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Abstract 

Path Size Logit route choice models attempt to capture the correlation between routes by including correction terms 

within the route utility functions. This provides a convenient closed-form solution for implementation in traffic network 

models. The path size terms measure distinctiveness of routes; a route is penalised based on the number of other routes 

sharing its links, and the costs of those shared links. Typically, real road networks have many very long routes that 

should be considered unrealistic. Such unrealistic routes are problematic for the Path Size Logit (PSL) model because 

they negatively impact the choice probabilities of realistic routes when links are shared. The Generalised Path Size Logit 

(GPSL) model attempts to address this problem by weighting the contributions of routes to path size terms according to 

the ratio of route travel costs. However, the GPSL model is not internally consistent in how it defines routes as being 

unrealistic: the path size terms consider only travel cost, whereas the route choice probability relation considers disutility 

including the correction term.  

To solve these challenges, this paper formulates a new internally consistent Adaptive Path Size Logit (APSL) model 

wherein routes contribute to path size terms according to the ratio of route choice probabilities, ensuring that routes 

defined as unrealistic by the path size terms, are exactly those with very low choice probabilities. The APSL route choice 

probability relation is an implicit function, naturally expressed as a fixed-point problem. A proof is provided for the 

guaranteed existence of solutions, as well as conditions for the uniqueness of solutions. A Maximum Likelihood 

Estimation procedure is given for estimating the APSL model with tracked route observation data, and this procedure is 

investigated in a simulation study where it is shown it is generally possible to reproduce assumed true parameters. APSL 

is then estimated using real tracked route GPS data on a large-scale network, and results are compared with other PSL 

models.  

 

Key Words: path size logit, route choice, random utility, fixed-point problem, overlapping routes, parameter estimation 

 

1  Introduction 
It is well known that the Multinomial Logit (MNL) Random Utility Model (RUM) often provides unrealistic choice 

probabilities when applied to real road network route choice. One of the main reasons for this is that the MNL model 

does not capture the correlation between routes. This issue stems from the underlying assumption made by the MNL 

model that the random error terms are independently and identically distributed (IID) with the same, fixed variances 

(Sheffi, 1985). Numerous adaptations of the MNL model have been proposed in the literature which relax the IID 

assumption – specifically the independently distributed assumption – and attempt to capture the correlation between the 
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routes. These extended Logit models can be classified into three groups according to the model structures as suggested 

by Prashker & Bekhor (2004): GEV structures, Mixed Logit models, and MNL-modification models. The fourth group of 

route choice models that provide an option for overcoming the weakness of MNL are those which propose an alternative 

probability distribution for the random error terms, i.e. alternative RUMs, that capture the correlation implicitly. To set 

the background for the research in the present paper, we consider each of these categories in turn below: 

 

GEV structures: The first group of extended Logit models are those which are based on the Generalized Extreme Value 

(GEV) theory (McFadden, 1978), which use a two-level tree structure to capture the similarity among routes through the 

random error component of the utility function. These models include the Cross-Nested Logit (CNL) model (Vovsha, 

1997; Bekhor & Prashker, 1999; Marzano & Papola, 2008), the Paired Combinatorial Logit (PCL) model (Chu, 1989; 

Bekhor & Prashker, 1999; Gliebe et al, 1999; Pravinvongvuth & Chen, 2005), the Generalized Nested Logit (GNL) 

model (Bekhor & Prashker, 2001; Wen & Koppelman, 2001), and the Network GEV model (Bierlaire, 2002; Daly & 

Bierlaire, 2006) which uses a fairly general class of networks to generalise the use of trees to represent nested logit 

models to a network representation. The PCL, CNL, and GNL models all have closed-form probability expressions, 

though due to their two-level tree structure the route choice probabilities are complex to compute for large-scale network 

applications. Furthermore, several studies have found that when estimating the nesting coefficients for the CNL model, 

the model tends to collapse to MNL (Ramming, 2002; Prato, 2005; Prato & Bekhor, 2006), and the GNL model requires 

the estimation of an additional parameter over the CNL model which makes parameter estimation more difficult. The 

network GEV model  

 

Mixed Logit models: The second group of extended Logit models are Mixed Logit models (Ben-Akiva & Bolduc, 1996; 

McFadden & Train, 2000), also known as Logit Kernel, Random Parameter Logit, Error Component Logit, and Hybrid 

Logit. Mixed Logit models attempt to capture the correlation between routes by dividing the random error terms into two 

components; the first component is a set of IID Gumbel variables ensuring that the Logit structure is kept, and the second 

component is a set of Gaussian distributed variable terms that attempt to capture the interdependencies among the routes. 

Bekhor et al (2002) propose a Factor Analytic Logit Kernel model that attempts to capture the similarities among routes 

by assuming the covariance between utilities relates to overlap lengths. The main drawback of Mixed Logit models 

however, is that they do not possess closed-form expressions and therefore solving the route choice probabilities requires 

either Monte Carlo simulation or similar methods, which are computationally burdensome. There are also difficulties in 

estimating the parameters of the Factor Analytic Logit Kernel model: Ramming (2002) finds instable estimates of the 

covariance parameters, while Prato (2005) discusses the difficulty in obtaining significant estimates. 

 

MNL-modification models: The third group of extended Logit models are the MNL-modification models which modify 

the deterministic part of the route utilities by including a correction term that adjusts the route choice probabilities to 

approximate the correlation between the routes. These models include C-Logit (CL) (Cascetta et al, 1996), Path Size 

Logit (PSL) (Ben-Akiva & Ramming, 1998), and Path Size Correction Logit (PSCL) (Bovy et al, 2008). Ramming 

(2002) proposes a Generalised Path Size Logit (GPSL) model which includes a component that attempts to reduce the 

impact that infeasibly long routes have on the correction terms (and thus choice probabilities) of feasible routes. The 

main attraction of MNL-modification models is that they all retain the single-level tree structure as MNL and have 

simple closed-form expressions, meaning the route choice probabilities are generally easy and quick to compute, and 

estimating the parameters of the CL, PSL, and PSCL models is a comparatively simple task, though as the size of 

network increases, so does the computational effort required to enumerate the overlap between all routes in a choice set. 

The GPSL model requires the estimation of an additional parameter over the PSL model which makes parameter 

estimation more difficult; estimates for the parameter can be justified by assessing the goodness-of-fit, though the best 

estimates in case studies tend to be very large values meaning that it is difficult to provide a behavioural interpretation for 

the parameter. 

 

Alternative RUMs: Another option is to utilise an alternative RUM. There are many RUMs that do not suffer from the 

same issue as MNL as the similarity between each pair of routes is accounted for by allowing for covariance between the 

error terms. The MNL RUM proposes that the random error terms assume a Gumbel distribution (Dial, 1971), while the 

Multinomial Probit (MNP) model (Daganzo & Sheffi, 1977) and the Multinomial Gammit (MNG) model (Cantarella & 

Binetti, 2002), propose that the error terms assume a Normal distribution and Gamma distribution, respectively. Other 

distributions include Log-Normal and Uniform, while Nielsen (2000) argues that Gamma distributed error terms is 

preferred since the error term is positive and link-additive (Nielsen & Frederiksen, 2006). These models however, do not 

have closed-form probability expressions and hence solving the route choice probabilities also requires either Monte 

Carlo simulation or similar methods which are computationally burdensome and converge very slowly on large scale 

networks (Rich et al, 2015; Manzo et al, 2015; Rasmussen et al, 2016; Connors et al, 2014). Mishra et al (2012), 

Ahipasaoglu et al (2013), and Ahipasaoglu et al (2015) explore a Cross Moment (CMM) choice model where the exact 

distribution of the random error terms is unknown and instead belongs to a set, where the distribution employed is that 
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which maximises the expected utility given known mean and covariance information of the utilities. Efficient convex 

optimisation techniques are developed to solve the CMM, though computation times increase dramatically as the number 

of routes increases. 

 

There are numerous examples of alternative RUMs where the correlation between routes is not explicitly captured (like 

MNL) and have been adapted accordingly utilising concepts from extended Logit models. These models thus share the 

same associated strengths/weaknesses of the approaches. Castillo et al (2008) proposed a Multinomial Weibit (MNW) 

model – where the random error terms assume a Weibull distribution – to address the other underlying assumption made 

by the MNL model that the error terms are identically distributed. Kitthamkesorn & Chen (2013) then integrated the 

ideas of the MNW and PSL models to formulate a Path Size Weibit (PSW) model that simultaneously addresses both the 

independently distributed and identically distributed assumptions made of the MNL error terms. Xu et al (2015) 

formulate a Hybrid closed-form route choice model to alleviate the contrasting scaling issues of MNL and MNW by 

simultaneously considering absolute cost difference and relative cost difference, and is extended to include a path size 

correction factor to capture the correlation between routes. Chikaraishi & Nakayama (2016) extend concepts from the q-

Generalised Logit model (Nakayama & Chikaraishi, 2015) to introduce a q-Product Logit model in which the 

relationship between the deterministic and random components of utilities can be either additive, multiplicative, or in-

between, depending on the value of the parameter q, where MNL and MNW are special cases of the model. A q-Product 

Nested Logit model is presented to capture correlation, where the CNL model is a special case, as well as a nested 

equivalent of the Weibit model. Li (2011) proposes a Semi-Parametric choice model that relaxes the assumption of 

underlying distributions from either Gumbel or Weibull to a wider distribution class where the underlying choice model 

is unknown, and integrates Mixed Logit concepts to postulate a Mixed Semi-Parametric choice model. Ahipasaoglu et al 

(2016) consider the application of the Marginal Distribution Model (MDM) (Natarajan et al, 2009) to route choice, where 

the marginal distributions of the route utilities are specified but the joint distributions are not, and the focus is on the 

particular joint distribution that maximizes expected utility. Incorporating information on the marginal distributions 

makes the MDM model flexible and MNL, CL, PSL, MNW, and PSW are all special cases. Numerous variants of the 

MDM are explored and PSL and CL concepts are integrated to form new MDMs. Chorus (2010) and Bekhor et al (2012) 

introduce a Random Regret Minimization (RRM) model which assumes that individuals minimise anticipated regret, 

rather than maximize expected utility, when choosing routes, and Prato (2014) develops a Path Size RRM model and a 

Path Size Correction RRM model. 

To summarise, the greatest hindrance for the GEV structures, Mixed Logit models, and alternative RUMs is the 

considerable computational cost required to solve the route choice probabilities for large-scale networks, while another 

issue that has been noted for some of the GEV structures and Mixed Logit models is the difficulty in obtaining 

reasonable estimates for parameters. MNL-modification models are a useful and practical approach to approximating the 

correlation; more complex models can capture the correlation more accurately, but due to the comparatively low 

computational cost and the relative ease in obtaining reasonable estimates for parameters, they are the most commonly 

used models in practice, and are the focus of this paper, in particular: Path Size Logit models.  

One of the main issues for most MNL-modification models is that results are highly sensitive to the inclusion and 

exclusion of routes from the choice set. The CL model proposes that the correction terms are based upon commonality 

factors that measure the similarity of routes, and penalises the utilities accordingly. In contrast, the PSL and PSCL 

models propose that the correction terms are based upon path size terms that measure route distinctiveness: a route is 

penalised based on the number of other routes sharing its links, and the costs of those shared links. The inclusion of a 

route to a choice set can thus have a substantial effect upon the choice probability of any route that shares its links, as the 

correction terms adjust the route utilities attempting to capture the correlation.  

In real-life applications where the size of the network is often large, route choice is rarely performed upon the full 

choice sets of routes, and choice sets are either pre-generated or a column generation approach is employed with 

implementation. This is often because it is computationally infeasible to both/either enumerate the full choice sets of 

routes and/or perform route choice upon the full choice sets of routes. Furthermore, typical road networks contain many 

very long routes that should be considered unrealistic and excluded from route choice. The key issue for the PSL model 

is that the choice probabilities are extremely sensitive to the utilised choice sets since all routes contribute equally to path 

size terms, and as such, results are extremely sensitive to the choice set generation / column generation method adopted. 

Moreover, it is crucial for the PSL model that the choice sets contain realistic alternatives only, as the inclusion of a 

single unrealistic alternative can have a considerable and negative effect on the choice probabilities of the realistic routes.  

Thus, since it is difficult to obtain choice sets of realistic routes with absolute certainty for PSL to be suitable, a 

pragmatic approach is to utilise a weighted path size contribution technique along with choice set generation to attempt to 

reduce the impact any present unrealistic routes may have on the choice probabilities of realistic routes. Weighted path 

size contribution techniques weight the contribution of routes to path size terms with a path size contribution factor, i.e. 

so that the contribution of route 𝑘 to the path size term of route 𝑖 is reduced for unrealistic routes.  

The GPSL model proposes that the path size contribution factor is based upon ratios of travel cost between routes, 

and hence routes with excessively large travel costs have a diminished impact upon the correction terms of routes with 

small travel costs, and consequently the choice probabilities of those routes. How the GPSL path size contribution factor 
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is formulated, however, means that: a) the model is not always internally consistent with how it assesses routes to be 

(un)realistic, and b) an additional scaling parameter is required to scale the path size contributions which makes 

parameter estimation more difficult. The main contribution of the present paper is thus the formulation of an Adaptive 

Path Size Logit (APSL) model where a new path size contribution factor is proposed so that the model is always 

internally consistent with how it assesses routes to be unrealistic, and so that no additional parameters are required for 

estimation. 

For Path Size Logit models, the probability that a route is chosen (i.e. how feasible of an alternative the route is 

perceived to be) is a trade-off between its relative attractiveness due to travel cost and its relative attractiveness due to 

distinctiveness, and two independent scaling parameters (Logit parameter and path size parameter) affect the relativeness 

of how attractive each component is. The GPSL path size contribution factors however, are inconsistent with this in two 

ways: a) they assess the feasibility of a route according to its relative attractiveness due to travel cost only; and, b) they 

scale the relativeness of how attractive routes are due to travel cost with an additional independent path size contribution 

parameter, which is not necessarily proportional to the Logit parameter that scales travel cost within the probability 

relation. 

The APSL model proposes that the path size contribution factors are based upon ratios of choice probability 

between routes, thus ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low 

choice probabilities. The APSL route choice probability relation is an implicit function involving the choice probabilities, 

and solutions to the model are solutions to the fixed-point problem. Also, by defining the path size contribution factor as 

the ratio of choice probabilities, the scaling of the path size contributions is controlled implicitly through the scaling of 

the route choice probabilities (i.e. with the Logit parameter and path size parameter), and hence there is no additional 

path size contribution parameter for estimation. 

Fig. 1A displays a network with a single OD movement and three routes. As 𝑥 varies, the travel cost of each route 

stays constant (though different from one another), meaning that the GPSL path size terms always assess the feasibility 

of each route as being the same. However, as 𝑥 is varied between 0 and 1, the correlation between Route 1 and Route 2 

varies, thus altering the choice probabilities and how feasible of an alternative each route is perceived to be. A key point 

is that the behaviour of the choice probabilities as 𝑥 is varied is highly dependent upon the values of the scaling 

parameters; different ranges for the Logit / path size parameters imply different theoretical route choice behaviours 

consequently altering how feasible each route is deemed to be. This makes it difficult to state what behaviours we should 

expect to happen as 𝑥 is varied, without knowing the parameter values we wish to set, to model specific behaviours. Due 

to its internal consistency, the APSL model is adaptable to whichever values are set for the scaling parameters, and the 

path size contribution factors will assess the feasibility of routes by how relatively attractive they are due to travel cost 

and distinctiveness as the scaling parameters dictate. 

 

Fig. 1. Example network to demonstrate the inconsistency of the GPSL model. 

 

The structure of the paper is as follows. In Section 2 we introduce some basic network notation as well as the definitions 

of the MNL, PSL, and GPSL models, and several numerical experiments on small-scale networks to demonstrate some of 

the key issues with PSL and GPSL, and the potential negative implications of an internally inconsistent PSL model. In 

Section 3 we detail the new APSL model, give results from several numerical experiments that demonstrate the key 

properties of the APSL model, and detail a solution method. Section 4 addresses existence and uniqueness of APSL 

solutions. In Section 5 we investigate estimating the APSL model. To show that the parameters of the APSL model can 

be estimated we first propose a Maximum Likelihood Estimation procedure for estimating APSL with tracked route 

observation data, then investigate this procedure in a simulation study on the Sioux Falls network where we show that it 

is generally possible to reproduce assumed true parameters. Then, in a real-life case study, we estimate the APSL model 

using real tracked route GPS data on a large-scale network. Section 6 concludes the paper. 
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2 Notation, Definitions, and Demonstrations of Key Issues with Existing Path Size Logit 

Models 

2.1 Basic Network Notation 

The model developed in this paper is applicable to general networks with multiple OD movements and flow-dependent 

link costs. However, without compromising the model derivation, we simplify notation by considering a single OD 

movement with fixed link costs. The network consists of link set 𝐴. For the OD movement, 𝑅 is the choice set of all 

simple routes (without cycles), having size 𝑁 = |𝑅|. 𝐴𝑖 ⊆ 𝐴 is the set of links belonging to route 𝑖 ∈ 𝑅, and 𝛿𝑎,𝑖 ={1     𝑖𝑓 𝑎 ∈ 𝐴𝑖    0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. Each link 𝑎 ∈ 𝐴 has a fixed generalised travel cost 𝑡𝑎, and supposing that the travel cost for a route can 

be attained through summing up the total cost of its links, then the generalised travel cost for route 𝑖 ∈ 𝑅, 𝑐𝑖, can be 

computed as follows: 𝑐𝑖 = ∑ 𝑡𝑎𝑎∈𝐴𝑖 . 
The route choice probability for route 𝑖 ∈ 𝑅 is 𝑃𝑖 , where 𝑷 = (𝑃1, 𝑃2, … , 𝑃𝑁) is the vector of route choice 

probabilities, and 𝐷 is the set of all possible route choice probability vectors: 𝐷 = {𝑷 ∈ ℝ≥0𝑁 : 0 ≤ 𝑃𝑖 ≤ 1, ∀𝑖 ∈ 𝑅,∑ 𝑃𝑗𝑁𝑗=1 = 1}. 
And, 𝐷>0 ⊂ 𝐷 is the subset of all possible route choice probability vectors where no route has zero choice probability: 𝐷>0 = {𝑷 ∈ ℝ>0𝑁 : 0 < 𝑃𝑖 < 1, ∀𝑖 ∈ 𝑅,∑ 𝑃𝑗𝑁𝑗=1 = 1}. 
2.2 Multinomial Logit 

The Multinomial Logit (MNL) choice model is formulated as follows. The deterministic utility of alternative 𝑖 ∈ 𝑅 is 𝑉𝑖, 
and the random utility of alternative 𝑖 ∈ 𝑅 is 𝑈𝑖 such that 𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖, where the 𝜀𝑖 terms are the individually and 

identically distributed random variable error terms. Assuming individuals seek the alternative with highest utility, the 

probability that an individual selects alternative 𝑖 ∈ 𝑅 is: 𝑃𝑖 = Pr(𝑈𝑖 ≥ 𝑈𝑗 , ∀𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖) = Pr(𝑉𝑖 + 𝜀𝑖 ≥ 𝑉𝑗 + 𝜀𝑗, ∀𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖). 
The defining characteristic of Logit models is that the random variable error terms assume a Gumbel distribution. 

Consequently: 𝑃𝑖(𝑽) = 𝑒𝑉𝑖∑ 𝑒𝑉𝑗𝑗∈𝑅  

where 𝑽 is the vector of deterministic utilities.  

The MNL model in the context of route choice states that the deterministic utility of route 𝑖 ∈ 𝑅 is given by 𝑉𝑖 =−𝜃𝑐𝑖, where 𝜃 > 0 is the Logit scaling parameter, and thus: 𝑃𝑖 = 𝑒−𝜃𝑐𝑖∑ 𝑒−𝜃𝑐𝑗𝑗∈𝑅 = 1∑ 𝑒−𝜃(𝑐𝑗−𝑐𝑖)𝑗∈𝑅 . (1) 
The MNL model assumes the route utilities are independent from one another, however routes with overlapping links 

share unobserved attributes, and the assumption that the random error terms are all independently and identically 

distributed is no longer valid. The famous example for this is the ‘loop hole’ network (also known as the red-bus/blue-

bus network) presented in Cascetta et al (1996). 

 

2.3 Path Size Logit Models 

Path Size Logit models include correction terms to penalise routes that share links with other routes, so that the 

deterministic utility of route 𝑖 ∈ 𝑅 is 𝑉𝑖 = −𝜃𝑐𝑖 + 𝜅𝑖, where 𝜅𝑖 ≤ 0 is the correction term for route 𝑖 ∈ 𝑅. The probability 

that a driver chooses route 𝑖 ∈ 𝑅 is therefore: 𝑃𝑖 = 𝑒−𝜃𝑐𝑖+𝜅𝑖∑ 𝑒−𝜃𝑐𝑗+𝜅𝑗𝑗∈𝑅 . 
Path Size Logit models adopt the form 𝜅𝑖 = 𝛽 ln(𝛾𝑖), where 𝛽 ≥ 0 is the path size scaling parameter, and 𝛾𝑖 ∈ (0,1] is 

the path size term for route 𝑖 ∈ 𝑅. A distinct route with no shared links has path size term equal to 1, resulting in no 

penalisation. Less distinct routes have smaller path size terms and incur greater penalisation. The probability that a driver 

chooses route 𝑖 ∈ 𝑅 is: 
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𝑃𝑖 = 𝑒−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖)∑ 𝑒−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗)𝑗∈𝑅 = (𝛾𝑖)𝛽𝑒−𝜃𝑐𝑖∑ (𝛾𝑗)𝛽𝑒−𝜃𝑐𝑗𝑗∈𝑅 = 1∑ (𝛾𝑗𝛾𝑖)𝛽 𝑒−𝜃(𝑐𝑗−𝑐𝑖)𝑗∈𝑅 . (2)
 

2.3.1 Path Size Logit 

The Path Size Logit (PSL) model was first proposed by Ben-Akiva & Ramming (1998), and states that the PSL path size 

term for route 𝑖 ∈ 𝑅, 𝛾𝑖𝑃𝑆, is defined as follows: 𝛾𝑖𝑃𝑆 =∑ 𝑡𝑎𝑐𝑖 1∑ 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 . (3) 
To dissect the PSL path size term for route 𝑖 ∈ 𝑅 defined in (3): each link 𝑎 in route 𝑖 is penalised (in terms of 

decreasing the path size term and hence the utility of the route) according to the number of routes in the choice set that 

also use that link (∑ 𝛿𝑎,𝑘𝑘∈𝑅 ), and the significance of the penalisation is weighted according to how prominent link 𝑎 is 

in route 𝑖, i.e. the cost of route 𝑎 in relation to the total cost of route 𝑖 (𝑡𝑎𝑐𝑖).  

 

PSL Key Issue: Unrealistic routes negatively impact the choice probabilities of realistic routes when links are shared. 

 

The key issue with the PSL model is that all routes contribute equally to path size terms (i.e. the path size contribution 

factors are simply all 1), and hence the choice probabilities of realistic routes are affected by link sharing with unrealistic 

routes. To demonstrate this, consider example network 1 in Fig. 2A where there are 3 routes: Routes 2 & 3 have travel 

cost 1 and Route 1 has travel cost 1 + 𝜐, Routes 1 & 2 are correlated while Route 3 is distinct. Fig. 2B displays the 

example network 1 PSL choice probabilities as 𝜐 is increased from 0.5 to 3, 𝜃 = 𝛽 = 1. For 𝜐 = 0.5, Routes 1 & 2 have 

the same unshared travel cost and are thus considered equally attractive. As 𝜐 is increased, Route 1 increases in travel 

cost and decreases in choice probability. As Route 1 becomes an unrealistic alternative, the choice probability of Route 2 

should not be penalised for overlapping with Route 1. The PSL path size terms dictate though that Route 1 contributes 

equally to the path size term of Route 2 for all 𝜐, and hence the choice probability of Route 2 is always significantly 

penalised. As 𝜐 is increased and the choice probability of Route 1 approaches zero, the contribution of Route 1 to the 

path size term of Route 2 should decrease, and the choice probability of Route 2 should converge to the choice 

probability of Route 3. 

  

Fig. 2. A: Example network 1. B: Example network 1: PSL route choice probabilities for increasing 𝜐; 𝜃 = 𝛽 = 1. 

 

2.3.2 Generalised Path Size Logit 

Ben-Akiva & Bierlaire (1999) formulate an alternative PSL model (PSL′) that attempts to reduce the contributions of 

excessively expensive routes to the path size terms of more realistic routes in the choice set. The PSL′ model states that 

the PSL′ path size term for route 𝑖 ∈ 𝑅, 𝛾𝑖𝑃𝑆′, is defined as follows: 𝛾𝑖𝑃𝑆′ =∑ 𝑡𝑎𝑐𝑖 1∑ (min(𝑐𝑙: 𝑙 ∈ 𝑅)𝑐𝑘 ) 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 , (4)
 

As (4) shows, the contribution of route 𝑘 to path size terms is weighted according to the ratio of route 𝑘 and the cheapest 

route in the choice set (min(𝑐𝑙:𝑙∈𝑅)𝑐𝑘 ), and hence contributions of high costing routes compared to the cheapest alternative 

are reduced.  

Route 1 × 

Route 2 ▲ 

Route 3  
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As Ramming (2002) describes, however, when a route is completely distinct its path size term is not always equal to 

1 which results in an undesired penalisation upon the utility of that route. To combat this, Ramming (2002) proposes the 

Generalised Path Size Logit (GPSL) model. The GPSL model states that the GPSL path size term for route 𝑖 ∈ 𝑅, 𝛾𝑖𝐺𝑃𝑆, 

is defined as follows: 𝛾𝑖𝐺𝑃𝑆 =∑ 𝑡𝑎𝑐𝑖 1∑ (𝑐𝑖𝑐𝑘)𝜆 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 , (5)
 

where 𝜆 ≥ 0, noting that the GPSL model is equivalent to the PSL model when 𝜆 = 0. In (5), the contribution of route 𝑘 

to the path size term of route 𝑖 (the path size contribution factor) is weighted according to the cost ratio between the 

routes, ((𝑐𝑖𝑐𝑘)𝜆), and hence the contributions of high costing routes to the path size terms of low costing routes is reduced. 𝜆 ≥ 0 is the path size contribution scaling parameter to be estimated. 

Fig. 3 displays the example network 1 GPSL choice probabilities as 𝜐 is increased from 0.5 to 3, 𝜃 = 𝛽 = 1, 𝜆 = 3. 

As Fig. 3 shows, as 𝜐 is increased and the travel cost of Route 1 increases, the contribution of Route 1 to the path size 

term of Route 2 decreases, and consequently the choice probability of Route 2 converges to the choice probability of 

Route 3. 

 

Fig. 3. Example network 1: GPSL route choice probabilities for increasing 𝜐; 𝜃 = 𝛽 = 1, 𝜆 = 3. 

 

GPSL Key Issue 1: For large 𝜆, GPSL path size terms are highly sensitive to small differences in route travel cost. 

 

It is mentioned numerous times in the literature that the GPSL model can be problematic for large 𝜆 values, especially 

when overlapping routes only have marginally different travel costs (Ramming, 2002; Frejinger & Bierlaire, 2007; 

Hoogendoorn-Lanser, 2005). Hoogendoorn-Lanser et al (2005) describe how 𝜆 should be set to 0 when overlapping 

routes have more-or-less equal travel costs, as the overlap between those alternatives should not affect their choice 

probabilities differently. However, when overlapping routes have very different travel costs 𝜆 should not be set to 0, as 

the effects that routes with high travel costs have on the path size terms of routes with low travel costs should be 

dampened. Example network 2 in Fig. 4A shows a network where both cases exist: Routes 1 & 2 are overlapping routes 

with more-or-less equal travel costs (𝑐1 = 2.01, 𝑐2 = 2), and Routes 3 & 4 are overlapping routes with very different 

travel costs (𝑐3 = 2, 𝑐4 = 6). Fig. 4B shows the example network 2 GPSL choice probabilities as 𝜆 is increased from 0 to 

400, 𝜃 = 𝛽 = 1. When 𝜆 = 0 (i.e. GSPL is equivalent to PSL), Routes 1, 2 & 3 have approximately equal choice 

probabilities as they all have similar travel costs and all share approximately half of their journey with one other route. 

Route 4 induces a penalty on Route 3, but this should be less than the path size penalties Routes 1 & 2 impose on each 

other, and thus 𝑃3 should be greater than 𝑃1 and 𝑃2, which should be approximately equal, for these values of 𝜃 and 𝛽. 

Although this is the case when 𝜆 ≅ 10, increasing 𝜆 amplifies the difference in costs between Routes 1 & 2 so that 𝑃1 

and 𝑃2 diverge, which is not desired. 

Route 1 × 

Route 2 ▲ 

Route 3  
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Fig. 4. A: Example network 2. B: Example network 2: GPSL route choice probabilities for increasing 𝜆; 𝜃 = 𝛽 = 1. 

 

As (2) shows, how feasible route 𝑖 is perceived to be by drivers (i.e. its choice probability) is a trade-off between its 

relative attractiveness due to travel cost 𝑒−𝜃(𝑐𝑗−𝑐𝑖) and its relative attractiveness due to distinctiveness (𝛾𝑗𝛾𝑖)𝛽, where the 𝜃 

parameter scales relative attractiveness due to travel cost and 𝛽 scales relative attractiveness due to distinctiveness. The 

GPSL path size contribution factors in (4), however, assess the feasibility of route 𝑖 according to its relative 

attractiveness due to travel cost only (𝑐𝑖𝑐𝑘)𝜆, where an additional parameter 𝜆 scales relative attractiveness due to travel 

cost. The internal inconsistency issues of the GPSL model between the probability relation and path size terms are thus 

twofold: a) there is an inconsistent assessment of the feasibility of routes; and, b) there are inconsistent parameters that 

scale relative attractiveness due to travel cost. We demonstrate both issues below. 

 

GPSL Key Issue 2: Internally inconsistent assessment of the feasibility of routes. 

 

Fig. 5A shows a network with 6 routes: Routes 1-5 are highly correlated with each other with fixed travel cost 1.2, and 

Route 6 has a fixed cost of 2 and is either a distinct route when 𝜂 = 1 or correlated with Routes 1-5 when 𝜂 < 1. As 𝜂 is 

decreased, the correlation between Route 6 and Routes 1-5 increases, but the travel costs don’t change. Supposing that 𝜃 = 𝛽 = 1, then one might expect Route 6 to have a choice probability greater than each of Routes 1-5 when 𝜂 = 1 due 

to being distinct, and a choice probability smaller than each of Routes 1-5 when 𝜂 = 0 due to having the larger detour. 

There should thus be a point 𝜂𝑒𝑞 ∈ (0,1) where all routes have equal choice probability. At this point, each route is 

considered equally attractive and all routes should contribute equally to path size terms. By the definition of the PSL 

model all routes always contribute equally to path size terms; Fig. 5B shows the example network 3 PSL choice 

probabilities for increasing 𝜂, 𝜃 = 𝛽 = 1, and 𝜂𝑒𝑞 = 0.27 is the point where all routes have equal choice probabilities. 

For 𝜂 ≠ 𝜂𝑒𝑞  however, it is not necessarily required for routes to contribute equally to path size terms, for example when 𝜂 = 0 the contribution of Route 6 to Routes 1-5 may wish to be reduced, and the PSL model is incapable of this. Fig. 5C 

& Fig. 5D show the example network 3 GPSL choice probabilities for increasing 𝜂, 𝜃 = 𝛽 = 1, for 𝜆 = 1 and 𝜆 = 10, 

respectively. The GPSL model proposes that the contribution of Route 6 to the path size terms of Routes 1-5 is a constant (1.22 )𝜆 for all 𝜂, and thus the points where all routes have equal choice probabilities are 𝜂𝑒𝑞 = 0.37 and 𝜂𝑒𝑞 = 0.48 for 𝜆 = 1 and 𝜆 = 10, respectively, which are greater than 0.27, and larger values for 𝜆 moves 𝜂𝑒𝑞 further away from 0.27. 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

A B 
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Fig. 5. A: Example network 3. Example network 3: Route choice probabilities for increasing 𝜂; 𝜃 = 𝛽 = 1 – 

B: PSL, (𝜂𝑒𝑞 = 0.27). C: GPSL, 𝜆 = 1, (𝜂𝑒𝑞 = 0.37). D: GPSL, 𝜆 = 10, (𝜂𝑒𝑞 = 0.48). 
 

GPSL Key Issue 3: Internally inconsistent scaling parameters. 

 

Fig. 6A displays a network with 4 routes: Routes 1 & 4 have travel cost 3 and Routes 2 & 3 have travel cost 1, Routes 1 

& 2 are distinct and Routes 3 & 4 are correlated, with Route 4 being more distinct than Route 3. Different ranges for the 𝜃 and 𝛽 parameters have different implications for how relatively attractive the routes are due to travel cost and 

distinctiveness. Fig. 6B shows the example network 4 GPSL choice probabilities for increasing 𝜃, 𝛽 = 1, 𝜆 = 4. The 

GPSL model diminishes Route 4’s contribution to the path size term of Route 3 to (13)4, and thus Routes 2 & 3 have near 

identical choice probabilities for all 𝜃. For low 𝜃 however, the sensitivity to the differences in travel cost is dampened 

within the probability relation, yet Route 4’s path size term contribution to Route 3 accentuates the difference in cost, and 

the GPSL model is thus inconsistent. 

To try and overcome this inconsistency issue, one must attempt to represent 𝜆 proportional to 𝜃. Because 𝜃 scales 

travel cost difference, and 𝜆 scales travel cost ratios, it is difficult to know how 𝜆 should relate to 𝜃, e.g. 𝜆 = 𝜃5? A 

potential solution could be to adjust the GPSL path size contribution factor to resemble the relative attractiveness due to 

travel cost component within the Path Size Logit probability relation in (2) (and the MNL probability relation in (1)), 
thus formulating an alternative Generalised Path Size Logit (GPSL′) model, where the GPSL′ path size term for route 𝑖 ∈𝑅, 𝛾𝑖𝐺𝑃𝑆′, is defined as follows: 𝛾𝑖𝐺𝑃𝑆′ =∑ 𝑡𝑎𝑐𝑖 1∑ 𝑒−𝜆(𝑐𝑘−𝑐𝑖)𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 . (6) 
By setting 𝜆 = 𝜃, the relative attractiveness due to travel cost components within the GPSL′ model match exactly. Fig. 

6C shows the example network 4 GPSL′(𝜆=𝜃) choice probabilities for increasing 𝜃, 𝛽 = 1. For low 𝜃, the sensitivity to 

the difference in cost between Routes 3 & 4 is dampened within the probability relation and within the path size 

contribution factor, and Route 3 has the lowest choice probability due to being the least distinct. As 𝜃 is increased, the 

sensitivity to the difference in cost between Routes 3 & 4 is accentuated within the path size contribution factor and 

Route 4’s contribution to Route 3 decreases, and the choice probability of Route 3 converges to the choice probability of 

Route 2. 

Routes 1-5 × 

Route 6 ▲ 

Routes 1-5 × 

Route 6 ▲ 

Routes 1-5 × 

Route 6 ▲ 

A B 
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The GPSL′(𝜆=𝜃) model only partially improves the internal consistency of the GPSL model though. Fig. 6D shows 

the example network 4 GPSL′(𝜆=𝜃)choice probabilities for increasing 𝜃, 𝛽 = 2. An increase in 𝛽 increases the sensitivity 

to distinctiveness within the probability relation; attractiveness due to distinctiveness is not considered within the GPSL 

& GPSL′ path size contribution factors however, and hence as Route 3 becomes unattractive for low 𝜃 due to being the 

least distinct, its path size contribution to Route 4 is not reduced, though approaching being considered unrealistic as the 

parameters dictate. 

   

  

Fig. 6. A: Example network 4. Example network 4: Route choice probabilities for increasing 𝜃 – 

B: GPSL, 𝛽 = 1, 𝜆 = 4. C: GPSL′, 𝜆 = 𝜃, 𝛽 = 1. D: GPSL′, 𝜆 = 𝜃, 𝛽 = 2. 

 

3 The Adaptive Path Size Logit Model 
In the PSL model, all routes contribute equally to path size terms so that unrealistic routes negatively impact the choice 

probabilities of realistic routes when links are shared. The GPSL model attempts to overcome this issue by including a 

path size contribution factor based upon travel cost ratios, but has issues with internal inconsistency. The alternative 

GPSL (GPSL′(𝜆=𝜃)) model partially addresses this inconsistency but does not take into account the relative attractiveness 

of routes due to distinctiveness. We thus propose in this section a fully internally consistent PSL model where all 

components assess the feasibility of routes according to its relative attractiveness due to travel cost and distinctiveness. 

Formulation of the APSL model was complicated by the desire to establish existence and uniqueness of solutions. First, 

we provide a simpler formulation of the APSL model, then we detail the final more complicated definition, which has 

been constructed solely so that solutions exist and can be unique (proven in Section 4). 

 

3.1 Preliminary Definition of APSL 

Definition 

The preliminary definition of APSL (APSL0) is defined as follows. The APSL0 choice probabilities, 𝑷∗, are a solution to 

the fixed-point problem 𝑷 = 𝒈(𝜸𝐴𝑃𝑆(𝑷)), where: 

Route 1 × 

Route 2 ▲ 

Route 3  
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𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)) = 𝑒−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖𝐴𝑃𝑆(𝑷))∑ 𝑒−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗𝐴𝑃𝑆(𝑷))𝑗∈𝑅 = (𝛾𝑖𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑖∑ (𝛾𝑗𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑗𝑗∈𝑅 = 1∑ (𝛾𝑗𝐴𝑃𝑆(𝑷)𝛾𝑖𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃(𝑐𝑗−𝑐𝑖)𝑗∈𝑅
, (7)

 

𝛾𝑖𝐴𝑃𝑆(𝑷) =∑ 𝑡𝑎𝑐𝑖 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 =∑ 𝑡𝑎𝑐𝑖 1∑ (𝑃𝑘𝑃𝑖 ) 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 , ∀𝑖 ∈ 𝑅, (8)
 

∀𝑷 ∈ 𝐷>0, 𝜃 > 0, 𝛽 ≥ 0. 𝛾𝑖𝐴𝑃𝑆(𝑷) in (8) is the APSL path size term function for route 𝑖 ∈ 𝑅 that is a function involving the route choice 

probabilities. 𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)) in (7) is the APSL route choice probability function for route 𝑖 ∈ 𝑅 which is a function 

involving the path size term functions and hence also the choice probabilities of routes. The choice probability relation 

for route 𝑖 ∈ 𝑅 is given by 𝑃𝑖 = 𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)), which is an implicit equation involving choice probabilities, and hence the 

APSL0 route choice probabilities, 𝑷∗, are a solution such that 𝑃𝑖∗ = 𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷∗)), ∀𝑖 ∈ 𝑅.  

Property 1: For an APSL0 route choice probability solution vector 𝑷∗, 𝛾𝑖𝐴𝑃𝑆(𝑷∗) is the APSL path size term for 

route 𝑖 ∈ 𝑅, 𝜅𝑖 = 𝛽 ln (𝛾𝑖𝐴𝑃𝑆(𝑷∗)) is the correction term, and the deterministic utility is given by:  𝑉𝑖 = −𝜃𝑐𝑖 + 𝛽 ln (𝛾𝑖𝐴𝑃𝑆(𝑷∗)) . (9) 
If the random utility for route 𝑖 ∈ 𝑅 is 𝑈𝑖 = −𝜃𝑐𝑖 + 𝛽 ln (𝛾𝑖𝐴𝑃𝑆(𝑷∗)) + 𝜀𝑖, and if the random variable error terms, 𝜀𝑖, are 

i.i.d Gumbel, then the probability relation in (7) is obtained.  

As (8) shows, for a choice probability solution 𝑷∗, the contribution of route 𝑘 to the APSL path size term of route 𝑖 
is weighted according to the ratio of choice probabilities between the routes (𝑃𝑘∗𝑃𝑖∗), and hence unrealistic route alternatives 

with very low choice probabilities have a diminished contribution to the path size terms of realistic routes with relatively 

large choice probabilities. The choice probability ratio path size contribution factor can also be formulated as follows: 𝑃𝑘∗𝑃𝑖∗ = 𝑔𝑘(𝜸𝐴𝑃𝑆(𝑷∗))𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷∗)) = (𝛾𝑘𝐴𝑃𝑆(𝑷∗)𝛾𝑖𝐴𝑃𝑆(𝑷∗))𝛽 𝑒−𝜃(𝑐𝑘−𝑐𝑖). (10) 
So, it is clear to see that the path size contribution factor in (10) matches the probability relation in (7), where both 

consider how attractive a route is by measuring its relative attractiveness due to travel cost and distinctiveness, and hence 

there is some clear consistency within the model’s framework. Furthermore, not only do the path size contribution factors 
become more consistent with the eventual route choice probabilities (i.e. they both define a route as being unrealistic if it 

has a relatively unattractive combination of travel cost and distinctiveness) the model does not require the estimation of 

any additional parameters. Whereas the scaling of the path size contributions in the GPSL model depends upon an 

independent parameter 𝜆, the scaling of the path size contributions in the APSL0 model depends implicitly on the scaling 

of the choice probability relation with the 𝜃 and 𝛽 parameters, and one cannot independently adjust the scaling within the 

path size contribution factors without scaling the choice probability relation as well.  

In Random Utility Theory (RUT), RUMs are derived based on the deterministic utility function and random error 

term. As (9) shows, however, the deterministic utility function for the APSL0 model is not in fact deterministic since it is 

dependent upon the route choice probabilities. APSL0 is thus not a member of the RUM family, though it is derived using 

RUT. This is analogous to the way that Stochastic User Equilibrium (SUE) is a consistency condition derived using RUT 

but an SUE model is not a member of the RUM family. The key difference can be understood in considering a policy 

test: having solved the APSL0 fixed-point problem for the ‘before’ case, the path size terms are not fixed. The ‘after’ case 
would require APSL0 to be re-solved and the path size terms would be updated. If instead one fixed the APSL path size 

terms from the ‘before’ case, then the ‘after’ case would be a regular Path Size Logit model and hence a RUM. Making 

this explicit, imagine examining the impact on route choice of a new road added to the network. For pre-existing routes 

not overlapping with the new routes generated, the path size terms of the regular Path Size Logit models would remain 

the same, and hence so does the attractiveness of those routes. For the APSL0 model, however, the fixed-point probability 

system must be re-solved, and the path size terms for all pre-existing routes may be adjusted to account for the updated 

attractiveness of the routes, and thus to alter the path size contributions. 

 

The Issue 

Standard proofs for existence and uniqueness of fixed-point solutions require the domain of the fixed-point function (in 

this case 𝒈) to be a compact convex set. The issue with the APSL0 model as defined in (7) and (8) is that the domain of 

the fixed-point function 𝒈, 𝐷>0, is open and bounded (not compact) as the function is not always defined for zero choice 
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probabilities where 
00 can occur in the path size terms. Altering the definition of the path size terms so that the domain of 

the fixed-point function 𝒈 is the closed and bounded set 𝐷, where routes can have zero choice probabilities, is however 

problematic as issues arise with ensuring that 𝜸𝐴𝑃𝑆(𝑷) remains a continuous function (see Appendix A for a 

demonstration). 

 

3.2 Proposed APSL Definition 

While the preliminary definition of the APSL model defined in the previous subsection is the model we originally aimed 

to propose, as discussed, we could not prove that solutions were guaranteed to exist nor be unique according to standard 

proofs, and hence we provide here an altered model for use where solutions are guaranteed to exist and where conditions 

for uniqueness can be defined.  

 

Definition 

The APSL choice probabilities, 𝑷∗, (for a choice set of size 𝑁) are a solution to the fixed-point problem 𝑷 =𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))), where: 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))) = 𝜏 + (1 − 𝑁𝜏) ∙ 𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)), (11) 
𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)) = 𝑒−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖𝐴𝑃𝑆(𝑷))∑ 𝑒−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗𝐴𝑃𝑆(𝑷))𝑗∈𝑅 = (𝛾𝑖𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑖∑ (𝛾𝑗𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑗𝑗∈𝑅 , (12) 
𝛾𝑖𝐴𝑃𝑆(𝑷) =∑ 𝑡𝑎𝑐𝑖 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 =∑ 𝑡𝑎𝑐𝑖 1∑ (𝑃𝑘𝑃𝑖 ) 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 , (13)

 

∀𝑖 ∈ 𝑅, ∀𝑷 ∈ 𝐷(𝜏), 𝜃 > 0, 𝛽 ≥ 0, 0 < 𝜏 ≤ 1𝑁, 𝐷(𝜏) = {𝑷 ∈ ℝ>0𝑁 : 𝜏 ≤ 𝑃𝑖 ≤ (1 − (𝑁 − 1)𝜏), ∀𝑖 ∈ 𝑅,∑ 𝑃𝑗𝑁𝑗=1 = 1}. (11) and (12) are equivalent to (7) and (8) for the preliminary definition: 𝛾𝑖𝐴𝑃𝑆(𝑷) in (13) is the APSL path size term 

function for route 𝑖 ∈ 𝑅 that is a function involving the route choice probabilities, and 𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)) in (12) is the 

unadjusted choice probability function for route 𝑖 ∈ 𝑅 which is a function involving the path size term functions and 

hence also the choice probabilities of routes. The choice probability relation for route 𝑖 ∈ 𝑅 is given by 𝑃𝑖 =𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))), which is an implicit equation involving choice probabilities, and hence the APSL route choice 

probabilities, 𝑷∗, are a solution such that 𝑃𝑖∗ = 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷∗))), ∀𝑖 ∈ 𝑅. The key difference between this final model 

here and the preliminary definition is the adjustment function 𝐺𝑖. 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))) in (11) is the APSL choice 

probability adjustment function for route 𝑖 ∈ 𝑅 which adjusts the choice probability function 𝑔𝑖 for reasons given below.  

 

Motivation 𝐺𝑖 is a fixed-point function, and its construction was motivated by some desired behaviours, as well as some required 

properties for proving existence and uniqueness: 

1. 𝐺𝑖 must map into itself. 

2. 𝐺𝑖 must be continuous for all 𝑷. 

3. 𝐺𝑖 must be continuously differentiable with respect to 𝑷 for all 𝑷. 

4. The domain of 𝐺𝑖 must be closed and bounded. 

5. The domain of 𝐺𝑖 must not allow for zero choice probabilities. 

6. 𝐺𝑖 should be able to approximate 𝑔𝑖. 
7. The domain of 𝐺𝑖 should allow for choice probabilities to be approximately close to zero. 

Desired Properties (DP) 1-4 are required for existence and uniqueness proofs. DP 5 is required since the path size term 

function 𝛾𝑖𝐴𝑃𝑆(𝑷) in (13) and thus 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))) in (11) can be undefined for zero choice probabilities where 
00 can 

occur. DP 6 is desired as it is not our intention for the choice probabilities acquired from this final APSL model to be 

different to the choice probabilities from the preliminary definition (where one would exist), and we wish them to be as 
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close as possible. DP 7 is desired as we wish to be able to obtain choice probability solutions where there are unrealistic 

routes with extremely small choice probabilities.  

So, the formulation of 𝐺𝑖 in (11) and its domain 𝐷(𝜏) have been constructed to satisfy DP 1-7. In Section 4 we prove 

that DP 1-3 are satisfied. The parameter 𝜏 is introduced, and the domain 𝐷(𝜏) is such that 𝑃𝑖 ≥ 𝜏, ∀𝑖 ∈ 𝑅, and since the 

choice probabilities for all routes sum up to 1: 𝑃𝑖 ≤ (1 − (𝑁 − 1)𝜏), ∀𝑖 ∈ 𝑅. DP 4 is thus satisfied as 𝐷(𝜏) is closed and 

bounded. Moreover, 𝜏 is restricted to the range 0 < 𝜏 ≤ 1𝑁 and thus DP 5 is satisfied as zero choice probabilities are not 

in the domain. As 𝜏 → 0, 𝐺𝑖 → 𝑔𝑖 satisfying DP 6 and the lower bound for 𝑃𝑖  in 𝐷(𝜏) tends towards zero satisfying DP 7.  

It is important to note that the 𝝉 parameter is not a model parameter that requires estimating, it is simply a 

mathematical construct that ensures DP 1-7 are satisfied. While the proposed APSL model provides the capability, it is 

not our intention for this final APSL model to purposefully compute different choice probabilities to those obtained from 

the preliminary definition for any given theoretical reason. In fact, we desire the choice probabilities to be as close as 

possible, and hence we advise that only small values of 𝜏 are used. For the rest of the paper, i.e. for the demonstrations 

and estimation work, we set 𝜏 = 10−16, unless stated otherwise. In Section 5.3.2.2 we briefly investigate the impact of 

the 𝜏 parameter upon parameter estimation. 

 

3.3 Demonstrations of Key Properties 

 

APSL Key Property 1: Unrealistic routes have a diminished impact upon the choice probabilities of realistic routes 

when links are shared. 

 

Referring to the PSL Key Issue in Section 2.3.1, Fig. 7 displays the example network 1 APSL choice probabilities as 𝜐 is 

increased from 0.5 to 3, 𝜃 = 𝛽 = 1. As Fig. 7 shows, as the travel cost of Route 1 increases, so does the relative 

unattractiveness of Route 1, thus decreasing the choice probability for that route and its influence upon the correction 

term of Route 2. The choice probability of Route 2 thus converges to match the choice probability of Route 3 as 𝜐 is 

increased. 

 

Fig. 7. Example network 1: APSL route choice probabilities for increasing 𝜐; 𝜃 = 𝛽 = 1. 

 

APSL Key Property 2: APSL path size terms aren’t highly sensitive to small differences in route travel cost. 
 

Referring to GPSL Key Issue 1 in Section 2.3.2, it was demonstrated how GPSL path size terms can be highly sensitive 

to small differences in route travel cost when 𝜆 values are large. It was also demonstrated how setting 𝜆 = 0 (i.e. 

equivalating GPSL and PSL) can also have adverse effects, as the routes with large travel costs negatively impact the 

choice probabilities of routes with low travel costs when links are shared. For example network 2 in Fig. 4A, a good 

compromise was found by setting 𝜆 = 10. APSL path size terms do not suffer from the same issues GPSL path size 

terms have when 𝜆 = 0 and when 𝜆 is large. Table 1 displays the example network 2 GPSL choice probabilities when 𝜆 = 0, 𝜆 = 10, and 𝜆 = 400, as well as the APSL choice probabilities, 𝜃 = 𝛽 = 1. As Table 1 shows, the APSL choice 

probabilities resemble the ‘optimised’ GPSL choice probabilities for 𝜆 = 10. 

 

 PSL (= GPSL 𝜆 = 0) GPSL (𝜆 = 10) GPSL (𝜆 = 400) APSL 𝑃1 0.329 0.294 0.222 0.297 𝑃2 0.332 0.301 0.374 0.301 𝑃3 0.332 0.399 0.398 0.397 

Route 1 × 

Route 2 ▲ 

Route 3  
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𝑃4 0.007 0.006 0.006 0.006 

Table 1. Example network 2: choice probabilities for different PSL models; 𝜃 = 𝛽 = 1. 

 

APSL Key Property 3: Internally consistent assessment of the feasibility of routes. 

 

Referring to GPSL Key Issue 2 in Section 2.3.2 where it was demonstrated how the GPSL model is not internally 

consistent with the assessment of the feasibility of routes, Fig. 8 shows the example network 3 APSL choice probabilities 

for increasing 𝜂, 𝜃 = 𝛽 = 1. At the point 𝜂 = 𝜂𝑒𝑞 = 0.27, all routes have equal choice probabilities; the APSL model 

proposes that routes contribute to path size terms according to choice probability ratios and thus the path size 

contributions all cancel out at that point resulting in the PSL model, as desired.  

 

Fig. 8. Example network 3: APSL route choice probabilities for increasing 𝜂; 𝜃 = 𝛽 = 1. 

 

APSL Key Property 4: Internally consistent scaling parameters. 

 

Referring to GPSL Key Issue 3 in Section 2.3.2, it was demonstrated how the GPSL model has internally inconsistent 

scaling parameters, and how the GPSL′(𝜆=𝜃) model partially improves the internal consistency of the GPSL model. Fig. 

9A shows the example network 4 APSL choice probabilities for increasing 𝜃, 𝛽 = 1. As shown in (7) and (10), the 

APSL model, like the GPSL′(𝜆=𝜃) model, uses the 𝜃 parameter to scale differences in travel cost within both the 

probability relation and the path size contribution factor, and thus for low 𝜃 Route 3 has the lowest choice probability due 

to being the least distinct, and for larger 𝜃 Route 3’s choice probability converges to Route 2 as Route 4’s path size 
contribution diminishes. Fig. 9B shows the example network 4 APSL choice probabilities for increasing 𝜃, 𝛽 = 1.4. An 

increase in 𝛽 further decreases Route 3’s choice probability for low 𝜃, and as a consequence Route 3’s path size 

contribution to Route 4 diminishes and Route 4 converges to the choice probability of Route 1. 

  

Fig. 9. Example network 4: APSL route choice probabilities for increasing 𝜃 – A: 𝛽 = 1. B: 𝛽 = 1.4. 

 

3.4 Solution Method 

There are many fixed-point algorithms available for solving the APSL fixed-point system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))). In the 

studies in this paper we utilise the simplest fixed-point algorithm available: the Fixed-Point Iteration Method (FPIM) 

Routes 1-5 × 

Route 6 ▲ 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

A B 
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(Isaacson & Keller, 1966). The FPIM is the most basic fixed-point algorithm, and other algorithms aim to accelerate the 

convergence of the FPIM, though require more complicated computations at each iteration. The FPIM for solving the 

APSL fixed-point system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) is formulated as follows: 𝑃𝑖(𝑠+1) = 𝐺𝑖 (𝑔𝑖 (𝜸𝐴𝑃𝑆(𝑷(𝑠)))) , 𝑠 = 0,1,2, … 

such that lim𝑠→∞𝑃𝑖(𝑠+1) = lim𝑘→∞𝐺𝑖 (𝑔𝑖 (𝜸𝐴𝑃𝑆(𝑷(𝑠)))) =𝑃𝑖∗, 𝑷(0) ∈ 𝐷(𝜏), ∀𝑖 ∈ 𝑅. 
A standard convergence statistic we chose to observe in this study is ln(∑ |𝑃𝑖(𝑠+1) − 𝑃𝑖(𝑠)|𝑖∈𝑅 ), and the FPIM is said to 

have converged sufficiently to an APSL choice probability solution if: ln (∑|𝑃𝑖(𝑠+1) − 𝑃𝑖(𝑠)|𝑖∈𝑅 ) < ln(10−𝜉), 
where 𝜉 > 0 is a predetermined convergence parameter. In Sections 5.3.2.2 & 5.4.1.2 we assess the computational 

performance of the APSL model in calculating choice probabilities and parameter estimation. 

 

4 Existence and Uniqueness of APSL Solutions 
In this section we establish a series of theoretical results concerning the APSL model as defined in (11), (12), and (13), 
where the guaranteed existence of solutions is proven, and sufficient conditions for the uniqueness of solutions are 

detailed. 

 

4.1 Properties 

First, we note the relationship between the APSL0 and APSL models. 

Property 2. A solution to the APSL model as defined in (11), (12), and (13) approaches the APSL0 model as defined in (7) and (8) in the limit as 𝜏 → 0. 

Proof. This follows by inspection from the definition of 𝐺𝑖 in (11) noting that 𝐺𝑖 → 𝑔𝑖, as 𝜏 → 0. ∎ 

From Property 2, the APSL model will thus satisfy Property 1 in the limit as 𝜏 → 0. 

We next provide two important properties of the fixed-point function 𝑮. In Lemma 1 we establish the continuity 

property of 𝑮. 

Lemma 1. 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))) is a continuous function for 𝑷 ∈ 𝐷(𝜏), ∀𝑖 ∈ 𝑅. 
Proof. From the definition (13) above it follows that 𝜸𝐴𝑃𝑆 is continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): lim𝑷→𝒒𝜸𝐴𝑃𝑆(𝑷) = 𝜸𝐴𝑃𝑆(𝒒), ∀𝒒 ∈ 𝐷(𝜏). (14) 
If we let 𝛤 be the set of possible path size terms: 𝛤 = {𝜸𝐴𝑃𝑆 ∈ ℝ>0𝑁 : 0 < 𝛾𝑖𝐴𝑃𝑆 ≤ 1, ∀𝑖 ∈ 𝑅}, 
then from definition (12) above it follows that 𝑔𝑖 is continuous in 𝜸𝐴𝑃𝑆 for all 𝜸𝐴𝑃𝑆 ∈ 𝛤: lim𝜸𝐴𝑃𝑆→𝜸0 𝑔𝑖(𝜸𝐴𝑃𝑆) = 𝑔𝑖(𝜸0), ∀𝜸0 ∈ 𝛤, ∀𝑖 ∈ 𝑅. (15) 
And, from definition (11) above it follows that 𝐺𝑖 is continuous in 𝑥 for all 𝑥 ∈ (0,1): lim𝑥→𝑥0 𝐺𝑖(𝑥) = 𝐺𝑖(𝑥0), ∀𝑥0 ∈ (0,1). (16) 
It then follows from (14), (15) and (16) that 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))), as a composition of continuous functions, is itself 

continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): lim𝑷→𝒒𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷))) = 𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝒒))) , ∀𝒒 ∈ 𝐷(𝜏), ∀𝑖 ∈ 𝑅. ∎ 

We now in Lemma 2 show that the domain of 𝑮 maps to itself. 

Lemma 2. 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) maps 𝐷(𝜏) into 𝐷(𝜏). 
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Proof. From definition (13) above it follows that the function 𝜸𝐴𝑃𝑆 maps 𝐷(𝜏) → 𝛤, from definition (12) it follows that 

the function 𝒈 maps 𝛤 → 𝐷>0, and, from definition (11) it follows that the function 𝑮 maps 𝐷>0 → 𝐷(𝜏). It thus follows 

that the composition of the functions 𝜸𝐴𝑃𝑆, 𝒈, and 𝑮, 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))), maps 𝐷(𝜏) → 𝐷(𝜏). ∎ 

 

4.2 Existence of Solutions 

Having established some properties regarding the APSL fixed-point function 𝑮, we consider the existence of APSL 

solutions. 

Proposition 1. At least one APSL fixed-point solution, 𝑷∗, to the system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) is guaranteed to exist in 𝐷(𝜏). 
Proof. 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) is a continuous function by Lemma 1, which maps 𝐷(𝜏) into 𝐷(𝜏) by Lemma 2, and thus since 𝐷(𝜏) is a compact convex set, and by Brouwer’s Fixed-Point Theorem at least one fixed-point solution, 𝑷∗, is guaranteed 

to exist for the system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) in 𝐷(𝜏). ∎ 

 

4.3 Uniqueness of Solutions 

Having proven that APSL solutions are guaranteed to exist, the next question is whether sufficient conditions exist which 

ensure APSL solutions are unique. In order to do this, we must first establish two key properties of 𝐽𝑮(𝑷; 𝛽) which is the 

Jacobian matrix of first partial derivatives of 𝑮 evaluated at 𝑷 and 𝛽. 

Lemma 3. The maximum Jacobian matrix norm of 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷); 𝛽)) for all 𝑷 ∈ 𝐷(𝜏) at 𝛽 = 0 is equal to zero: max(‖𝐽𝑮(𝑷; 0)‖: ∀𝑷 ∈ 𝐷(𝜏)) = 0. 
Proof. From definitions (11) and (12) above it follows that: 𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷); 0)) = 𝜏 + (1 − 𝑁𝜏) ∙ ( 𝑒−𝜃𝑐𝑖∑ 𝑒−𝜃𝑐𝑗𝑗∈𝑅 ) , ∀𝑖 ∈ 𝑅. (17) 
It then follows from (17) that: 𝜕𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷); 0))𝜕𝑃𝑙 = 0, ∀𝑷 ∈ 𝐷(𝜏), ∀𝑖, 𝑙 ∈ 𝑅. (18) 
It thus follows from (18) that ‖𝐽𝑮(𝑷; 0)‖ = 0, ∀𝑷 ∈ 𝐷(𝜏), and hence max(‖𝐽𝑮(𝑷; 0)‖: ∀𝑷 ∈ 𝐷(𝜏)) = 0. ∎ 

Lemma 4. The maximum Jacobian matrix norm of 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷); 𝛽)), max(‖𝐽𝑮(𝑷; 𝛽)‖: ∀𝑷 ∈ 𝐷(𝜏)), is a continuous 

function for 𝛽 ∈ [0,∞). 
Proof. It follows from the definitions (11), (12), and (13) above that: 𝜕𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)))𝜕𝑃𝑙  

= (1 − 𝑁𝜏) ∙ ( (𝛾𝑖𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑖∑ (𝛾𝑗𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑗𝑗∈𝑅 ) ∙ ( 
 𝛽 𝜕𝛾𝑖𝐴𝑃𝑆(𝑷)𝜕𝑃𝑙(𝛾𝑖𝐴𝑃𝑆(𝑷)) − (∑ 𝛽 𝜕𝛾𝑗𝐴𝑃𝑆(𝑷)𝜕𝑃𝑙 (𝛾𝑗𝐴𝑃𝑆(𝑷))𝛽−1 𝑒−𝜃𝑐𝑗𝑗∈𝑅 )(∑ (𝛾𝑗𝐴𝑃𝑆(𝑷))𝛽 𝑒−𝜃𝑐𝑗𝑗∈𝑅 ) ) 

 , ∀𝑖, 𝑙 ∈ 𝑅, (19) 
𝜕𝛾𝑖𝐴𝑃𝑆(𝑷)𝜕𝑃𝑖 =∑ 𝑡𝑎𝑐𝑖 (∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖(∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 )2)𝑎∈𝐴𝑖 , ∀𝑖 ∈ 𝑅, (20) 

and, 𝜕𝛾𝑖𝐴𝑃𝑆(𝑷)𝜕𝑃𝑙 = −∑ 𝑡𝑎𝑐𝑖 𝑃𝑖𝛿𝑎,𝑙(∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 )2𝑎∈𝐴𝑖 , ∀𝑖, 𝑙 ∈ 𝑅, 𝑙 ≠ 𝑖. (21) 
From the definitions (20) and (21) above it follows that 

𝜕𝜸𝐴𝑃𝑆(𝑷)𝜕𝑷  is continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): 
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lim𝑷→𝒒 𝜕𝜸𝐴𝑃𝑆(𝑷)𝜕𝑷 = 𝜕𝜸𝐴𝑃𝑆(𝒒)𝜕𝑷 , ∀𝒒 ∈ 𝐷(𝜏). (22) 
It then follows from (14) and (22) that 

𝜕𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)))𝜕𝑃𝑙  as defined in (19), being a composition of continuous functions, 

is itself continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): 
lim𝑷→𝒒 𝜕𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)))𝜕𝑃𝑙 = 𝜕𝐺𝑖 (𝑔𝑖(𝜸𝐴𝑃𝑆(𝒒)))𝜕𝑃𝑙 , ∀𝒒 ∈ 𝐷(𝜏), ∀𝑖, 𝑙 ∈ 𝑅. 

Since 
𝜕𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷)))𝜕𝑃𝑙  is a continuous function for 𝑷 ∈ 𝐷(𝜏), ∀𝑖, 𝑙 ∈ 𝑅, 

𝜕𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷);𝛽))𝜕𝑃𝑙  is also a continuous function 

for 𝛽 ∈ [0,∞), ∀𝑖, 𝑙 ∈ 𝑅: lim𝛽→𝛽0 (𝜕𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷); 𝛽))𝜕𝑃𝑙  ) = 𝜕𝐺𝑖(𝑔𝑖(𝜸𝐴𝑃𝑆(𝑷); 𝛽0))𝜕𝑃𝑙  , ∀𝛽0 ∈ [0,∞), ∀𝑖, 𝑙 ∈ 𝑅. 
Hence, since max(‖𝐽𝑮(𝑷; 𝛽)‖: ∀𝑷 ∈ 𝐷(𝜏)) is a composition of continuous functions then it itself is a continuous function 

for 𝛽 ∈ [0,∞):  lim𝛽→𝛽0(max(‖𝐽𝑮(𝑷; 𝛽)‖: ∀𝑷 ∈ 𝐷(𝜏))) = max(‖𝐽𝑮(𝑷; 𝛽0)‖: ∀𝑷 ∈ 𝐷(𝜏)) , ∀𝛽0 ∈ [0,∞). ∎ 

These two key properties of 𝐽𝑮(𝑷; 𝛽) allow us to establish conditions for the uniqueness of solutions. 

Proposition 2. There always exist values of 𝑏 > 0 such that when the 𝛽 parameter is within the range 0 ≤ 𝛽 ≤ 𝑏, there 

are unique APSL fixed-point solutions, 𝑷∗, to the system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷); 𝛽)) in 𝐷(𝜏).  
Proof. 𝑮 is a contraction mapping on the domain 𝐷(𝜏) if: 

a) 𝑮 maps 𝐷(𝜏) into itself, so 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝒒); 𝛽)) ∈ 𝐷(𝜏), ∀𝒒 ∈ 𝐷(𝜏), and 

b) There exists a constant 0 ≤ 𝜎 < 1 such that: ‖𝐽𝑮(𝑷; 𝛽)‖ ≤ 𝜎, ∀𝑷 ∈ 𝐷(𝜏), 
where 𝐽𝑮(𝑷; 𝛽) is the Jacobian matrix of first partial derivatives of 𝑮 evaluated at 𝑷. 

If the link cost vector 𝒕 is fixed (and thus the route cost vector 𝒄 is fixed), and 𝜃 is fixed, then for any given 𝛽, if 𝑮 is 

a contraction mapping, then since 𝐷(𝜏) is a compact convex set, and by Lemma 1, Lemma 2, and the Contraction 

Mapping Theorem, 𝑮 emits a unique fixed-point solution 𝑷∗ ∈ 𝐷(𝜏).  
It remains to establish the conditions under which 𝑮 is a contraction mapping. Since by Lemma 3 the maximum 

Jacobian matrix norm of 𝑮 for all 𝑷 ∈ 𝐷(𝜏) at 𝛽 = 0 is equal to zero (max(‖𝐽𝑮(𝑷; 0)‖: ∀𝑷 ∈ 𝐷(𝜏)) = 0), and by Lemma 

4 max(‖𝐽𝑮(𝑷; 𝛽)‖: ∀𝑷 ∈ 𝐷(𝜏)) is a continuous function for 𝛽 ∈ [0,∞), then there must always exist values 𝑏 > 0 such 

that when 𝛽 is within the range 0 ≤ 𝛽 ≤ 𝑏 𝑮 is a contraction mapping and the sufficient conditions for unique APSL 

solutions are always met.  ∎ 

There are cases where the APSL model has unique solutions for all 𝛽 > 0 (i.e. for all values of 𝑏), for example where all 

routes are non-overlapping and the path size terms are consequently all 1 so that 𝐺𝑖 collapses to (17), and hence in these 

cases a maximum value for 𝑏 does not exist. However, in most cases APSL solutions are not unique for all values of 𝛽 

and in these cases a maximum value for 𝑏 exists (denoted 𝑏𝑚𝑎𝑥) such that Proposition 2 holds. However, Proposition 2 is 

only a sufficient condition for unique APSL solutions and solutions are not necessarily non-unique for 𝛽 > 𝑏𝑚𝑎𝑥. In 

Section 4.4 below we explore how 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 relates to the true maximum range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥 in which APSL 

solutions are unique. 

 

4.4 Investigating the Conditions for Uniqueness 𝑏𝑚𝑎𝑥  is the maximum value such that the sufficient conditions for unique APSL solutions in Proposition 2 are satisfied 

for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥. 𝛽𝑚𝑎𝑥  is the true maximum value such that APSL solutions are unique for all 𝛽 in 

the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥 , where 𝛽𝑚𝑎𝑥 ≥ 𝑏𝑚𝑎𝑥. The purpose of this section is to explore how close 𝑏𝑚𝑎𝑥 is to 𝛽𝑚𝑎𝑥 , and 

demonstrate that multiple solutions can exist when 𝛽 is greater than 𝛽𝑚𝑎𝑥 . We specify and demonstrate how to calculate 𝑏𝑚𝑎𝑥 , and suggest and demonstrate a method for estimating 𝛽𝑚𝑎𝑥 . 

Calculating 𝑏𝑚𝑎𝑥 can be formulated as either of the following optimisation problems: 

 𝒃𝒎𝒂𝒙 Optimisation Problem 1 
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𝑏𝑚𝑎𝑥 = max{𝛽} 
subject to ‖𝐽𝑮(𝑷; 𝛽)‖ < 1, ∀𝑷 ∈ 𝐷(𝜏). 
 𝒃𝒎𝒂𝒙 Optimisation Problem 2 𝑏𝑚𝑎𝑥 = max{𝛽} 
subject to ‖𝐽𝑮(�̅�; 𝛽)‖ < 1 

where �̅� = argmax𝑷 {‖𝐽𝑮(𝑷; 𝛽)‖: ∀𝑷 ∈ 𝐷(𝜏)}. 
Example 

Consider example network 5 in Fig. 10 where there are 2 routes: Route 1 has travel cost 𝑢 + 𝑤 and Route 2 has travel 

cost 𝑣 + 𝑤. Fig. 11A-D display the maximum Jacobian matrix norm of 𝑮 for increasing 𝛽 for four different network 

parameter settings. 

 

Fig. 10. Example network 5. 

 

  

max(‖𝐽𝐺‖) × 

1 ∎ 𝒃𝒎𝒂𝒙 ▲ 

 

max(‖𝐽𝐺‖) × 

1 ∎ 𝒃𝒎𝒂𝒙 ▲ 

 

A B 
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Fig. 11. Example network 5: Maximum Jacobian matrix norm of APSL fixed-point function 𝑮 for increasing 𝛽 –  

A: 𝑢 = 𝑣 = 𝑤 = 𝜃 = 1, (𝑏𝑚𝑎𝑥 ≅ 2.95). B: 𝑢 = 0.5, 𝑣 = 𝑤 = 𝜃 = 1, (𝑏𝑚𝑎𝑥 ≅ 2.05).  
C: 𝑢 = 0.1, 𝑣 = 1, 𝑤 = 4, 𝜃 = 1, (𝑏𝑚𝑎𝑥 ≅ 0.075). D: 𝑢 = 0.1, 𝑣 = 𝑤 = 20, 𝜃 = 10−5, (𝑏𝑚𝑎𝑥 ≅ 0.0125). 

 𝛽𝑚𝑎𝑥  can be estimated by plotting trajectories of APSL solutions for varying 𝛽, and identifying where a unique trajectory 

of solutions ends and multiple trajectories begin. We briefly detail here a simple method for obtaining trajectories of 

APSL solutions: 

Step 1. Identify a suitably large value for 𝛽. 

Step 2. Solve the APSL fixed-point system for this large 𝛽 with a randomly generated initial condition (see 

Section 3.4). 

Step 3. Decrement 𝛽 and obtain the next APSL solution with initial condition set as the APSL solution for the 

previous 𝛽. 

Step 4. Continue until 𝛽 = 0 or 𝛽 = 𝑏𝑚𝑎𝑥 if known. 

By plotting the choice probabilities at each decremented 𝛽, and repeating this method several times, one can determine 

where non-unique solution trajectories end and hence estimate 𝛽𝑚𝑎𝑥 . If after several repetitions (with different randomly 

generated initial conditions) only a single trajectory of solutions is shown, then the initial large 𝛽 value is increased. We 

illustrate the approach graphically, but there is no need to draw graphs for general networks. One can instead observe the 

choice probability values, where a finer grained decrement of 𝛽 will provide a more accurate estimation of 𝛽𝑚𝑎𝑥 . 

To demonstrate, consider again example network 5 in Fig. 10; Fig. 12A-D display trajectories of APSL solutions as 

the 𝛽 parameter is varied for the same network parameter settings as Fig. 11A-D, respectively. 𝛽 was decremented by 

0.01, and the initial large 𝛽 value was 𝛽 = 10, (though trajectories are only plotted for part of this range for illustrative 

purposes). The solution trajectory plotting was repeated until multiple clear trajectories were shown. As each of Fig. 

12A-D show, there is a unique trajectory of choice probability solutions up until 𝛽 = 𝛽𝑚𝑎𝑥 where there then becomes 

multiple trajectories. As Fig. 12A shows, the estimated 𝛽𝑚𝑎𝑥  value in this case is equal to 𝑏𝑚𝑎𝑥   in Fig. 11A, however in 

the cases of Fig. 12B-D, the estimated 𝛽𝑚𝑎𝑥  values are all greater than the 𝑏𝑚𝑎𝑥  values in Fig. 11B-D. 

  

max(‖𝐽𝐺‖) × 

1 ∎ 𝒃𝒎𝒂𝒙 ▲ 

 

max(‖𝐽𝐺‖) × 

1 ∎ 𝒃𝒎𝒂𝒙 ▲ 

 

Route 1 × 

Route 2 ▲ 𝜷𝒎𝒂𝒙 -- 
 

C D 

A B 

Route 1 × 

Route 2 ▲ 𝜷𝒎𝒂𝒙 -- 
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Fig. 12. Example network 5: Trajectories of APSL choice probability solutions as 𝛽 is varied – 

A: 𝑢 = 𝑣 = 𝑤 = 𝜃 = 1, (𝛽𝑚𝑎𝑥 ≅ 2.95). B: 𝑢 = 0.5, 𝑣 = 𝑤 = 𝜃 = 1, (𝛽𝑚𝑎𝑥 ≅ 2.8).  
C: 𝑢 = 0.1, 𝑣 = 1, 𝑤 = 4, 𝜃 = 1, (𝛽𝑚𝑎𝑥 ≅ 1.5). D: 𝑢 = 0.1, 𝑣 = 𝑤 = 20, 𝜃 = 10−5, (𝛽𝑚𝑎𝑥 ≅ 4.3). 

 

As we have shown, 𝑏𝑚𝑎𝑥  can be a conservative estimate of 𝛽𝑚𝑎𝑥 . On the other hand, we have shown that for large 

enough values of 𝛽 multiple solutions can exist, and therefore is an issue that should be considered in practice in real-life 

applications. The experiments above provide a computationally feasible method for revealing multiple solutions, and thus 𝛽𝑚𝑎𝑥 , that can be applied in realistic sized networks (see Sections 5.3.2.3 / 5.4.1.3).  

 

5 Estimating the APSL Model 
In this section, we provide a Maximum Likelihood Estimation (MLE) procedure for estimating the APSL model with 

tracked route observations. This procedure for estimating the APSL model is then investigated in a simulation study, and 

the possibility of retrieving APSL parameter estimates is assessed. The APSL model is then estimated on a large-scale 

network using real route choice observation data tracked with GPS units, and results are compared with other Path Size 

Logit models. 

 

5.1 Notation and Definitions for Estimation with Multiple OD Movements 

5.1.1 Notation 

To consider the estimation of the APSL model and other Path Size Logit models, we extend definitions here for 

estimation on a network with multiple OD movements, but where the travel costs remain fixed. The road network 

consists of link set 𝐴 and 𝑚 = 1,… ,𝑀 OD movements. 𝑅𝑚 is the choice set of all simple routes (no cycles) for OD 

movement 𝑚 of size 𝑁𝑚 = |𝑅𝑚|, and 𝐴𝑚,𝑖 ⊆ 𝐴 is the set of links belonging to route 𝑖 ∈ 𝑅𝑚, and 𝛿𝑎,𝑚,𝑖 ={1     𝑖𝑓 𝑎 ∈ 𝐴𝑚,𝑖0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . Suppose that the generalised travel cost 𝑡𝑎 of each link 𝑎 ∈ 𝐴 is a weighted sum (by parameter vector 𝜶) of variables 𝒘𝑎, i.e. 𝑡𝑎(𝒘𝑎; 𝜶), and that the generalised travel cost for route 𝑖 ∈ 𝑅𝑚, 𝑐𝑚,𝑖, can be attained through 

summing up the total cost of its links so that 𝑐𝑚,𝑖(𝒕(𝒘; 𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 , where 𝒕 is the vector of all link travel 

costs and 𝒘 is the vector of all link variables. Let the route choice probability for route 𝑖 ∈ 𝑅𝑚 be 𝑃𝑚,𝑖, where 𝑷𝑚 =(𝑃𝑚,1, 𝑃𝑚,2, … , 𝑃𝑚,𝑁𝑚) is the vector of route choice probabilities for OD movement 𝑚, and 𝐷𝑚 is the domain of possible 

route choice probability vectors for OD movement 𝑚, 𝑚 = 1,… ,𝑀. 

 

5.1.2 Model Definitions 

5.1.2.1 Multinomial Logit 

MNL choice probability relation for route 𝑖 ∈ 𝑅𝑚: 𝑃𝑚,𝑖(𝒕) = 1∑ 𝑒−𝜃(𝑐𝑚,𝑗(𝒕)−𝑐𝑚,𝑖(𝒕))𝑗∈𝑅𝑚 . (23) 
 

5.1.2.2 Regular Path Size Logit Models 

Regular Path Size Logit model choice probability relation for route 𝑖 ∈ 𝑅𝑚: 

C D 

Route 1 × 

Route 2 ▲ 𝜷𝒎𝒂𝒙 -- 
 

Route 1 × 

Route 2 ▲ 𝜷𝒎𝒂𝒙 -- 
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𝑃𝑚,𝑖(𝒕) = 1∑ (𝛾𝑚,𝑗(𝒕)𝛾𝑚,𝑖(𝒕))𝛽 𝑒−𝜃(𝑐𝑚,𝑗(𝒕)−𝑐𝑚,𝑖(𝒕))𝑗∈𝑅𝑚
. (24)

 

PSL path size term for route 𝑖 ∈ 𝑅𝑚: 𝛾𝑚,𝑖𝑃𝑆 (𝒕) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 1∑ 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 . (25) 
GPSL path size term for route 𝑖 ∈ 𝑅𝑚: 𝛾𝑚,𝑖𝐺𝑃𝑆(𝒕) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 1∑ (𝑐𝑚,𝑖(𝒕)𝑐𝑚,𝑘(𝒕))𝜆 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 . (26)

 

GPSL′(𝜆=𝜃) path size term for route 𝑖 ∈ 𝑅𝑚: 𝛾𝑚,𝑖𝐺𝑃𝑆′(𝒕) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 1∑ 𝑒−𝜃(𝑐𝑚,𝑘(𝒕)−𝑐𝑚,𝑖(𝒕))𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 . (27) 
 

5.1.2.3 Adaptive Path Size Logit 

The APSL choice probabilities for OD movement 𝑚, 𝑷𝑚∗ , are a solution to the fixed-point problem 𝑷𝑚 =𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚))), where: 𝐺𝑚,𝑖 (𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚))) = 𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚)), (28) 
𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚)) = (𝛾𝑚,𝑖𝐴𝑃𝑆(𝒕, 𝑷𝑚))𝛽 𝑒−𝜃𝑐𝑚,𝑖(𝒕)∑ (𝛾𝑚,𝑗𝐴𝑃𝑆(𝒕, 𝑷𝑚))𝛽 𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚 , (29) 

𝛾𝑚,𝑖𝐴𝑃𝑆(𝒕, 𝑷𝑚) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 𝑃𝑚,𝑖∑ 𝑃𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 , (30) 
∀𝑖 ∈ 𝑅𝑚, ∀𝑷𝑚 ∈ 𝐷𝑚 (𝜏𝑚), 0 < 𝜏𝑚 ≤ 1𝑁𝑚, 𝐷𝑚(𝜏𝑚) = {𝑷𝑚 ∈ ℝ>0𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚,∑ 𝑃𝑚,𝑗𝑁𝑚𝑗=1 = 1}, 𝑚 = 1,… ,𝑀, 𝜃 > 0, 𝛽 ≥ 0. 

Each OD movement has its own range restrictions for 𝜏𝑚 based on the number of routes in the choice set, but the 𝜏𝑚 

parameters are not model parameters that require estimating, they are simply a mathematical construct that ensure 

solutions to the APSL model exist and can be unique. As discussed in Section 3.2, only small values of 𝜏𝑚 should be 

used, and we set 𝜏𝑚 = 10−16, 𝑚 = 1,… ,𝑀. APSL choice probability solutions are computed using the FPIM with initial 

conditions set as the MNL route choice probabilities, and convergence statistic set at 𝜉 = 10 (see Section 3.4), unless 

specified otherwise. 

 

5.2 Adaptive Path Size Logit Likelihood Formulation & Estimation Procedure 

5.2.1 Likelihood Formulation 

Suppose that we have available a set of 𝑍 observed routes, e.g. collected through GPS units or smart phones, and 

consider a situation where it is not needed to distinguish individuals in their preferences (the approach is, of course, 

readily generalised to permit multiple user classes differing in their parameters). Let 𝑚𝑧 denote the OD movement of 

route observation 𝑧, and for each trip observation 𝑧 = 1,2, … , 𝑍, let 𝑅𝑚𝑧 be the choice set of all simple routes between the 

origin and destination of the trip. Suppose that the observation data is contained in a vector 𝒙 of size 𝑍 where: 𝑥𝑧 = 𝑖     if alternative 𝑖 ∈ 𝑅𝑚𝑧  is chosen, 𝑧 = 1,… , 𝑍. 
The Likelihood for a sample of size 𝑍, can be formulated as: 
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𝐿(𝜶, 𝜃, 𝛽|𝒙) =∏𝑃𝑚𝑧,𝑥𝑧∗ (𝒕(𝒘; 𝜶), 𝜃, 𝛽)𝑍
𝑧=1 , (31) 

where 𝑃𝑚𝑧,𝑥𝑧∗ (𝒕(𝒘; 𝜶), 𝜃, 𝛽) is the APSL choice probability solution for route 𝑥𝑧 ∈ 𝑅𝑚𝑧  to the fixed-point problem 𝑷𝑚𝑧 =𝑮𝑚𝑧 (𝒈𝑚𝑧 (𝒄𝑚𝑧(𝒕), 𝜸𝑚𝑧𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧))) for OD movement 𝑚𝑧, where 𝐺𝑚,𝑖 and 𝑔𝑚,𝑖  are as in (28) and (29) for route 𝑖 ∈𝑅𝑚, respectively. The Log-Likelihood function is thus: 

𝐿𝐿(𝜶, 𝜃, 𝛽|𝒙) = ln(∏𝑃𝑚𝑧,𝑥𝑧∗ (𝒕(𝒘; 𝜶), 𝜃, 𝛽)𝑍
𝑧=1 ) =∑ln (𝑃𝑚𝑧,𝑥𝑧∗ (𝒕(𝒘;𝜶), 𝜃, 𝛽))𝑍

𝑧=1 (32) 
 

5.2.2 Estimation Procedure 

Standard Maximum Likelihood Estimation (MLE) procedures can be used to estimate the parameters of the APSL model 

for a given network. Using a standard iterative estimation procedure, APSL model parameters can be found that 

maximise the Log-Likelihood function as formulated in (32) above for a given set of data. Algorithm 1 outlines pseudo-

code for the estimation procedure. 

 

Step 1: Initialisation. For each route observation 𝑧 = 1,… , 𝑍, generate the corresponding universal choice set and store 

the link attributes and link-route information. Define an initial set of parameter values (�̃�(1), �̃�(1), 𝛽(1)) for MLE, and set 𝑛 = 1. 

 

Step 2: Recalculate choice probabilities and LL. Given the set of parameter values (�̃�(𝑛), �̃�(𝑛), 𝛽(𝑛)) for iteration 𝑛, 

calculate the link costs 𝒕(𝒘; �̃�(𝑛)) and solve each of the fixed-point problems 𝑷𝑚𝑧 = 𝑮𝑚𝑧 (𝒈𝑚𝑧 (𝒄𝑚𝑧 (𝒕(𝒘; �̃�(𝑛))) , 𝜸𝑚𝑧𝐴𝑃𝑆(𝒕(𝒘; �̃�(𝑛)), 𝑷𝑚𝑧); �̃�(𝑛), 𝛽(𝑛))) 
for 𝑧 = 1,… , 𝑍. Given the fixed-point choice probability solutions 𝑃𝑚𝑧,𝑥𝑧∗  for each of the route observations 𝑧 = 1,… , 𝑍, 

calculate the Log-Likelihood 𝐿𝐿(𝑛)(�̃�(𝑛), �̃�(𝑛), 𝛽(𝑛)|𝒙) for iteration 𝑛. 

 

Step 3: Compute new set of parameters. Based on 𝐿𝐿(𝑠) and the associated parameters (�̃�(𝑠), �̃�(𝑠), 𝛽(𝑠)) for all 𝑠 ≤ 𝑛, 

compute a new set of parameters (�̃�(𝑛+1), �̃�(𝑛+1), 𝛽(𝑛+1)) to test in the following iteration.  

 

Step 4: Stopping criteria. If |𝐿𝐿(𝑛) − 𝐿𝐿(𝑛−1)| < 𝜁, stop. Otherwise, set 𝑛 = 𝑛 + 1 and return to Step 2. 

 

Algorithm 1: Pseudo-code for estimating the APSL model. 

 

In general, Step 3 could apply procedures from standard numerical optimisation methods to identify the parameters to 

evaluate in the next iteration. Utilising gradient approaches such as Newton-Raphson or BHHH, however, is complicated 

by the difficulties in differentiating the APSL Log-Likelihood function, which involves differentiating the fixed-point 

choice probabilities with respect to the parameters, which is not straightforward. Other optimisation algorithms such as 

BFGS and alternative quasi-Newton algorithms use methods to approximate the differentials, and while are more 

computationally burdensome and typically less accurate, are readily useable. For the experiments in this paper, we utilise 

the L-BFGS-B bound-constraint, quasi-Newton minimisation algorithm (Byrd et al, 1995) for Steps 2-4 of Algorithm 1 

(where we minimise −𝐿𝐿). The parameter bounds and initial conditions are given in each study. 

Note that Algorithm 1 computes one set of parameter estimates, estimated from one set of observations. It is 

possible to calculate standard errors for the estimated APSL parameters analytically, but this is again complicated by the 

requirement to differentiate the APSL Log-Likelihood function with respect to the parameters. Instead, the robustness of 

the parameters estimated (variation of the estimates) can be investigated numerically by applying Algorithm 1 multiple 

times through resampling-approaches such as Bootstrap or Jackknife. 

 

5.3 Simulation Study 

In this section we investigate the formulated likelihood function for the APSL route choice model in a simulation study, 

evaluating the likelihood-surface and assessing the possibility of estimating reasonable parameters that reproduces 

observed behaviour. 
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5.3.1 Experiment Setup 

In general, the approach is to sample observations according to an assumed ‘true’ model, and then use these in 
combination with the log-likelihood function to evaluate the ability to reproduce the assumed ‘true’ parameters. The 
simulation study consists of three steps: 

(i) Postulate a true APSL choice model including specification and parameter values. 

(ii) Sample a set of observed route choices according to the true model using the specified link travel costs. 

(iii) Apply MLE approach to obtain parameter estimates based on the observed route choices. 

The estimation procedure in Algorithm 1 is altered for simulation studies, by modifying Step 1: Initialisation as outlined 

below to reflect (i) and (ii) in the above: 

 

Step 1: Initialisation.  

 1.1 For OD movements 𝑚 = 1,… ,𝑀, generate the choice sets and store the link attributes and link- 

route information. 

 

1.2. Postulate a true set of parameters (𝜶𝑡𝑟𝑢𝑒, 𝜃𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒) for the APSL model, and given these parameters and  

the generated choice sets, solve each of the fixed-point problems  𝑷𝑚 = 𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕(𝒘; 𝜶𝑡𝑟𝑢𝑒)), 𝜸𝑚𝐴𝑃𝑆(𝒕(𝒘;𝜶𝑡𝑟𝑢𝑒), 𝑷𝑚); 𝜃𝑡𝑟𝑢𝑒, 𝛽𝑡𝑟𝑢𝑒)) 

for 𝑚 = 1,… ,𝑀. 

 

1.3. Based on the fixed-point choice probability solutions 𝑷𝑚∗  for 𝑚 = 1,… ,𝑀 (obtained in 1.2), sample 𝑍  

observed routes. 

 

1.4. Define an initial set of parameter values (�̃�(1), �̃�(1), 𝛽(1)) for MLE, and set 𝑛 = 1. 

Algorithm 1 (Step 1): Pseudo-code, initialisation of simulation experiments. 

 

The number of observed routes to sample, 𝑍, is exogenously defined. The robustness of the estimated parameters 

estimated can be investigated numerically by applying Algorithm 1 multiple times and then analysing the variation of the 

estimated parameters. 

 

5.3.2 Sioux Falls Application 

The Sioux Falls network in Fig. 13 consists of 76 links, 528 OD movements with non-zero travel demands, and 1632820 

total routes. The travel cost of link 𝑎 is specified as the free-flow travel time 𝑤𝑎,1 only, such that: 𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1, 
where 𝛼1 > 0 is the free-flow travel time parameter, and thus the travel cost for route 𝑖 ∈ 𝑅𝑚 is: 𝑐𝑚,𝑖(𝒕(𝒘; 𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 = 𝛼1 ∑ 𝑤𝑎,1𝑎∈𝐴𝑚,𝑖 . 
The model requires the specification of three parameters: 𝛼1, 𝜃, and 𝛽, but to ensure identification 𝜃 is fixed at 𝜃 = 1 

throughout.  
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Fig. 13. Sioux Falls network. 

 

Since the travel costs of the links (and thus routes) correspond to a single variable, to generate the utilised choice sets we 

employ k-shortest path to generate 150 of the lowest costing routes for each choice set. We also remove the short trip OD 

movements where the cheapest route has a free-flow travel time cost less than 10. The result is that there are 316 

remaining OD movements, and a total of 47400 routes.  

 

5.3.2.1 Experiment Results 

We begin the simulation study by investigating the Log-Likelihood surface. By evaluating the Log-Likelihood function 

in (32) for various configurations of 𝛼1 and 𝛽 the Log-Likelihood surface can be visualised for a sample of observed 

routes. Fig. 14 displays the log-likelihood surface for a single estimation experiment, with 𝛼1𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 = 0.6, and 𝑍 = 2000. As Fig. 14 shows, the Log-Likelihood surface is smooth and approximately maximal around the true 

parameters, where the estimated parameters are �̂�1 = 0.294 ± 0.002 and �̂� = 0.57 ± 0.01.  

 
Fig. 14. Sioux Falls simulation study: Log-Likelihood surface; 𝜃𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 = 0.6, 𝑍 = 2000. 
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Next, we investigate the stability of the estimated parameters over multiple experiment replications. Each experiment 

utilises a Log-Likelihood maximisation algorithm (see Section 5.2.2) to obtain the parameter estimates with initial 

conditions (�̃�1(0), 𝛽(0)) = (0.15,0), and bounds �̃�1, 𝛽 ∈ [0,1]. 
Fig. 15A-D display for different settings of 𝛼1𝑡𝑟𝑢𝑒 and 𝛽𝑡𝑟𝑢𝑒, the distribution of the estimated parameters after 𝑞 =100 experiment replications of 𝑍 = 1000 simulated observations.  

  

  

Fig. 15. Sioux Falls simulation study: Distribution of estimated parameters after multiple experiment replications; 𝑍 = 1000, 𝑞 = 100 

– A: 𝛼1𝑡𝑟𝑢𝑒 = 0.1 𝛽𝑡𝑟𝑢𝑒 = 0.8. B: 𝛼1𝑡𝑟𝑢𝑒 = 0.2 𝛽𝑡𝑟𝑢𝑒 = 0.7. C: 𝛼1𝑡𝑟𝑢𝑒 = 0.3 𝛽𝑡𝑟𝑢𝑒 = 0.6. B: 𝛼1𝑡𝑟𝑢𝑒 = 0.4 𝛽𝑡𝑟𝑢𝑒 = 0.4. 

 

Table 2 reports, for various settings of the true parameters (same as Fig. 15A-D), the mean value (𝜇), standard deviation (𝜎), and Mean Squared Error (𝑀𝑆𝐸) of the estimates across 𝑞 = 100 experiment replications with 𝑍 = 1000 simulated 

observations. Table 2 also displays the estimated covariance between the 𝛼1 and 𝛽 parameters. As shown, the mean 

estimates of 𝛼1 and 𝛽 are close to the true values for all settings tested (i.e. there is no evidence of bias in the parameter 

estimates). However, as measured by the MSE, the precision of estimating 𝛼1 decreases as 𝛼1𝑡𝑟𝑢𝑒 increases, and the 

precision of estimating 𝛽 decreases as 𝛽𝑡𝑟𝑢𝑒 decreases. This seems reasonable as increasing 𝛼1 in this case corresponds to 

lower perception error of travel cost and decreasing 𝛽 corresponds to lower perception of distinctiveness.  

Table 2 and Fig. 17A-D both indicate that, with this network and the generated choice sets, there appears to be some 

negative correlation between the �̂�1 and �̂� estimates. This is likely due to the large number of unrealistic routes present 

within the choice sets and the consequent small path size contribution factors for these routes from the true parameters; 

these factors can be reduced by increasing 𝛼1 or 𝛽 and hence negative correlation appears from balancing the parameters 

to obtain small contributions.  

 𝛼1𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 �̂�1 �̂� 𝑐𝑜𝑣(�̂�1, �̂�) 𝜇 𝜎 𝑀𝑆𝐸 𝜇 𝜎 𝑀𝑆𝐸  

0.1 0.8 0.1000 0.0032 0.0000 0.8003 0.0136 0.0002 -0.00003 

0.2 0.7 0.2016 0.0068 0.0001 0.6972 0.0305 0.0009 -0.00014 

0.3 0.6 0.3021 0.0105 0.0001 0.5876 0.0485 0.0025 -0.00034 

0.4 0.4 0.4012 0.0153 0.0002 0.3984 0.0817 0.0067 -0.00096 

Table 2. Sioux Falls simulation study: Stability of estimated parameters across multiple experiment replications; 𝑍 = 1000, 𝑞 = 100. 

A B 

C D 
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5.3.2.2 Computation Analysis 

In this subsection we analyse the computational performance of the APSL model in the Sioux Falls MLE application. 

The computer used has a 2.10GHz Intel Xeon CPU, 512GB RAM, and 64 Logical Processors (of which 50 were 

utilised). The code was implemented in Python. Results are reported throughout this section for a single simulation 

experiment where 𝑍 = 1000 route choice observations were simulated from the true model 𝛼1𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 =0.6. �̂�1 = 0.2951 and �̂� = 0.6112 are the consequent maximum likelihood estimates. 

Fig. 16A shows for different values of the APSL choice probability convergence parameter 𝜉 (and thus convergence 

statistic, See Section 3.4), the average number of fixed-point iterations per OD movement and computation time required 

to solve all of the 316 APSL fixed-point problems 𝑷𝑚 = 𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚))), and consequently compute the 

Log-Likelihood value of the maximum likelihood estimates. As shown, computation time and average number of fixed-

point iterations per OD increase roughly linearly as the convergence parameter is increased. As expected, computation 

times relate to the number of iterations required for convergence. Fig. 16B shows the value of the Log-Likelihood 

obtained as 𝜉 is increased. As shown, the Log-Likelihood increases in value and accuracy as the APSL choice 

probabilities become more accurate. 

  

Fig. 16. Sioux Falls simulation study: Computational statistics for calculating APSL Log-Likelihoods as the APSL choice probability 

convergence parameter 𝜉 is increased –  

A: Average number of fixed-point iterations per OD / computation time [mins]. B: Log-Likelihood value. 

 

Fig. 17 shows for different values of 𝛽 the average number of fixed-point iterations per OD movement and computation 

time required to calculate the Log-Likelihood, with 𝜉 = 7 and �̃�1 set as the maximum likelihood estimate �̂�1 = 0.2965. 

As shown, the average number of iterations per OD required for convergence increases as 𝛽 increases, and thus so do the 

required computation times. 

 

Fig. 17. Sioux Falls simulation study: Average number of fixed-point iterations per OD movement and computation time required to 

calculate the Log-Likelihood for different �̃� values; �̃�1 = �̂�1 = 0.2965, 𝜉 = 7. 

 

Fig. 18A-B show for a single MLE (implementation of the L-BFGS-B algorithm), the cumulative computation times of 

the iterations and the Log-Likelihood values and parameter estimates at the end of each iteration, with 𝜉 = 7.  

A B 
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Fig. 18. Sioux Falls simulation study: Cumulative computation time at each iteration of a single MLE, and MLE statistics; 𝜉 = 7 –  

A: Log-Likelihood. B: Parameter estimates. 

 

Fig. 19A shows the total computation times and MLE final Log-Likelihood values of different MLE runs for different 

settings of 𝜉. Fig. 19B shows the parameter estimates. For 𝜉 = 5, the inaccuracy of the APSL choice probabilities means 

that more MLE iterations are required to identify the estimates. For 𝜉 = 6, however, the choice probabilities are 

sufficiently accurate to quickly estimate the parameters. Greater values of 𝜉 increase the number of fixed-point iterations 

required for the fixed-point convergences and hence the computation times of the MLE. 

  

Fig. 19. Sioux Falls simulation study: Total computation time of MLE runs for different values of 𝜉, and MLE results – A: Final Log-

Likelihood. B: Parameter estimates. 

 

We also briefly investigate the impact of the 𝜏 parameter upon parameter estimation. Each OD movement 𝑚 has a choice 

set size 𝑁𝑚 = 150, and therefore supposing each OD movement has the same value for 𝜏, the maximum value for 𝜏 is 1150 = 0.006̇. Supposing 𝜏 assumes the form 𝜏 = 10−𝜑, Fig. 20 displays how the maximum likelihood parameter 

estimates vary as 𝜑 varies. As shown, the parameter estimates converge quickly to the limit case of 𝜏 → 0, demonstrating 

that we can recover the desired model APSL0 (Section 3.1) to a high computational accuracy using the APSL model as 

defined in Section 3.2, with a sufficiently small value of 𝜏. 

A B 

A B 



 

27 

 

 

Fig. 20. Sioux Falls simulation study: Maximum likelihood APSL parameter estimates for different values of 𝜏 = 10−𝜑. 

 

5.3.2.3 APSL Solution Uniqueness Analysis 

In this subsection we briefly investigate the uniqueness of APSL choice probability solutions in the context of the Sioux 

Falls simulation study. Just as in Section 4.4, we plot trajectories of APSL solutions to approximate the uniqueness 

conditions, i.e. estimate 𝛽𝑚𝑎𝑥 . A single simulation study is conducted for 𝛼1𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 = 0.6, and 𝑍 = 2000, 

leading to maximum likelihood estimates �̂�1 = 0.3064 and �̂� = 0.6001. We thus investigate whether APSL solutions 

are unique for these parameter estimates. Fig. 21 displays the maximum choice probability from three trajectories of 

APSL solutions as the 𝛽 parameter is varied for four different randomly chosen OD movements, with 𝛼1 = �̂�1 =0.3064. 𝛽 was decremented by 0.01, and the initial large 𝛽 value was 𝛽 = 2. As shown, the 𝛽𝑚𝑎𝑥,𝑚 values (𝛽𝑚𝑎𝑥  for OD 

movement 𝑚) for these OD movements can be estimated to vary between 0.86 and 0.94, suggesting that 𝛽 = 0.6001 

results in universally unique solutions.  

  

  

Fig. 21. Sioux Falls simulation study: Maximum choice probability of trajectories of APSL solutions as 𝛽 is varied; 𝛼1 = 0.3064. 
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5.4 Real-Life Case Study 

In this section we estimate the APSL model, where the model parameters are estimated using MLE with observed route 

choices tracked by GPS units. The data has been collected among drivers in the eastern part of Denmark in 2011, and 

includes a total of 17,115 observed routes. The dataset is the same as used in Prato et al (2014) as well as Rasmussen et al 

(2017), and after a filtering to include only trips where the sum of travel time (in minutes) and length (in km) is at least 

10, a total of 8,696 observations remain. 

The GPS traces are map matched to a network, for which corresponding time-of-day dependent travel times are 

available on the entire network. See more details in Prato et al (2014). The network is large-scale, representing all of 

Denmark, and thus includes 34,251 links. With current alternative generation techniques, it is not feasible to enumerate 

the universal choice set for such a large network. Instead, we approximate the universal choice set by generating a choice 

set for each observed route by applying the doubly stochastic approach also applied in Prato et al (2014). This approach 

is based on repeated shortest path search in which the network attributes and parameters of the cost function is 

perturbated between searches (Nielsen, 2000; Bovy & Fiorenzo-Catalano, 2007). Up to 100 unique paths are generated 

for each observation, see the distribution of number of alternatives in Fig. 22. 

  

Fig. 22. Real-life case-study: Cumulative distribution of the choice set sizes for the 8,696 observations.  

 

For the estimation, the travel cost of link 𝑎 is specified as a weighted sum of congested travel time 𝑤𝑎,1 (in minutes), and 

length 𝑤𝑎,2 (in kilometres), such that: 𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1 + 𝑤𝑎,2 ∙ 𝛼2 

where 𝛼1 > 0 and 𝛼2 > 0 are the congested travel time, and length parameters, respectively. The generalised travel cost 

for route 𝑖 ∈ 𝑅𝑚 is thus: 𝑐𝑚,𝑖(𝒕(𝒘; 𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 = ∑ (𝑤𝑎,1 ∙ 𝛼1 + 𝑤𝑎,2 ∙ 𝛼2)𝑎∈𝐴𝑚,𝑖 = 𝛼1 ∑ 𝑤𝑎,1𝑎∈𝐴𝑚,𝑖 + 𝛼2 ∑ 𝑤𝑎,2𝑎∈𝐴𝑚,𝑖 . 
The model requires the specification of four parameters: 𝛼1, 𝛼2, 𝜃, and 𝛽, but to ensure identification, the 𝜃 parameter is 

fixed at 𝜃 = 1. Fig. 23A shows the relative travel time deviations away from the quickest routes in the choice sets for the 

observed routes as well as the alternative routes generated, and Fig. 23B shows the relative length deviations. 47% and 

36% of the observed routes were the quickest and shortest routes, respectively. Moreover, there appear to be observations 

of unattractive route choices, where some observed routes were 2.11 times slower / 2.29 times longer than the quickest / 

shortest alternatives, as well as numerous potentially unrealistic routes generated, where some generated routes are 2.91 

times slower / 3.22 times longer. 
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Fig. 23. Real-life case-study: Relative deviations away from quickest/shortest routes in the choice sets for the observed routes (red) 

and alternative routes generated (blue) – A: Travel time. B: Length. 

 

We estimate the models utilising the same Log-Likelihood maximisation algorithm (L-BFGS-B, see Section 5.2.2), 

initial conditions, and parameter bounds, where appropriate. Initial conditions: (�̃�1(1), �̃�2(1), 𝛽(1), �̃�(1)) = (0.5,0.5,0,0), and 

bounds: �̃�1, �̃�2, 𝛽 ∈ [0,2], �̃� ∈ [0,200]. 
 

5.4.1 APSL Estimation 

5.4.1.1 Results 

In this subsection we provide results from estimating the three parameters of the APSL model in this case study: 𝛼1, 𝛼2, 

and 𝛽. Table 3 displays the APSL parameter estimates and the consequent Log-Likelihood value. 

 �̂�1 �̂�2 �̂� 𝐿𝐿 

0.633 0.184 0.840 -18978 

Table 3. Real-life case-study: APSL parameter estimates and Log-Likelihood. 

 

Fig. 24 shows the Log-Likelihood surfaces around the three parameter estimates; as can be seen, these are smooth and 

maximal around the estimates. 
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Fig. 24. Real-life case-study: APSL Log-Likelihood surfaces around parameter estimates in Table 3 – A: 𝛼1, 𝛼2. B: 𝛼1, 𝛽. C: 𝛼2, 𝛽.  

 

5.4.1.2 Computation Analysis 

We analyse here the computational performance of the APSL model in the real-life case study. The same computer was 

used as in Section 5.3.2.2. 

Fig. 25A shows for different values of the APSL choice probability convergence parameter 𝜉 (and thus convergence 

statistic), the average number of fixed-point iterations per OD movement and computation time required to solve all of 

the 8,696 APSL fixed-point problems 𝑷𝑚𝑧 = 𝑮𝑚𝑧 (𝒈𝑚𝑧 (𝒄𝑚𝑧(𝒕), 𝜸𝑚𝑧𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧))) for 𝑧 = 1,… , 𝑍, and consequently 

compute a single Log-Likelihood, with the estimated APSL parameters in Table 3. Fig. 25B shows the value of the Log-

Likelihood obtained as 𝜉 is increased. As shown, computation time and average number of fixed-point iterations per OD 

increase linearly as the convergence parameter is increased, and the Log-Likelihood increases in accuracy (from 𝜉 = 2) 

as the APSL choice probabilities become more accurate. The relatively large estimated 𝛽 value results in a longer 

computation time, as shown in Section 5.3.2.2, for lower 𝛽, the computation times are less.  

  

Fig. 25. Real-life case-study: Computational statistics for calculating APSL Log-Likelihoods as the APSL choice probability 

convergence parameter 𝜉 is increased –  

A B 

C 

A B 
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A: Average number of fixed-point iterations per OD / computation time [mins]. B: Log-Likelihood value. 

 

Fig. 26A-B show for a single estimation of the APSL model (implementation of the L-BFGS-B algorithm), the 

cumulative computation times of the iterations and the Log-Likelihood values and parameter estimates at the end of each 

iteration, respectively, with 𝜉 = 10. The initial conditions for solving the APSL fixed-point problems were updated at the 

end of each iteration with the choice probabilities obtained from the current parameter estimates.  

    

Fig. 26. Real-life case-study: Cumulative computation time at each iteration for a single estimation of the APSL model, and MLE 

statistics; 𝜉 = 10 – A: Log-Likelihood. B: Parameter estimates. 

 

5.4.1.3 APSL Solution Uniqueness Analysis 

We briefly investigate here the uniqueness of APSL choice probability solutions in the context of the real-life case study. 

Similar to the experiments conducted in Section 5.3.2.3 for the Sioux Falls simulation study, we estimate the uniqueness 

conditions for the network given the estimated parameters. Trajectories of APSL solutions are plotted to approximate 𝛽𝑚𝑎𝑥 . Fig. 27 displays the maximum choice probability from trajectories of APSL solutions as the 𝛽 parameter is varied 

for four different randomly chosen OD movements, with 𝛼1 and 𝛼2 as in Table 3. 𝛽 was decremented by 0.01, and the 

initial large 𝛽 value was 𝛽 = 1.5. As shown, the 𝛽𝑚𝑎𝑥,𝑚 values (𝛽𝑚𝑎𝑥  for OD movement 𝑚) for these OD movements 

are between 0.96 and 0.99, suggesting that 𝛽 = 0.84023 results in universally unique solutions.  

  

A B 
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Fig. 27. Real-life case study: Maximum choice probability from trajectories of APSL solutions as 𝛽 is varied; 𝛼1 = 0.63333, 𝛼2 = 0.18428. 

 

5.4.2 Comparing Results with Other Path Size Logit Models 

In this subsection we estimate models discussed in this paper and compare results. Table 4 shows the estimated 

parameters for the MNL, PSL, GPSL, GPSL′(𝜆=𝜃), and APSL models. 

 

 �̂�1 �̂�2 �̂� �̂� 𝐿𝐿 

MNL 0.777 0.330   -21308 

PSL 0.966 0.306 1.347  -20581 

GPSL 0.415 0.085 1.186 91.95 -17874 

GPSL′(𝜆=𝜃)  0.691 0.154 1.807  -19152 

APSL 0.633 0.184 0.840  -18978 

Table 4. Real-life case-study: Estimation results and stability statistics from all Path Size Logit models. 

 

To compare the estimation results of the models, we apply the approach in Swait & Ben-Akiva (1984) based on the non-

nested test in Horowitz (1983) in combination with the results in Table 4. The adjusted rho-squared for model ℎ with 

estimated parameters �̂�ℎ is given by: �̅�ℎ2 = 1 − 𝐿𝐿ℎ(�̂�ℎ) − 𝐾ℎ𝐿𝐿∗ , 
where 𝐿𝐿ℎ(�̂�) is the Log-Likelihood for model ℎ given the estimated parameters �̂�ℎ, 𝐾ℎ is the number of model ℎ 

parameters, and 𝐿𝐿∗ is the equal choice probability Log-Likelihood which in this case study is: 𝐿𝐿∗ = ln (∏ 1𝑁𝑚𝑧𝑍𝑧=1 ) =−∑ ln(𝑁𝑚𝑧)𝑍𝑧=1 = −28200. The distribution of the difference between �̅�ℎ12  and �̅�ℎ22  for models ℎ1 and ℎ2, respectively, 

(which are possibly non-nested) is given by: Pr(�̅�ℎ22 − �̅�ℎ12 > 𝑦) ≤ Φ(−[−2𝑦𝐿𝐿∗ + (𝐾ℎ2 − 𝐾ℎ1)]12), 
where 𝑦 > 0 is the test statistic. To test the null hypothesis that the MNL model outperforms the PSL, GPSL, 

GPSL′(𝜆=𝜃), and APSL models, we compute the test statistics 𝑦𝑃𝑆 = �̅�𝑃𝑆2 − �̅�𝑀𝑁𝐿2 , 𝑦𝐺𝑃𝑆 = �̅�𝐺𝑃𝑆2 − �̅�𝑀𝑁𝐿2 , 𝑦𝐺𝑃𝑆′ = �̅�𝐺𝑃𝑆′2 −�̅�𝑀𝑁𝐿2 , and 𝑦𝐴𝑃𝑆 = �̅�𝐴𝑃𝑆2 − �̅�𝑀𝑁𝐿2 . Similarly, we compute the corresponding 𝑌𝑃𝑆 = −[−2𝑦𝑃𝑆𝐿𝐿∗ + (𝐾𝑃𝑆 − 𝐾𝑀𝑁𝐿)]12, 𝑌𝐺𝑃𝑆 = −[−2𝑦𝐺𝑃𝑆𝐿𝐿∗ + (𝐾𝐺𝑃𝑆 − 𝐾𝑀𝑁𝐿)]12, 𝑌𝐺𝑃𝑆′ = −[−2𝑦𝐺𝑃𝑆′𝐿𝐿∗ + (𝐾𝐺𝑃𝑆′ − 𝐾𝑀𝑁𝐿)]12, and 𝑌𝐴𝑃𝑆 =−[−2𝑦𝐴𝑃𝑆𝐿𝐿∗ + (𝐾𝐴𝑃𝑆 − 𝐾𝑀𝑁𝐿)]12. The results are shown in Table 5. Pr(𝑦ℎ ≤ 𝑌ℎ) is the probability that the MNL model 

outperforms model ℎ, but these values are too small for computer precision to calculate. This exemplifies the necessity of 

capturing the correlation between routes. One can identify however that Pr(𝑦𝑃𝑆 ≤ 𝑌𝑃𝑆) > Pr(𝑦𝐺𝑃𝑆′ ≤ 𝑌𝐺𝑃𝑆′) >Pr(𝑦𝐴𝑃𝑆 ≤ 𝑌𝐴𝑃𝑆) > Pr(𝑦𝐺𝑃𝑆 ≤ 𝑌𝐺𝑃𝑆). In another comparison of fit test, Table 6 shows the penalised-likelihood criteria. 

In both tests, the GPSL′(𝜆=𝜃) and APSL models outperform the PSL model with the same number of parameters, 

where APSL outperforms GPSL′(𝜆=𝜃). This suggests that there is value in including a measure of distinctiveness within 

the path size contribution factors. The GPSL model outperforms all models due to the greater flexibility the 𝜆 parameter 

provides. Several case studies have found that larger values of 𝜆 increase the goodness-of-fit of the GPSL model 
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(Ramming, 2002; Prato, 2005; Hoogendoorn-Lanser, 2005; Bekhor & Prato, 2006), and hence it is not unusual that �̂� =91.95 is so big. We explore further below. 

 ℎ 𝐾ℎ �̅�ℎ2 𝑦ℎ 𝑌ℎ 

PSL 3 0.27006 0.02573 -38.1144 

GPSL 4 0.36604 0.12171 -82.8673 

GPSL′(𝜆=𝜃) 3 0.32074 0.07642 -65.6583 

APSL 3 0.32690 0.08258 -68.2537 

Table 5. Real-life case-study: Comparison of fit between models based on non-nested Horowitz type tests. 

 

 AIC BIC CAIC 

MNL 42621 42635 42637 

PSL 41169 41190 41193 

GPSL 35756 35784 35788 

GPSL′(𝜆=𝜃) 38311 38332 38335 

APSL 37963 37984 37987 

Table 6. Real-life case-study: Comparison of fit between models based on penalised-likelihood criteria. 

 

For very large values of 𝜆 within the GPSL path size terms, the path size contributions become extremely sensitive to 

differences in cost, where the contribution of route 𝑘 to the path size term of route 𝑖 is large if 𝑐𝑖 > 𝑐𝑘  and small if 𝑐𝑖 <𝑐𝑘, and as 𝜆 → ∞, (𝑐𝑖𝑐𝑘)𝜆 → ∞ if 𝑐𝑖 > 𝑐𝑘, and (𝑐𝑖𝑐𝑘)𝜆 → 0 if 𝑐𝑖 < 𝑐𝑘. The implication of this is that routes with relatively 

small travel costs are penalised significantly less than routes with relatively large travel costs for link sharing, and hence 

that low costing routes are considered much more distinct than high costing routes.  

To provide some measure of the relative cost and distinctiveness of the observed routes (in comparison with the 

generated alternatives), Fig. 28A plots the percentage of generated routes with a travel cost greater than the observed 

route in each choice set (where the GPSL travel cost parameters are used), against the percentage of routes with PSL path 

size terms smaller than the observed route. The PSL path size terms provide a measure of the universal distinctiveness of 

the alternatives, i.e. without considering whether or not the routes are link sharing with unrealistic alternatives. The 

bottom right of the figure appears to be highly populated suggesting that many of the observations have relatively low 

travel costs but are relatively universally indistinct, while a sizeable proportion are relatively distinct, even without the 

contribution weighting. Most notably though, a considerable proportion of the route observations have a low percentage 

of routes with greater travel costs, and many of these are relatively universally distinct (top left of figure). This perhaps 

suggests that many drivers have taken unattractive, relatively costly routes that are distinct. Fig. 28B plots the same cost 

percentage against the GPSL path size term percentage. As expected, the route observations with low costs are now 

considered much more distinct, while the observations with large costs are considered less distinct. 

Fig. 29 displays the choice probability distribution of the observed routes under the different estimated models. For 

all models, a large percentage of the observed routes have small choice probabilities. This seems to also suggest that 

there are many observations where an unattractive route was chosen. 

  

Fig. 28. Real-life case study: Percentage of routes in each OD movement choice set with costs greater / path size terms smaller than 

the observed route – A: PSL path size terms. B: GPSL path size terms. 
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Fig. 29. Real-life case study: Choice probability distribution of the observed routes under the different estimated models. 

 

The data set contains relatively costly but relatively universally distinct route observations. The GPSL model is able to 

provide the best fit for these observations, without compromising the fit for the low costing observations. The GPSL 

travel cost parameter estimates are smaller than the same estimates for the other models, which improves the relative 

attractiveness of the costly alternatives. To counterbalance this so that that the low costing routes still remain attractive, 

GPSL introduces a large 𝜆 value: routes with relatively small travel costs are penalised significantly less than routes with 

relatively large travel costs for link sharing. Moreover, GPSL is able to further increase the relative attractiveness of the 

distinct, costly routes by decreasing the attractiveness of the indistinct, costly routes with the large 𝜆. 

Fig. 30A & Fig. 31A show two route observations, which we label OD 1 and OD 2, respectively. Fig. 30B-D & Fig. 

31B-D plot the consequent link choice probabilities from the MNL, PSL, GPSL, and APSL models. From first inspection 

it appears that the route taken by the driver in OD 1 is a high probability, attractive route, while the route taken in OD 2 

is low probability. Table 7 displays the choice probabilities of the observed route for OD 1 and OD 2 under the different 

models. The APSL model provides the largest choice probability for the observed route in OD 1, and GPSL provides the 

highest for OD 2, where the chosen probabilities for OD 2 are small. 
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Fig. 30. Real-life case study: OD 1 plotted link choice probabilities from the estimated models for a single observation –  

A: Observed route. B: MNL. C: PSL. D: GPSL. E: APSL. 
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Fig. 31. Real-life case study: OD 2 plotted link choice probabilities from the estimated models for a single observation –  

A: Observed route. B: MNL. C: PSL. D: GPSL. E: APSL. 

 

 MNL PSL GPSL APSL 

OD 1 0.101 0.110 0.150 0.261 

OD 2 0.0004 0.0024 0.0042 0.0025 

Table 7. Real-life case study: OD 1 & OD 2 observed route choice probabilities for the different estimated models. 

 

For Path Size Logit models, the utility for route 𝑖 ∈ 𝑅𝑚 is comprised of a cost component −𝜃𝑐𝑚,𝑖 and a path-size 

component 𝛽 ln(𝛾𝑚,𝑖), i.e. so that the utility is 𝑉𝑚,𝑖 = −𝜃𝑐𝑖 + 𝛽 ln(𝛾𝑖). Fig. 32A-B plot for OD 1 and OD 2, respectively, 

the cost components against path size components of the routes under the PSL, GPSL, and APSL models, where the 

observed route is in red. Fig. 33A-B plot the cost and path size components against choice probability. In both cases, 

universal distinctiveness tends to increase as travel cost increases. For OD 1, the observed route is universally indistinct 

but low costing, and is the highest choice probability route for all models. The APSL model thus provides the best fit for 

this observation: the path size contribution factors consider probability ratios and hence the observed route is considered 

the most attractive and distinct compared to its overlapping routes. The GPSL model reduces the range for the cost 

components and hence decreases the attractiveness of the observed route according to its cost, which is not compensated 

for by its distinctiveness, since it is highly correlated with other low costing routes. For OD 2, the observed route is 

universally distinct but high costing, and has a low choice probability for all models. As discussed above, the GPSL 

model is able to provide the best fit for these observations. 

  

E 
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Fig. 32. Real-life case study: Cost / Path-Size components of the route utilities from PSL/GPSL/APSL – A: OD 1. B: OD 2. 

   

 
Fig. 33. Real-life case study: Choice probability against cost / path-size component for PSL/GPSL/APSL – A: OD 1. OD 2. 

 

The consistency requirement we impose on the APSL model constrains the way that it can mimic the behaviour of the 

GPSL model, since if parameters are chosen to capture the high costing observations, a price is paid in terms of the 

feedback effect to the path size correction terms. This confirms that APSL and GPSL are quite different candidate 

models in the way in which they aim to capture behaviour. 

The 𝜆 parameter allows the GPSL model to improve the choice probabilities of high costing, distinct route 

observations one might consider as being outliers / route choice decisions made according to unobserved attributes, 

though not by design. It seems unlikely that the GPSL model was formulated anticipating extremely large values of 𝜆 

(such as 91.95) given the exponential nature of the path size contribution factors. In fact, Ramming (2002) estimates the 

proposed exponential formulation and finds 𝜆 = ∞ provides the best fit to the data, which does not seem reasonable. 

Moreover, Ramming (2002) hypothesises that the path size contribution factor should ‘split the link size contributions 

more severely than MNL would split path shares, or counter-intuitive predictions will result’, though a reason is not 

A 
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given. It’s difficult to know what a ‘sensible’ restriction would be that one could impose upon the 𝜆 parameter so that the 

GPSL model behaves according to a more feasible theoretical interpretation. Bekhor & Prato (2006) utilise 𝜆 = 9, 

Hoogendoorn-Lanser (2005) utilises 𝜆 = 20, and Prato (2009) claims optimal values vary between 10 and 15, though 

these values still seem large. Table 8 displays the results from estimating the GPSL model with a restriction imposed 

upon 𝜆 so that 𝜆 ≤ 10. As anticipated, the optimal value for 𝜆 is at the bound (equal to 10), but the Log-Likelihood value 

no longer beats the GPSL′(𝜆=𝜃) and APSL models. What is also interesting is that the estimated 𝛽 value is almost 2, 

which is very large seeming the theory suggests it should be around 1. This supports the theory that the GPSL path size 

components are capturing something other than the correlation. 

 

 �̂�1 �̂�2 �̂� �̂� 𝐿𝐿 

MNL 0.777 0.330   -21308 

PSL 0.966 0.306 1.347  -20581 

GPSL (𝜆 ≤ 10) 0.769 0.160 1.943 10 -19312 

GPSL 0.415 0.085 1.186 91.95 -17874 

GPSL′(𝜆=𝜃)  0.691 0.154 1.807  -19152 

APSL 0.633 0.184 0.840  -18978 

Table 8. Real-life case-study: Estimation results including GPSL with 𝜆 restricted to 𝜆 ≤ 10. 

 

6 Summary and Scope for Further Research 
Due to their comparatively low computational cost and relative ease in obtaining reasonable estimates for parameters, 

Path Size Logit route choice models are a useful and practical approach to approximating the correlation between routes. 

Existing Path Size Logit models, however, have some key theoretical weaknesses: for PSL the presence of unrealistic 

routes in a choice set negatively impacts the choice probabilities of realistic routes when links are shared, and for GPSL 

there are internal inconsistency issues which can have negative implications, for example routes which are defined as 

unrealistic by the path size terms may not be routes with low choice probabilities. The intricacies of the issues with 

existing Path Size Logit models are demonstrated in the paper, and a new APSL model is proposed which provides a 

potential solution to these issues. The APSL model proposes that routes contribute to path size terms according to 

probability ratios, and choice probability solutions to the model are solutions to the fixed-point problem involving the 

probabilities. 

The paper proves that choice probability solutions to the APSL model are guaranteed to exist, and proves that values 

of 𝑏 exist such that APSL solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏. Though there are cases where solutions are 

unique for all 𝛽 ≥ 0, in most cases there is a maximum value for 𝑏 (𝑏𝑚𝑎𝑥). 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 is however only 

a sufficient condition for unique APSL solutions, 𝛽𝑚𝑎𝑥  is the true maximum value where solutions are unique for 𝛽 in 

the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥 , and a method is proposed in the paper for estimating 𝛽𝑚𝑎𝑥 . 

To show that the parameters of the APSL model can be estimated, a Maximum Likelihood Estimation procedure is 

proposed for estimating APSL with tracked route observation data. This procedure is then first investigated in a 

simulation study on the Sioux Falls network where it is shown that it is generally possible to reproduce assumed true 

parameters. The APSL model is then estimated using real tracked route GPS data on a large-scale network. Results show 

that the APSL outperforms the MNL and PSL models with the same number of model parameters, while the GPSL 

model outperforms APSL due to the added flexibility an additional parameter provides. 

The APSL model requires a fixed-point algorithm to approximate solutions. The paper assesses the computational 

performance of the FPIM for calculating choice probabilities and estimating the parameters of the APSL model, where 

accuracy is compared with computation time. Results indicate that accurate choice probability solutions and parameter 

estimates can be obtained from feasible computation times. 

Future research should explore the application of the APSL model within a Stochastic User Equilibrium framework, 

which could involve exploring whether one can combine the fixed-point iterations used for APSL with those used for 

congestion, so that they are performed simultaneously. 

As noted in our numerical experiments, the consistency condition that we impose in the APSL model, while offering 

improvements over PSL, constrains the extent to which the model is able to compete with the GPSL model in terms of 

model-fit, with the additional parameter in the GPSL model allowing it to de-couple the scale of the model from the path-

size effect, albeit at the price of inconsistency. A natural path for future research could be to explore the potential for 

developing generalised forms of APSL, in the spirit of GPSL, allowing an extra dimension (parameter) to fit, but without 

sacrificing the requirement for consistency. 
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Appendix A: Discontinuity issue with APSL path size terms when allowing zero choice probabilities 

The APSL path size term for route 𝑖 ∈ 𝑅 is given by: 𝛾𝑖𝐴𝑃𝑆(𝑷) =∑ 𝑡𝑎𝑐𝑖 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖 . 
The issue is that there are three possible values for lim∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 →0 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 : 
 

a) lim𝑃𝑖→0 ( lim∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 →0 𝑃𝑖𝑃𝑖+∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 ) = 1, 

b) lim∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 →0 ( lim𝑃𝑖→0 𝑃𝑖𝑃𝑖+∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 ) = 0, 

c) lim∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑚;𝑘≠𝑖 →0𝑃𝑖→0
𝑃𝑖𝑃𝑖+∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 = 1∑ 𝛿𝑎,𝑘𝑘∈𝑅 . 

 

To demonstrate this, consider the appendix A example network in Fig. A.1 where there are 9 routes. 

 

Fig. A.1. Appendix A example network. 

 

Route 1: 1 → 2, Route 2: 1 → 4, Route 3: 1 → 6, 

Route 4: 3 → 2, Route 5: 3 → 4, Route 6: 3 → 6, 

Route 7: 5 → 2, Route 8: 5 → 4, Route 9: 5 → 6. 

 

Suppose 𝑢 = 𝑣 = 𝑤 = 𝑥 = 𝑦 = 𝑧 = 1, and let 𝑃1 = 𝑃2 = 𝑃3 = 1−𝑃43 , 𝑃4 ∈ [0,1], 𝑃5 = 𝑃6 = 𝑃7 = 𝑃8 = 𝑃9 = 0. As 𝑃4 →1, 𝑃1 = 𝑃2 = 𝑃3 → 0, and the path size terms for Route 1, Route 2, and Route 5 as 𝑃4 → 1 are: 

 lim𝑃4→1 𝛾1𝐴𝑃𝑆(𝑷) = lim𝑃4→1((12) ∙ ( 𝑃1𝑃1 + 𝑃2 + 𝑃3) + (12) ∙ ( 𝑃1𝑃1 + 𝑃4 + 𝑃7)) 

= (12) ∙ ( lim𝑃2+𝑃3→0𝑃1→0
𝑃1𝑃1 + 𝑃2 + 𝑃3)+ (12) ∙ ( lim𝑃4→1𝑃1→0 ( lim𝑃7→0 𝑃1𝑃1 + 𝑃4 + 𝑃7)) 

= (12) ∙ (13) + (12) ∙ (0) = 16 
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lim𝑃4→1 𝛾2𝐴𝑃𝑆(𝑷) = lim𝑃4→1((12) ∙ ( 𝑃2𝑃1 + 𝑃2 + 𝑃3) + (12) ∙ ( 𝑃2𝑃2 + 𝑃5 + 𝑃8)) 

= (12) ∙ ( lim𝑃1+𝑃3→0𝑃2→0
𝑃2𝑃1 + 𝑃2 + 𝑃3) + (12) ∙ ( lim𝑃2→0 ( lim𝑃5+𝑃8→0 𝑃2𝑃2 + 𝑃5 + 𝑃8)) 

= (12) ∙ (13) + (12) ∙ (1) = 23 

 lim𝑃4→1 𝛾5𝐴𝑃𝑆(𝑷) = lim𝑃4→1((12) ∙ ( 𝑃5𝑃4 + 𝑃5 + 𝑃6) + (12) ∙ ( 𝑃5𝑃2 + 𝑃5 + 𝑃8)) 

= (12) ∙ ( lim𝑃4→1( lim𝑃5→0𝑃6→0
𝑃5𝑃4 + 𝑃5 + 𝑃6)) + (12) ∙ ( lim𝑃2→0( lim𝑃5→0𝑃8→0

𝑃5𝑃2 + 𝑃5 + 𝑃8)) 

= (12) ∙ (0) + (12) ∙ (0) = 0 

 

Thus, at 𝑃4 = 1 where 𝑃1 = 𝑃2 = 𝑃3 = 𝑃5 = 𝑃6 = 𝑃7 = 𝑃8 = 𝑃9 = 0, many cases of ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0 occur, but lim∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 →0 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅  either equals 1, 0, or 
13, and hence defining the path size terms as either: 

𝛾𝑖𝐴𝑃𝑆(𝑷) =∑ 𝑡𝑎𝑐𝑖 × { 
 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅      𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 > 0          1                𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0𝑎∈𝐴𝑖 , 

𝛾𝑖𝐴𝑃𝑆(𝑷) =∑ 𝑡𝑎𝑐𝑖 × { 
 𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅      𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 > 0          0                𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0𝑎∈𝐴𝑖 , 

or, 

𝛾𝑖𝐴𝑃𝑆(𝑷) =∑ 𝑡𝑎𝑐𝑖 × {  
  𝑃𝑖∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅      𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 > 0  1∑ 𝛿𝑎,𝑘𝑘∈𝑅         𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0𝑎∈𝐴𝑖 , 

 

does not ensure continuity. 

 


