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Abstract. In this work, we introduce the concept of self-filtering electrically-conductive
area sensors for use in nondestructive evaluation, state estimation, and other contemporary
engineering applications. For this, a deep learning-based approach is used to optimize
sensors’ conductivity distributions in order to minimize the effect of noise on Electrical
Impedance Tomography (EIT) reconstructions. From sensor design examples, it is shown
that (a) the underlying physical self-filtering mechanism arising from the deep learning-based
approach functions by reducing the sensitivity of the internal electric potential field to noise
perturbations and (b) the use of optimized self-filtering sensors can improve the robustness
to noise by approximately 25% compared to standard homogeneous sensors. Lastly, using
an alternative interpretation of the self-sensing optimization problem, it is shown that
fundamental connections between modeling errors, measurement noise, and physics of self-
filtering sensors can be linked and unlocked using deep learning.

Keywords: Electrical Impedance Tomography, inverse problems, nondestructive evaluation, structural health
monitoring, tomography

1. Introduction

The use of self-sensing materials and electrically-conductive engineered sensors has recently been the
source of significant research in the areas of nondestructive testing [1, 2, 3, 4], mechanical property
characterization [5, 6, 7, 8], state estimation [9, 10, 11], and more. Yet, despite the growing prevalence
of electrical modalities (e.g. Electrical Impedance Tomography (EIT), Electrical Capacitance Tomography,
and inductance-based modalities) and the practical need for improving electrical sensor quality, information
regarding the optimization electrical sensors themselves is scarce. In the case of EIT – the central focus
application in this work – there are a few exceptions, namely works focused on electrode position optimization
[12, 13, 14, 15]. However, to the authors’ knowledge, the optimization of the conductive sensing area itself
has yet to be explored.

In this work, we address this realization by introducing the conceptual basis and design of “self-filtering”
electrically conductive area sensors. By “self-filtering” we refer to a passive system whereby the electric
properties (in this case the conductivity distribution) act as a filter to increase the robustness of the area
sensor to random noise. Put differently, and in the context of EIT as it pertains to this work, a “self-filtering”
area sensor is one that minimizes the the effects of random noise on EIT reconstructions. Of course, the
concept of noise reduction in electrical systems is not unprecedented; for example, the use of capacitors in
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Self-filtering electrical sensors 2

electric circuits is wildly adopted to reduce/cancel/decouple systematic and/or random noise in electrical
signals [16]. Nonetheless, the optimization of two-dimensional electric properties for improving EIT sensor
properties remains to be explored.

We undertake the self-filtering sensor design problem using a deep learning-based approach to determine
optimal conductivity distributions aiming to minimize the effects of noise on EIT reconstructions. The
approach is intended to be straightforward and provide smooth distributions capable of production using
contemporary printing technology. We begin by discussing the theoretical self-filtering rationale from an EIT
perspective, the deep learning-based optimization approach, and lastly provide some optimized EIT sensor
examples, discussion, and conclusions.

2. Self-filtering sensors in the context of EIT

EIT is an inverse problem where we aim to estimate a conductivity distribution σ from boundary voltage
measurements V . A central challenge in EIT is the ill-posed nature of the problem, namely that small
changes in V result in large changes in σ [17]. In practical applications, these small changes are manifested
in unavoidable random noise ǫ. In the context of engineering applications where we have the ability to
manufacture EIT sensors, it is logical to ask: can we design a conductivity distribution σ to minimize the

effects of ǫ on EIT reconstructions?
Such a conductivity distribution would therefore serve as a simple filter with respect to randomized

noise. As a consequence, the optimized distribution σopt would result in an improvement of EIT’s robustness
across a given noise spectrum. We can formalize these statement (in the least-squares sense) by writing the
theoretical solution for the optimal self-filtering distribution

σopt = argmin
σ

∞
∑

j=1

||V ǫ
j − U(σ)||2 (1)

where V ǫ
j are noisy measurements with a standard deviation Σ and U is an accurate EIT model mapping

σ → V (in this work we use the finite element version of the complete electrode model [18]). In theory, we
would then obtain σopt when

∑

∞

j=1 ||V
ǫ
j − U(σopt)||

2 = 0. Of course, we cannot take an infinite number of
samples in practice, so we substitute a finite number of sample N by writing

σopt ≈ argmin
σ

N
∑

j=1

||V ǫ
j − U(σ)||2. (2)

Finding an optimal distribution using Eq. 2 is quite daunting on first glance, especially (i) for a large
N and (ii) if were were to treat the problem using standard optimization approaches. However, we may
circumvent this using deep learning, i.e. treating Eq. 2 as a highly-nonlinear fitting problem as detailed in
the following section. In doing this using any approach however, it must be noted that estimates for σopt are
only valid for the range of Σ (and other errors) considered.

3. Deep learning-based sensor optimization

In this section we aim to derive the optimal self-filtering conductivity distribution σopt using a trained neural
network A. To do this, we first aim to learn the nonlinear mapping

σ = A(||V − U(σ)||2) (3)

using N sets of training data comprised of noise-corrupted data V ǫ and randomized conductivity distributions
σt. We immediately notice, however, that the optimal conductivity distribution is obtained when ||V −
U(σ)||2 = 0; thus, the optimized self-filtering sensor is computed using

σopt = A(0). (4)

In this work, we do not assume that the network A is generalized for a large suite of different EIT
geometries, meshes, electrode configurations, measurement patterns, and current injection patterns. Rather,
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Self-filtering electrical sensors 3
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Figure 1. Schematic illustration of the trained model for the nonlinear mapping σ = A(||V − U(σ)||2). A
discretization of σ is shown on the right hand side of the diagram consisting of n nodal values for σ.

we assume that A is only valid when each one of the former features is uniquely defined (i.e., one mesh,
electrode configuration, injection/measurement pattern, etc.).

In selecting the network, we choose a feedforward network (shown schematically in Fig. 1) with four
hidden layers, where 100 neurons per hidden layer with ReLU activation functions are chosen based on
trial and error. We note that the use of additional layers and neurons is found to result in instability
of the predicted conductivity distributions, which is likely the result of overfitting. To train the network,
Keras/TensorFlow [19] is utilized on a Spyder/Python platform with random dropout rate of 0.2 per layer
to improve the network’s robustness. This network selection ensures the computations can be pragmatically
tractable on the available resources (8-core Xeon processor and 32 Gb RAM) using the stopping criterion
defined by the MSE of the network predictions as follows: MSE ≤ 10−4.

It should be noted that the regularization parameter λ = 0.1 was fixed throughout this work for simplicity.
In the network, we employ an L2 regularization scheme such that the objective function is weighted as follows

Φ =
1

N

N
∑

i=1

(σd
i − σ

Q
i )2 + λR (5)

where R = ||w||2, w are the network weights, σd
i is the desired output and σ

Q
i is the output from the network

at sample i. As seen n Eq. 5, the selection of λ has an effect on the degree of data fitting and therefore biases
σopt. In future work, this issue will be addressed using Bayesian adaptive regularized networks.

4. Examples: optimized self-sensing EIT area sensors.

In this section, we provide illustrating examples of optimized self-filtering conductivity distributions using
different geometries. In each example, we consider N = 10, 000 noise-corrupted voltage data sets V ǫ

corresponding to 1000 randomized conductivity distributions within the range 1 ≤ σt ≤ 10 mS/cm (a
common range for painted EIT sensing skins). To obtain the randomized conductivity samples, an isotropic
Gaussian smoothness prior was used as a seed to generate blob-like samples using a correlation length equal
to half of the diameter or short side length (if the geometry was a circle or rectangle, respectively). In
generating the noisy data, Gaussian noise with a standard deviation in the range 0.1% ≤ Σ ≤ 10% was
added to simulated voltages computed using complete electrode model. In addition to this, random noise
(with the same standard deviation) was added to homogeneous contact impedances set to z = 10−5. All data
was sampled using standard adjacent electrode potential measurements and 1mA opposite current injections.
Lastly, during training, 10% of the data was used for validation and an independent data set (50% the size
of the training data) was used for verification.

We would like to remark that since the training data used herein is generated using finite element
simulations, the usefulness of the learned mapping is dependent on the accuracy of the finite element solutions.
Indeed, the density of the finite element mesh, especially near the electrodes, has a significant effect on the
accuracy of solutions to the EIT forward problem [20]. In particular, EIT forward solutions may be unreliable
when (a) the number of elements in contact with the electrodes is low and (b) when the mesh density is very
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Self-filtering electrical sensors 4

coarse. In these cases, the finite element solutions may be highly inaccurate and the simulated voltages may
contain significant modeling errors. Above a certain threshold, modeling errors dominate, the training data
becomes unreliable, and the resulting learned mapping yields meaningless predictions. To ensure the meshes
are sufficiently accurate in this work, we select mesh densities that were experimentally validated in [3, 2].

4.1. Circular geometry

In this first example, we examine a circular geometry with a radius R = 10 cm and E = 6 boundary electrodes.
For the FE mesh, we use a triangular discretization with 1082 elements. Based on the optimization approach
outlined in section 3, the optimized conductivity distribution shown in Fig. 2a is obtained. We observe that
the optimized self-filtering conductivity distribution is radially symmetric, decreasing towards the center, and
has a more narrow conductivity range that the sampled random conductivity distributions (approximately
2.5 ≤ σ ≤ 7 mS/cm compared to 1 ≤ σt ≤ 10 mS/cm, respectively). It is not immediately obvious what effect
the optimized conductivity distribution has on the internal electric potential – which is key in understanding
the how the optimized distribution improves the robustness to noise.

To investigate this, we consider a current injection between electrodes 1 and 4 and examine the
corresponding internal potential distribution in the optimized self-filtering sensor (Fig. 2b, electrode 1 is
top right and electrode 4 is bottom left). Since the self-filtering sensor is radially-symmetric, potential
distributions corresponding to other opposite current injections yield equivalent results. As a reference, we
compare to the same current injection into a sensor with a homogeneous conductivity distribution equal to
the mean value of the optimized sensor (Fig. 2c). We notice that the maximum electric potential in the
self-filtering sensor is approximately half the magnitude of the homogeneous sensor’s maximum potential.
Moreover, the spatial gradient of the self filtering sensor’s internal electric potential is significantly flatter
than than that of the homogeneous distribution. These observations lead us to deduce that the self-filtering
conductivity distribution has an averaging effect on the internal potential distribution.

Based on the former realizations, we conclude that the physical “self-filtering mechanism” of the
optimized sensor’s conductivity distribution works by decreasing the sensitivity of the internal electric
potential field (and therefore the boundary electrode potentials) to perturbations in the in the injected
currents. Conversely, via Ohm’s law, this is equivalent to stating that the self-filtering conductivity
distribution decreases the sensitivity of potential measurements to perturbations in the internal current
density distribution. Given the latter, it is therefore expected that the increase in self-filtering EIT sensor
robustness to measurement noise comes at the loss of reconstruction accuracy. This would be due to a
reduction in sensitivity of the measurements to changes in conductivity (and local current density). Such a
change would be particularly important to consider in sensor design when changes are expected far from the
domain boundaries, where EIT is least sensitive. Therefore, and to sum up this subsection, a pragmatically
optimal EIT sensor is likely not one with only “maximal” self-filtering properties; but, rather, one that
where self-filtering properties and sensitivity to distant conductivity changes are considered simultaneously.
Addressing this issue will be reserved for future work.
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Self-filtering electrical sensors 5

(a)

(b)

(c)

Figure 2. Distributions plotted atop the example circular geometry corresponding to (a) the optimized
self-filtering conductivity, (b) electric potential field for a single current injection into the self-filtering sensor,
and (c) electric potential field for a single current injection into a homogeneous conductivity distribution
(the mean value of the self-filtering conductivity distribution). Relative electrode potentials are illustrated
as rectangles protruding from the electrodes.

4.2. Square and rectangular geometries

In this subsection we demonstrate optimized self-filtering conductivity distributions for a 10× 10 cm square
geometry and a 10 × 20 cm rectangular geometry. The square and rectangular geometries considered have
E = 8 and 10 electrodes with 484 and 662 elements in the FE mesh, respectively (see Fig. 3(a,b)). The
optimized conductivity distributions computed using the approach in section 3 are shown in Fig. 3(c,d). Upon
immediate inspection of the optimized distributions, we observe an “X-shaped” conductivity distribution,
where the conductivity is highest near the center of the electrode locations and decreases towards the diagonals
connecting the corners. This is in contrast to the symmetric distributions observed in the circular example
and results from the asymmetry of the electrodes and geometries. We also observe that the optimized
distributions are not completely symmetric about the lines connecting the midpoints of opposite sides, which
is an artifact resulting from errors or biases (selection of λ) in the learned model.

As with the previous example, it was found that the self-filtering sensors also had the effect of decreasing
the sensitivity of the internal electric potential field to perturbations in the injected current. For the sake
of brevity, and due to the fact that the internal potential field is not the same for every opposite current
excitation pattern do to asymmetry, we do not show potential distribution comparisons in the example.
Rather, we quantify the sensitivity of the internal potential field using the standard deviation (ΣV ) of the
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Self-filtering electrical sensors 6

(a) (b)

(c) (d)

Figure 3. Square and rectangular geometry FE meshes (top row) and optimized self-filtering conductivity
distributions (bottom row).

internal potential gradient magnitudes V̄k =
√

(∇xVk)2 + (∇yVk)2 – considering all current injections – as a
metric by writing

ΣV =

√

∑K

k=1(V̄k − µV̄ )
2

K − 1
(6)

where µV̄ is the mean of V̄ with g nodes, ι current injections, and a total of K = g × ι sample points.
Using this metric, conductivity distributions with a lower ΣV value correspond to internal potential fields
(and also electrode potentials) that are less sensitive to changes/perturbations in the injected currents than
conductivity distributions with higher ΣV values. Using the Ohm’s Law interpretation described earlier, a
lower ΣV value would also correspond to lower electrode sensitivity to perturbations in the internal current
density field. In other words, ΣV may be interpreted as a term which measures the sensitivity or robustness
of electrode measurements to internal changes in the electric current. As it pertains to this work, lower ΣV

values correspond to increased “self-filtering” properties and EIT reconstructions’ robustness to noise (i.e
changes in ǫ have less affect on reconstructions).

We begin our quantitative investigation by comparing ΣV values from the optimized sensors to ΣV

values from sensors with homogeneous conductivities equal to the mean of the self-filtering sensors shown in
Fig. 3(c-d). Starting with the square geometry, we obtain ΣV = 0.210 and ΣV = 0.246 for the self-filtering
and heterogeneous distributions, respectively. For the rectangular geometry, we obtain ΣV = 0.133 and
ΣV = 0.161 for the self-filtering and heterogeneous distributions, respectively. These values correspond to
an improvement of approximately 25% in measurement robustness by employing the self-filtering sensors, as
indicated by indicated by ΣV . Consistent with the discussion from the previous section, we expect that these
improvements in robustness come with a loss in reconstruction accuracy far from the electrodes. In future
works, we aim to address this issue by developing a sensor design regime capable of balancing measurement
robustness (ΣV ) and reconstruction accuracy.
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Self-filtering electrical sensors 7

4.3. An alternative explanation for the “self-filtering” mechanism

Until this point, the mechanisms underlying self filtering have been discussed in physical terms. However,
if we re-examine Eq. 2, we notice that the equation can be reinterpreted if we first observe that the noisy
simulated data can be rewritten as

V ǫ = R1(σ)I + ε (7)

and

U(σ) = R2(σ)I (8)

where R1 and R2 are the FEM matrices, I is a fixed vector of injected currents, and ε is an additive noise
vector. Now by substituting the matrix terms into Eq. 2, we have

σopt ≈ argmin
σ

N
∑

j=1

||R1(σj)I + εj −R2(σ)I||
2. (9)

where σj ∈ σt is a sample conductivity distribution and εj is random noise vector. Moreover, the argument
input evaluated at j is at a minimum (0) when

R1(σj)I + εj −R2(σ)I = 0 (10)

or, by rearranging

R1(σj)I −R2(σ)I = [R1(σj)−R2(σ)]I = −εj (11)

assuming R1 and R2 are the same size. The interpretation from Eq. 11 is that the optimization regime is
essentially matching the accuracy of the numerical models (or their differences) to the errors of in the data
ε. Therefore, recalling that the global optimum is achieved herein by substitution into the learned model,
i.e. σopt = A(0), we conclude that the deep learning regime predicts the the solution

A(0) ≈ σopt ≈ argmin
σ

N
∑

j=1

||R1(σj)I −R2(σ)I + εj ||
2. (12)

This is a very intuitively-interesting result for several reasons, but one in particular. In the process of
developing a learned model linking the accuracy of numerical models and data to conductivity, the model has
simultaneously unlocked physical connections underlying the mechanisms behind the self-filtering process in
EIT sensors (detailed in the previous subsections). While the importance of linking numerical model accuracy
to data quality has recently been established [21, 22] for inverse problems: we feel that deep learning may
open the door to uncovering more profound/fundamental understandings behind the physics of sensors used
as targets for non-linear and ill-posed imaging approaches. Moreover, due to the high-dimensionality (and
ill-posedness/non-linearity) of this and related sensor optimization problems, the use of traditional inverse
methods for uncovering such physics would likely be quite challenging.

5. Concluding remarks

In this work, we introduced the concept of self-filtering electrical area sensors in the context of Electrical
Impedance Tomography (EIT). The “self-filtering” aspect was defined as a conductivity distribution which
increases the robustness of EIT reconstructions to measurement noise. In order to obtain the self-filtering
distributions, a deep learning-based optimization approach was used. It was found that the underlying
physical self-filtering mechanism works by decreasing the sensitivity of the internal electric potential field
(and therefore the electrode potentials) to perturbations in the in the injected currents. This realization
was quantified using a derived statistical robustness metric and qualified via observing the sensitivity of the
internal electric potential distribution to the injected current. Based on this analysis, it was found that the
self-sensing distributions can increase measurement robustness by approximately 25%, but this is likely at
the loss of reconstruction accuracy far from the electrodes.
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Self-filtering electrical sensors 8

Lastly, an alternative interpretation of the self-filtering optimization approach was identified. In the
process – developing a learned model linking the accuracy of numerical models and data to conductivity
– it was found that the deep learned model simultaneously unlocked physical connections underlying the
mechanisms behind the self-filtering process in EIT sensors. We are therefore encouraged by the potential
use of deep learning for use in (a) optimizing area sensors and (b) unlocking new fundamental information
on the physics of sensors whose characteristics may have previously been shrouded by non-linearity and/or
ill-posedness of the underlying numerical problems.
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