sleep blocks). Finally, the worst health state defined by each instrument was added to each block. More detail on 96 

this is available in [29]. 97 

Selection of respondents: The sample size for the valuation survey was limited to 160 interviews due to the budget 98 

constraints [29]. The sample was selected using a 2-stage cluster random selection design. Respondents were randomly 99 

divided into 4 groups of 40, and every group was allocated 1 of the 4 health state blocks mentioned above; amounting 100 

to a total of 40 valuations per intermediate health state and 80 valuations for the pits state.   101 

Interviews: The interviews comprised self-reporting health status using either EQ-5D-3L or EQ-5D-3L+Sleep 102 

(depending on which arm they had been allocated to), a  ranking of health states defined by these measures, and a 103 

valuation exercise using the MVH TTO variant [32]. Furthermore, each questionnaire was followed by socio-104 

demographic and economic questions. Additionally, respondents valuing EQ-5D-3L states were asked to complete 105 

the sleep dimension as part of the background questions at the end. 106 

Study sample 107 



[5] 

 

The total number of valuations elicited from the 160 respondents is 1512 TTO values, with 770 and 742 values 108 

for the EQ-5D-3L and EQ-5D-3L+Sleep respectively. The TTO valuations were transformed in order to ensure that 109 

all health state values are bound on the [-1, 1] scale. At the individual level, transformed TTO values extended from -110 

0.98 to 1.00. The number of observations, mean transformed TTO values and standard deviations, and maximum and 111 

minimum values are reported for the 2 instruments elsewhere [29]. As for the mean TTO values, those of the EQ-5D-112 

3L extended from -0.23 (state 33333) to 0.61 (state 12312), whereas those generated from the EQ-5D-3L+Sleep ranged 113 

from -0.23 (state 33333) to 0.76 (state 211223). Concerning their standard deviations (SD), EQ-5D-3L states had an 114 

SD from 0.35 to 0.63 with a mean of 0.52, whilst the SD of the EQ-5D-3L+Sleep states ranged from 0.30 to 0.50 with 115 

a mean of 0.43. The skewness in the data is evident from the histogram shown in Figure 1A and 1B and descriptive 116 

statistics for the 770 and 742 individual transformed health state valuations for the 2 instruments. They show that 117 

negative values did occur and a large proportion of observations lie between 0.9 and 1.0, with 17% for the EQ-5D-3L 118 

and 15% for the EQ-5D-3L+Sleep. Additionally, the proportion of +1 responses is 5.8% (45/770) and 7.4% (55/742) 119 

for the EQ-5D-3L and EQ-5D-3L+Sleep respectively, whereas no valuations were observed at -1 for both measures. 120 

Further details on this analysis are provided in [29]. 121 

Modelling 122 

Three different Bayesian models were developed. The models fitted included one linear regression (LR) model 123 

and two random effect (RE) models. The dependent variable in these models was the utility weight from the EQ-5D-124 

3L or EQ-5D-3L+Sleep health state and the independent variables were dummies for each level above  for the five 125 

dimensions of the EQ-5D-3L or the six dimensions of the EQ-5D-3L+Sleep.  126 

Model development.  127 

The LR model predicts respondent j’s valuation of health state i as: 128 

                                            𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + ⋯ +  𝛽𝑘𝑋𝑘𝑖𝑗 + 𝜀𝑖𝑗  ,                               (1) 129 

where, for i = 1,2,…nj and j = 1,2,…m, Xij is the ith health state valued by respondent j and yij is the TTO score given 130 

by respondent j for that health state. Further, the βk parameters are estimated within the linear regression model and εi 131 

is a zero-mean error term for the ith health state evaluated by the jth respondent.  132 
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For any given health state, note that X  will be defined as: 133 

X  = 1 if, for this state, dimension  is at level  134 

X  = 0 if, for this state, dimension  is not at level  135 

In total, there are 10 dummies for the EQ-5D-3L, with level  = 1 on each dimension acting as the baseline for each 136 

dimension, and 12 for the EQ-5D-3L+Sleep.  137 

The LR model is summarized in Table 1, with a conditional distribution that is defined as normal with a 138 

constant variance. This model assumes that the usual independent zero mean and constant variance random error term, 139 

with cov(𝜀𝑖𝑗𝜀𝑖′𝑗) =0, i≠i’. This implies that the 770 EQ-5D-3L observations from 80 respondents are coming from 140 

770 respondents or the 742 EQ-5D-3L+Sleep observations from 80 respondents are coming from 742 respondents. 141 

For this model, the observed EQ-5D-3L or EQ-5D-3L+Sleep utility values were assumed to be sampled from a normal 142 

distribution, with the conditional mean (𝜇𝑖𝑗) a function of each of the 10 levels of the EQ-5D-3L or 12 levels of the 143 

EQ-5D-3L+Sleep (Table 1). 144 

The RE model recognises that εi from model (1) may not be independent of the respondent, so they are 145 

subdivided as: 146 

               𝑢𝑗 + 𝑒𝑖𝑗                        (2) 147 

ui represents variations specific for each respondent, and this is presumed to be random across individual respondents; 148 

wheras 𝑒𝑖𝑗 represents the error term for the ith health state valuation of the jth individual, and this is presumed to be 149 

random across observations. Model (2) explicitly recognises that allocation of health states to individuals is random, 150 

with cov(ui, eij) =0.  151 

For the third model, the mean of the conditional distribution was directly related to participant characteristics, 152 

including age, sex, level of education, household status, and self-reported health (in EQ-5D-3L dimensions and sleep), 153 

with the aim to capture the impact of the respondent covariates. See Table 1 for more details on this.   154 
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Following Yaling and colleagues [29], decrements in utility from perfect health were modelled by using 155 

disutility (1-TTO) as the dependent variable. Thus, the coefficients of both levels 2 and 3 are expected to be positive, 156 

and level 3 should have larger coefficients. 157 

Model estimation.  158 

Bayesian methods were applied to test the model fit of the three developed models. Gibbs sampling Markov 159 

Chain Monte Carlo (MCMC) simulation methods using the WinBUGS software package were used to estimate the 160 

posterior probability distribution of each and every one of the three models [33, 34]. The WinBUGS code is available 161 

upon request from the corresponding author. For each model, a burn-in of 10,000 iterations was performed for the 162 

Gibbs sampler to reach convergence [35], which was determined by examining the convergence statistic for 2 MCMC 163 

sequences with different initial values. An additional 30,000 iterations were run for the sake of predictions and 164 

parameters estimation. The prior distributions for all the regression coefficients were specified as follows: 165 

),10,0(~,... 6

0 Nk  
2 )001.0,001.0(maInverseGam~  166 

A more thorough discussion of the choice of the non-informative prior distribution is available in [36]. 167 

Model reliability and validation.  168 

To test the performance of the 3 models, we compared them based on the calculated root mean square error 169 

(RMSE) and the Bayesian Deviance Information Criterion (DIC) [34]. The latter is a combination of measures of both 170 

model fit and complexity, defined by  171 

DPDDIC 


 172 

where 



D  represents the posterior mean deviance and DP  is the effective number of parameters representing model 173 

complexity. The best fitting model is defined by the minimum DIC [34]. 174 

Comparison of models 175 

The three models are compared in terms of their coefficients with their associated 95% credible intervals 176 

(CI), as well as their predictive performance. Further, all presented models have their frequentist counterfactual and 177 
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so the best performing Bayesian model will be compared to its frequentist counterfactual [29]. Given the overall aim 178 

is to predict health state valuation; the best way to compare these models is via their predictive ability. This includes 179 

plots of predicted to actual values, calculations of the mean predictions and RMSE.  180 

Results 181 

Table 2 presents the coefficients for all models with their 95% CI for the two data sets, where bolded 182 

estimates have CIs excluding zero. For EQ-5D-3L, we notice that all coefficients had the expected positive sign across 183 

all three models, except for the second level of self-care. However, the CI of this coefficient includes zero so it is a 184 

weak inconsistency. Five out of the 10 coefficients on the main EQ-5D-3L domain have CIs excluding zero in all 185 

models, with larger disutilities associated with level 3 of each of mobility, self-care, usual activity, pain/discomfort 186 

and anxiety. The coefficients for the five EQ-5D-3L+sleep are broadly consistent. All coefficients had the expected 187 

positive sign apart from level 2 of anxiety/depression for the LR and RE models, and level 2 of sleep dimension for 188 

all three models. Eight coefficients of the main EQ-5D-3L+Sleep domains have credible intervals excluding zero in 189 

the LR and RE models, and seven coefficients in the RE+COV model, with larger disutility associated with level 2 190 

and level 3 of mobility, self-care, usual activity and level 3 pain and anxiety. The 95% CI for both level 2 and level 3 191 

of sleep dimension included zero in all models. In order to capture the impact of the respondent characteristics, 192 

covariates’ age, sex, level of education, household status and self-reported health were added to the EQ-5D-3L and 193 

EQ-5D-3L+Sleep models (i.e. RE+COV). The results show that the 95% CI for all covariates coefficients included 194 

zero in the EQ-5D-3L except for three of the five age groups for the EQ-5D-3L+Sleep.  195 

Table 3 presents the inferences for the mean health state utility values for the 18 valued health states in each 196 

of the descriptive systems. For each state, Table 3 shows the observed sample mean health state utility and the 197 

predicted mean health state utility from the three different models for both tools. For the EQ-5D-3L descriptive system, 198 

the closest prediction of the best health state 11233 was obtained with the RE+COV model with 0.200 compared to 199 

the observed value 0.179. Further, the closest prediction of the pits state 33333 was obtained with the RE+COV model 200 

as well, with a value of -0.225, compared to the observed value -0.227. This applies to intermediate states too. For 201 

instance, the observed value of health state 13213 is 0.399, whereas the predicted values are 0.367, 0.371 and 0.402, 202 

obtained from LR, RE and RE+COV respectively. Hence, the RE+COV model, which contains all covariates, was 203 

able to generate the closest estimation. The same was found for the EQ-5D-3L+Sleep with the predictions improving 204 
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with the addition of extra parameters, namely the covariates. For instance, the observed value for health state 321111 205 

is 0.385, whereas the predicted values are 0.368, 0.408 and 0.387, obtained from LR, RE and RE+COV, respectively.  206 

A testing of the models’ performance is also summarized in Table 2, where we can see that for the EQ-5D-207 

3L, the RE+COV model scored the best RMSE and DIC with 0.037 and 637.5 respectively, as compared to the other 208 

two models; (LR: RMSE = 0.083, DIC = 1206; RE: RMSE = 0.086, DIC = 670) for the RE. Similarly, the RE+COV 209 

showed better performance than the LR and RE in the EQ-5D-3L+Sleep system by scoring the lowest RMSE and DIC 210 

with 0.019 and 416.4 respectively (LR: RMSE = 0.066, DIC = 886.8; RE: RMSE = 0.067, DIC = 427). Overall, 211 

RE+COV model was found to be the best performing Bayesian model. 212 

Bayesian model versus frequentist 213 

The predictive ability of these two methods of modeling data is compared in Figures 2 and 3 for the two data 214 

sets. Figure 2 presents the predicted mean health state values (line marked with squares) for the frequentist model 215 

(final column of Table 2), compared to actual values (line marked with diamonds), with health states ordered by 216 

predicted health state values. The line marked with triangles represents the errors obtained by the difference between 217 

the two valuations. Figure 3 presents the same plots for the Bayesian model. These plots suggest that across the two 218 

measures the Bayesian model predicts the omitted data better than the frequentist model. Important differences can be 219 

seen between them from Table 3. For EQ-5D-3L, the frequentist model estimates the health state utility for the pits 220 

state to be -0.237 (final column of Table 3), even though the observed average for this state is -0.227, whereas the 221 

Bayesian model achieves a value of -0.225. For EQ-5D-3L+Sleep, the frequentist estimate was -0.212 compared with 222 

an observed mean of -0.233, but the Bayesian model gave -0.225. Overall, the predictive performance of the Bayesian 223 

model is better than that of the frequentist model, with RMSEs of 0.039 compared with 0.051, respectively, for the 224 

EQ-5D-3L and 0.023 compared with 0.031 for the EQ-5D-3L+Sleep. Across all valuations, the Bayesian model 225 

performs better for the RMSE with values of 0.037 for the Bayesian model and 0.049 for the frequentist model for the 226 

EQ-5D-3L and values of 0.019 compared with 0.041 for the EQ-5D-3L+Sleep. 227 

Finally, a key advantage of the Bayesian method is that, in addition to generating the mean value and/or 228 

standard deviation, it provides the full distribution of the health state utility. Figures A1 and A2, both available in 229 

online-only appendix at https://www.springer.com/journal/11136, show the probability distribution around the 230 

https://www.springer.com/journal/11136
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predicted utility value for each of the 18 valued health states of the EQ-5D-3L and EQ-5D-3L+Sleep, respectively, 231 

using the LR model. From these distributions, the mean, median, standard deviation and corresponding 95% CIs can 232 

be calculated. Although it is common that parameter standard error estimates give some clue about the uncertainty of 233 

estimates, the posterior distributions capture the full range of uncertainty integrated in these utility estimates.  234 

Discussion 235 

This study presents alternatives to the approach of Yang and her colleagues [29] to modelling health state 236 

valuation data. These approaches consisted of three different hierarchical model specifications of increasing 237 

complexity to estimating EQ-5D-3L and EQ-5D-3L+Sleep health state utility values using Bayesian methods. Based 238 

on our analysis, the random effects with covariates model performs best under all criterions for the two preference-239 

based measures, with RMSE of 0.037 and DIC of 637.5 for EQ-5D-3L and with RMSE (0.019), DIC (416.4) for EQ-240 

5D+Sleep. The Bayesian model was found to provide better fit to the data when compared to its frequentist 241 

counterfactual [29], with RMSE of 0.049 for the EQ-5D-3L and a value of 0.041 for the EQ-5D-3L+Sleep. Hence, 242 

for both descriptive systems, our presented Bayesian model proved to be superior to the approach employed by [29]. 243 

However, this model will not be used to predict the values for the rest of the health states as the purpose of the value 244 

set is to estimate a societal mean value, as required by most HTA agencies who used QALYs to inform decision 245 

making, instead of different mean values for different respondents with various characteristics.  246 

Another advantage of the Bayesian method is that it provides the full distribution of the utility values as a 247 

direct output from the modeling process rather than simply providing the mean value and/or standard deviation as is 248 

the case with the frequentist model. These posterior distributions are hugely important to capture the full range of 249 

uncertainty inherent in the health state utility estimates -- an increasingly important input to cost effectiveness analyses 250 

(CEA) for health technology assessment. On the other end, the frequentist model provides data on the uncertainty in 251 

the model parameters, but they usually do not provide estimates of the uncertainty in the health state predictions from 252 

the model [37]. 253 

Although the models using the Bayesian approach performed better than those estimated using the 254 

conventional Frequentist approach, both methods came to the same conclusion that the sleep dimension does not have 255 

an impact on valuations based on values obtained from the general population. It is possible that a sleep dimension is 256 
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useful or important for self-reported health status or even valuation for a specific group of people or patients who 257 

experience more sleep problems. This raises the issue of valuations from the general population and from the patient 258 

group, which is beyond the scope of this study. Furthermore, the sleep dimension might be more important in other 259 

countries, which suggests for future qualitative research or quantitative valuation studies in other countries.  It is 260 

perhaps worth mentioning here that though the “sleep” dimension does not seem to be a useful bolt-on for the EQ-261 

5D-3L value set, this might not be the case for the EQ-5D-5L. 262 

This study has a number of limitations. The first is the sample size of the current study was relatively small 263 

for estimating a full model for valuing health states. This may limit the study’s ability to detect important differences. 264 

Second, all models presented here traditionally assume that the error term 𝜀𝑖 in Equation 1 is normally distributed    265 

with    constant    variance (homoscedastic): 𝜀𝑖~𝑁(0, 𝜎2).  Previous  work  has  shown  that  EQ-5D utility  values  do  266 

not  exhibit  constant  variance. Furthermore, it follows from the results in Table 2 that there are a number of small, 267 

insignificant and inconsistent parameters in the models, in particular, those of the second levels in each dimension. 268 

Additional work should look to extend these models to account for nonconstant variance or heteroscedasticity. Finally, 269 

a reason for no impact of the Sleep dimension on utilities may be that when people value health states they rarely 270 

consider other aspects or consequences of sleeping difficulties, e.g. fatigue experienced the next day, or difficulties to 271 

concentrate on study or work, or lack of energy to perform usual activities. As there was no explanatory sentence after 272 

the word 'sleep' in the descriptive system (i.e. something similar to the list after usual activities), this may be a further 273 

limitation to the study.  274 

In conclusion, this paper has examined three alternative models for predicting utilities for the EQ-5D-3L and 275 

EQ-5D-3L+Sleep descriptive systems. The analyses presented have demonstrated how utility data may be 276 

straightforwardly modelled using Bayesian methods, and model fit and complexity assessed using RMSE and DIC, 277 

which are straightforward to compute in a MCMC analysis. It showed that these Bayesian models produced better 278 

predictions than the previously published frequentist analyses. The Bayesian models are able to produce probability 279 

distributions as a direct output from the modeling process describing the uncertainty in the expected health state values 280 

– an increasingly important input to CEA for health technology assessment. We hope that this work will provide 281 

applied researchers with a practical set of tools to appropriately model outcomes in CEA. 282 
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