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Abstract

Computational models of the heart, from cell-level models, through one-
, two- and three-dimensional tissue-level simplifications, to biophysically-
detailed three-dimensional models of the ventricles, atria or whole heart,
allow the simulation of excitation and propagation of this excitation, and
have provided remarkable insight into the normal and pathological function-
ing of the heart. In this article we present equations for modelling cellular
excitation (i.e. the cell action potential) from both a phenomenological and a
biophysical perspective. Hodgkin-Huxley formalism is discussed, along with
the current generation of biophysically-detailed cardiac cell models. Alterna-
tive Markovian formulations for modelling ionic currents are also presented.
Equations describing propagation of this cellular excitation, through one-,
two- and three-dimensional idealised or realistic tissues, are then presented.
For all types of model, from cell to tissue, methods for discretisation and in-
tegration of the underlying equations are discussed. The article finishes with
a discussion of two tissue-level experimental imaging techniques – diffusion
tensor magnetic resonance imaging and optical imaging – that can be used
to provide data for parameterisation and validation of cell- and tissue-level
cardiac models.
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1. Introduction1

The physiological purpose of the heart is to function as a reliable, rhyth-2

mic pump to maintain the circulation of blood through the body for the3

duration of our life. Although the heart is a mechanical pump, this mechan-4

ical activity is driven by electrical activity through the process of excitation-5

contraction coupling [1–3]. During normal sinus rhythm, an electrical wave6

initiates in the sinoatrial node, then propagates through the two atria before7

being delayed at the atrioventricular node. The excitation wavefront then8

moves along the His-Purkinje conducting system before exciting the endocar-9

dial surfaces of the ventricles. The electrical wave then propagates transmu-10

rally towards the epicardial ventricular surface, exciting the entire ventricles.11

Thus the atria contract before the ventricles, with these two contractions12

forming the rhythmic cardiac cycle. If this normal rhythm is disturbed (a13

cardiac arrhythmia), electrical activity is no longer synchronised, mechanical14

activity therefore fails to synchronise, effective pumping of the blood ceases15

and death may occur.16

The study of such arrhythmias has been a major focus of computational17

biology, as a detailed quantitative description of cardiac electrophysiology18

has been developed that allows the simulation of both normal and patho-19

logical excitation and propagation of this excitation [4, 5]. Additionally, the20

results of such simulations can be dissected in time and space, and by param-21

eters, allowing a detailed study at the cell and tissue levels of the mechanisms22

underlying arrhythmias [6, 7]. Experimental studies of cardiac arrhythmias23

at the tissue level have been largely limited to voltage recordings on or near24

the surface of a preparation [8] or by using multiple plunge electrodes within25

the heart [9], and so computational studies offer an additional research tool.26

However, a model is, by definition, a simplification of a system, and so simula-27

tions are a trade-off between model complexity and computational efficiency,28

especially at the tissue and organ levels.29

Nevertheless, models do not only describe physiological behaviour, they30

are predictive, and have provided remarkable insight into the normal and31

pathological functioning of the heart [10–17]. One focus of computational32

cardiac modelling is understanding the interaction between cell-level arrhyth-33

mia triggers (such as early and delayed afterdepolarisations) and tissue-level34

substrates (such as spatially heterogeneous refractory periods, or the my-35

ocyte disarray seen with pathologies such as heart failure) that enable these36

triggers to develop into re-entrant cardiac arrhythmias (e.g. [18–21]). Due37
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to technical and ethical limitations associated with animal and human ex-38

periments, computational models have played a crucial role in allowing us to39

understand these interactions.40

Here we present monodomain equations and finite difference methods to41

simulate cell- and tissue-level electrophysiology (readers interested in other42

techniques such as bidomain equations and finite element methods are re-43

ferred to references [4, 17, 22–24]). Although this article focusses on mod-44

elling cell- and tissue-level electrophysiology in ventricular tissue, the same45

principles apply to modelling electrophysiology in other types of cardiac cells46

and tissues (e.g. atrial [25]). This paper is Part 2 of a two-part article (see47

Colman et al. in this issue for Part 1); open-source code from the Leeds48

Computational Physiology Laboratory, covering the modelling presented in49

both parts of this article, is available in the Multi-scale Cardiac Simulation50

Framework from http://www.physicsoftheheart.com/.51

2. Modelling Ventricular Myocyte Electrophysiology52

Detailed mathematical and computational models of ventricular cell elec-53

trophysiology, constructed using experimentally obtained data and further54

validated against experimental results, provide tools for understanding ex-55

citation processes, both normal and abnormal, at the cellular level. The56

models reconstruct the ionic membrane currents and dynamic ion concen-57

tration changes that underlie the ventricular action potential, and form one58

component of the biophysically detailed models reconstructing propagation59

in the ventricles.60

2.1. Ionic gradients; equilibrium and reversal potentials61

The flow of an ion across the cell membrane through an open ion channel62

depends on the intra- and extracellular concentrations of that ion, and the63

membrane potential. Suppose that two reservoirs contain the same ion B but64

at different concentrations. Ion B has a positive charge. Each reservoir also65

contains another ion, S, with a negative charge and at concentrations such66

that each reservoir is, at least initially, electrically neutral. The two reservoirs67

are separated by a semi-permeable membrane that allows B to pass but not S.68

As the membrane is permeable to B, B will tend to move across the membrane69

down its concentration gradient. However, as S cannot cross the membrane70

there is a build up of negative charge in the reservoir from which B is moving.71

This build up of charge acts as an attracting force, opposing the movement72
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of B down its concentration gradient. The net gradient – i.e. the sum of the73

electrical and chemical gradients – is called the electrochemical gradient, and74

there comes a point when the force of the concentration gradient is exactly75

opposed by the force of the electrical gradient such that the electrochemical76

gradient is zero, and net movement of ion B through the membrane will stop.77

The voltage at which this occurs is known as the equilibrium potential, Eeq78

(or EB for ion B), and is given by the Nernst equation79

EB =
RT

zF
ln

(
[B]o
[B]i

)
(1)

where R = 8.314 J.K−1.mol−1 is the universal gas constant, T is absolute80

temperature (K), z is the valency of the ion, F = 96485 C.mol−1 is Faraday’s81

constant, and [B]i and [B]o are the intra- and extracellular concentrations of82

ion B, respectively. For given intra- and extracellular ionic concentrations,83

an equilibrium potential exists for each ionic species. The electrochemical84

gradient for a particular ionic species is the difference between the membrane85

potential and the equilibrium potential, V −Eeq, and the sign of this gradient86

determines the direction of the flow of ions. Assuming that only one ionic87

species can flow across the membrane, the electrochemical gradient causes88

V to move towards Eeq. When V = Eeq there will be no net flow, and89

changing V past Eeq will cause the electrochemical gradient, and therefore90

the direction of the flow of ions, to reverse.91

Equilibrium potentials are not, however, properties of ion channels, al-92

though if a particular channel is only permeable to one ionic species, then93

the reversal potential, Erev, of that channel (the potential at which there is94

no net flux through the open channel) will be the same as the equilibrium95

potential for that ion. However, channels are often permeable to more than96

one ionic species (the L-type Ca2+ channel, for example, which is permeable97

to Ca2+, Na+ and K+), and the reversal potential of the current in such cases98

will be the result of several equilibrium potentials. The Goldman-Hodgkin-99

Katz (GHK) voltage equation is used to calculate the reversal potential in100

such circumstances. Using Na+, K+ and Cl− as an example,101

Erev =
RT

F
ln

(
PNa[Na

+]o + PK[K
+]o + PCl[Cl

−]i
PNa[Na

+]i + PK[K+]i + PCl[Cl
−]o

)
, (2)

where PB is the permeability of the channel to ion B. The GHK equation102

can also be used to calculate the resting potential of the membrane and the103
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Figure 1: Phases of the action potential in endocardial (left) and epicardial (right) my-
ocytes. The epicardial action potential shows a characteristic spike-and-dome morphology,
which is attenuated in endocardial cells. The midmyocardial action potential morphology
is similar to that in epicardial cells, but with a longer action potential duration (∼7–31%
longer in non-failing human tissue [26]). Action potentials shown here were simulated
using the Luo-Rudy model [27] at a basic cycle length of 500 ms.

direction in which the membrane potential will move if the permeabilities104

of ionic species are altered (e.g. through ion channel gating). From the105

GHK equation we can see that the membrane potential will tend to move106

towards the equilibrium potential of the ionic species whose permeability107

is the greatest, as the equilibrium potential of that ion will dominate Erev.108

For example, when a cardiac myocyte is at rest, PK ≫ PNa and so the109

membrane potential V moves towards (although not all the way to) EK, which110

is approximately −90 mV and near the resting membrane potential. When111

the cell is depolarised past threshold, PNa ≫ PK and so V moves from its112

resting value towards ENa, which is at a positive potential of approximately113

80 mV and so results in phase 0 depolarisation and an action potential.114

2.2. The Ventricular Action Potential115

The ventricular action potential is a transient change in the potential116

across a cell membrane (see Fig. 1) that propagates throughout the ventri-117

cles to trigger contraction of the ventricular muscle. The ventricular action118

potential can be broken down into distinct phases, each of which is associated119
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with specific ionic currents which differ not only in different regions of the120

heart but in different regions of the ventricular tissue. Phase 0, the upstroke,121

is the initial rapid depolarisation of the membrane to a positive potential.122

In epicardial and midmyocardial cells, there is then a rapid phase 1 repo-123

larisation that is absent in endocardial cells. A plateau in the membrane124

potential (phase 2) then occurs before a final stage of repolarisation (phase125

3). Phase 4 is the resting membrane potential. The presence of phase 1 re-126

polarisation in epicardial and midmyocardial gives rise to the characteristic127

spike and dome morphology of action potentials recorded from these cells.128

The action potential is an all-or-none event, such that a perturbation to the129

membrane potential that takes it from its resting level past a threshold will130

result in phase 0 depolarisation. This all-or-none response is characteristic131

of a wide range of physical, chemical and biological systems, including nerve132

and muscle, and is termed excitability. The action potential is determined133

by a complex interplay between several ionic membrane currents, pumps and134

exchangers, with different directions (i.e. inwards or outwards), magnitudes135

and kinetics that determine their time course and effect on the action po-136

tential morphology (see Fig. 2). Here, a brief overview of the principal ionic137

currents found in ventricular myocytes, and their relation to the phases of138

the action potential, is given; a detailed review can be found in [28].139

Sodium currents: There are two principal Na+ currents in ventricular my-140

ocytes. As the Na+ concentration is greatest outside the cell and the reversal141

potential of the currents is greater than maximum membrane potential, the142

Na+ currents are always inward, at least under physiological conditions. The143

major Na+ current is the fast inward current, INa, which is responsible for144

the rapid phase 0 upstroke of the action potential. INa has a relatively large145

amplitude and is both voltage- and time-dependent. It is controlled by three146

processes – an activation gate and two inactivation gates, one of which has147

rapid kinetics and one having slower kinetics. The kinetics of the activation148

and fast inactivation gates result in INa activating and inactivating in only a149

few milliseconds. The slow inactivation gate is responsible for the channel’s150

slow recovery from inactivation. At resting membrane potential INa is zero,151

but activates when the membrane potential is raised to approximately −60152

mV by current flowing from neighbouring cells when in vivo or by a stimulus153

current in isolated cells. The second Na+ current is the late Na+ current,154

INa,L. This current has a smaller amplitude than INa but the inactivation155

kinetics are slower, having a time constant of around 600 ms [30]. INa,L has156

been shown to be partly responsible for the different action potential wave-157
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Figure 2: The action potential (A), intracellular calcium transient (B), and time course of
the principal membrane currents in the ventricular myocyte: (C) Na+ currents, note the
rescaling of INa,L; (D) Ca+ currents; (E) K+ currents, note the rescaling; (F) pump and
exchanger currents. See text for details. All were simulated at a basic cycle length of 800
ms using the Hund-Rudy epicardial model [29] with the exception of ICa,T, which is from
the Luo-Rudy model [27] and was scaled to match the Hund-Rudy model action potential
duration
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form in epicardial, midmyocardial and endocardial regions of the ventricle158

[31].159

Calcium currents: There are two types of Ca2+ channels in ventricular160

myocytes; L-type (the L indicating a “long-lasting” current with a “large161

conductance”) and T-type (the T indicating “transient opening” and “tiny162

conductance”). Both channels have a high selectivity for Ca2+ and, as Ca2+ is163

at a higher concentration outside compared to inside the cell and the reversal164

potential is more positive than the maximum membrane potential, both are165

inward currents. The current through the L-type channels, ICa,L, is larger166

than that through the T-type channels, ICa,T, and the two currents have167

different voltage dependencies and kinetics: ICa,L activates at around −40168

mV while ICa,T activates at more negative potentials, e.g. approximately169

−60 mV [32, 33]. ICa,L is both voltage- and time-dependent, and also has170

Ca2+-dependent inactivation and so inactivates in response to a rise in Ca2+171

on the intracellular side of the channel. The flow of Ca2+ ions through the172

channel causes a large release of Ca2+ from the sarcoplasmic reticulum (SR),173

a large intracellular Ca2+ store. This process is known as Ca2+-induced174

Ca2+ release (CICR) and is responsible for the rise of intracellular Ca2+ (the175

Ca2+ transient) and the consequent tension development in the cell. This is176

the process of excitation-contraction coupling [1–3]. ICa,L is also responsible177

for maintaining the membrane potential plateau during phase 2 of the action178

potential. The physiological role of ICa,T in ventricular myocytes is less clear,179

although in the sino-atrial and atrioventricular nodes of the heart it is partly180

responsible for pacemaker activity [34].181

Potassium currents: K+ currents show the most electrophysiological vari-182

ation of the major ionic currents in the heart, in that there are many different183

types of K+ currents carried by different channels; here only the major K+
184

currents will be considered. K+ concentration is greatest inside the cell and185

the reversal potential is negative compared to resting membrane potential,186

and so K+ currents are outward currents under physiological conditions. IK1187

is the time-independent or inward rectifier current, and in ventricular my-188

ocytes is responsible for maintaining the resting membrane potential. IK1189

shows little time dependence and is active over a wide range of membrane190

potentials. The current reverses at EK ≈ −90 mV. At membrane potentials191

negative to this the current is inward, although under physiological condi-192

tions the membrane potential never drops below this value. The outward193

currents at membrane potentials positive to −90 mV show inward rectifi-194

cation. The transient outward K+ current, Ito1, is responsible for phase 1195
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repolarisation and the spike and dome morphology seen in epicardial and196

midmyocardial ventricular myocytes [35]. The current is not seen at any197

significant magnitude in endocardial cells (e.g. [36]) and so this current,198

along with IKs (see below) and to a lesser extent several other currents, is199

responsible for transmural heterogeneities in electrophysiology. The delayed200

rectifier current is composed of two major parts – a rapid component, IKr,201

and a slow component, IKs [37]. The relative densities of the two currents202

vary between species. In guinea pig for example, IKs is larger [37] while in203

canine, IKr is the largest [38]. The currents oppose the depolarisation drive204

of ICa,L (that maintains the action potential plateau) and are therefore re-205

sponsible for phase 3 repolarisation; as such, they have a significant influence206

on action potential duration. Loss-of-function mutations to KvLQT1, MinK207

and HERG genes cause down-regulation of IKs and IKr, leading to long QT208

syndromes 1 and 2 [39]. Along with Ito1, IKs is a major determinant of209

transmural heterogeneities of electrophysiology.210

Pumps and exchangers: The flow of ions through Na+, Ca2+ and K+ chan-211

nels causes dynamic changes in the intra- and extracellular concentrations212

of these ions. These changes are counteracted by the actions of the Na+-K+
213

ATPase and the Na+-Ca2+ exchanger, both of which are electrogenic and214

therefore contribute to the action potential. The Na+-K+ ATPase hydroly-215

ses adenosine triphosphate (ATP) to produce energy and pump Na+ and K+
216

up their concentration gradients. Three Na+ ions are carried out of the cell217

for every two K+ ions brought in, and so the net flux of ions results in the218

Na+-K+ ATPase current, INaK, being outward. The Na
+-Ca2+ exchanger can219

operate in forward or reverse modes. In forward mode (sometimes referred220

to as “normal mode”) the exchanger uses the Na+ concentration gradient221

to move three Na+ ions into the cell, and one Ca2+ ion is extruded. The222

exchanger is therefore electrogenic and in forward mode the exchanger cur-223

rent, INaCa, is depolarising. However, the protein can be reversed depending224

on the Na+ and Ca2+ concentrations and on the membrane potential. At225

resting concentrations, the reversal potential of the current is between −40226

and −20 mV and, as membrane potential is around −80 mV, the exchanger227

operates in forward mode and an inward current is produced. During the228

fast upstroke of phase 0 depolarisation, membrane potential becomes more229

positive than the reversal potential and the current reverses, extruding three230

Na+ ions for every Ca2+ ion brought in. During the plateau phase of the231

action potential, intracellular Ca2+ concentration rises (the Ca2+ transient)232

and the reversal potential of INaCa also changes, approximately following the233
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Figure 3: (A) Schematic diagram of the cell membrane, showing the lipid bilayer and
transmembrane proteins (e.g. ion channels, pumps, exchangers). Modified from [40]. (B)
Electrical circuit model of the cell membrane, with the variable resistor representing ion
channels, pumps and exchangers, and the capacitor representing the lipid bilayer

Ca2+ transient. The reversal potential then is more positive than membrane234

potential and INaCa again operates in forward mode to extrude Ca2+ brought235

into the cell. INaCa therefore changes direction during the course of an action236

potential.237

2.3. The Cell Membrane as an Electrical Circuit238

The cell membrane is organised as a phospholipid bilayer, arranged so239

that the hydrophobic tails of the lipids lie together in the middle of the240

membrane while the hydrophilic heads form the outside of the membrane241

and are in contact with the aqueous solution of the intra- and extracellular242

spaces. Proteins (e.g. ion channels, pumps and exchangers) span this lipid243

bilayer to allow the passage of ions (Fig. 3A). As the membrane is an insu-244

lating material separating regions of charge (i.e. the intra- and extracellular245

spaces) then it can be thought of as a capacitor, with the ion channels, pumps246

and exchangers through the membrane thought of as variable resistors. The247

membrane can therefore be modelled as an electrical circuit with a capaci-248

tor (the lipid bilayer) and a variable resistor (the ion channels) in parallel249

(Fig. 3B). Current can flow through the circuit either through the resistor250

10



(the ionic current) or by charging the membrane capacitance (the capacitive251

current). The charge across the capacitor, Q, is the product of capacitance252

and the voltage necessary to hold the charge:253

Q = CmV . (3)

Since the capacitive current in Fig. 3B is dQ/dt (current is charge per unit254

time) and the magnitude of the capacitor, Cm, is constant (at 1 µF.cm−2 for255

a cardiac cell membrane), then if equation (3) is differentiated with respect256

to time such that257

dQ

dt
= Cm

dV

dt
, (4)

it can be seen that the capacitive current dQ/dt can also be expressed as258

CmdV/dt. Since the flow of charge between the inside and outside of the259

membrane must be conserved, then from Kirchhoff’s current law the sum of260

the capacitive and ionic currents in Fig. 3B must be zero:261

Cm
dV

dt
+ Iion = 0 , (5)

or more commonly262

Cm
dV

dt
= −Iion . (6)

Therefore, the rate of change of the membrane potential, dV/dt, is deter-263

mined by the sum of the ionic currents, Iion. We can model an ionic current264

Ii with a linear instantaneous current-voltage relationship as265

Ii = gi(V − Erev) , (7)

where gi is the channel conductance and V −Erev is the electrochemical gradi-266

ent. In order to model an action potential – a transient change in membrane267

potential – using equations (6) and (7), a suitable form for Iion and the con-268

ductances gi must be determined. This was first described quantitatively for269

the squid giant axon by Hodgkin and Huxley in 1952.270

2.4. Hodgkin-Huxley Formalism271

In a series of five papers published in the Journal of Physiology in 1952272

[41–45], Alan Hodgkin and Andrew Huxley, along with Bernard Katz who273

was a co-author on the first paper and a collaborator in several related stud-274

ies, determined the dynamics of the ionic conductances that determine the275
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action potential in the squid giant axon. They utilised the experimental276

procedures of space clamping (inserting a thin metallic conductor along the277

length of the axon in order to provide low axial resistance and remove any278

spatial gradients in membrane potential) and voltage clamping (applying a279

feedback current to the cell in order to keep the membrane potential at a280

specified value, the command potential), both recently developed by Ken-281

neth Cole and George Marmont with colleagues. (For a history and review282

of the experimental and mathematical background to the Hodgkin-Huxley283

model, see [46, 47].) Here, the method of describing channel gating using284

Hodgkin-Huxley formalism will be described. This formalism is still used in285

the current generation of biophysically detailed models, yet it is perhaps best286

to describe it in the context of the original Hodgkin-Huxley model.287

It has already been shown that a cell membrane may be modelled as a288

capacitor in parallel with an ionic current (equation 6). Hodgkin and Huxley289

identified that, in the squid giant axon, the principal ionic currents are the290

Na+ and K+ currents, and that the other smaller currents, composed mainly291

of the Cl− current, could be lumped together into a single “leakage” current.292

Therefore, equation (6) can be re-written for the Hodgkin-Huxley model as293

Cm
dV

dt
= −INa − IK − IL − Istim , (8)

where INa is the sodium current, IK is the potassium current, IL is the leakage294

current and Istim is any applied stimulus current. Furthermore, since the295

single channel instantaneous I-V curves for open Na+ and K+ channels in296

the squid giant axon are approximately linear, each current can be written as297

the product of a conductance, g, and a driving force V −Erev as in equation298

(7), where Erev is the reversal potential of the current which is given by299

the Nernst equation (1). Note that by using the equilibrium potentials for300

the respective channel reversal potentials, it is assumed that the channels are301

selective for only one ionic species. It was also assumed that gL was constant,302

such that gL = ḡL, where ḡL is the maximal leakage current conductance.303

Equation (8) can therefore be written as304

Cm
dV

dt
= −gNa(V − ENa)− gK(V − EK)− ḡL(V − EL)− Istim . (9)

As the influx of Na+ and the efflux of K+ were found to be small during an305

action potential (3.7 and 4.3 pmoles.cm−2, respectively), it was assumed that306
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Figure 4: Schematic diagram of a simple gating scheme. The channel oscillates between
open and closed states with the rate constants α and β. This gating scheme is not repre-
sentative of actual channel structure and function, yet it is a useful model that allows the
mathematical reconstruction of gating kinetics

all ionic concentrations were constant. As such, the equilibrium potentials307

are also constant.308

In order to solve equation (9) it is necessary to determine the conduc-309

tances gNa and gK, which vary with membrane potential and time. For a310

unit area of membrane (1 cm2 in the case of the Hodgkin-Huxley model),311

any conductance g can be given as the product of the single channel con-312

ductance, γ, the number of channels per unit area of membrane, N , and the313

open probability of a single channel, Popen where 0 ≤ Popen ≤ 1, which is the314

same as the fraction of the channels in the open state. Therefore315

g = γNPopen . (10)

The maximal conductance per unit area of membrane, ḡ, is determined by γ316

and N , which are constants:317

ḡ = γN , (11)

and so equation (10) can be written as318

g = ḡPopen . (12)

The conductances are therefore the product of a maximal conductance, ḡ,319

which is a constant, and the probability of a channel being in the open state,320

Popen, which is determined by gating variables.321

Suppose a simple channel is assumed to be controlled by a single charged322

gate (i.e. the gate is voltage-dependent) that can be in either a closed or an323
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open state (see Fig. 4) that moves between the two states with an opening324

rate constant α and a closing rate constant β:325

Closed
α(V )−−−⇀↽−−−
β(V )

Open .

(Note that channels can be controlled by more than one gating process,326

as described later, but here it is simpler and more intuitive to assume a327

single gating process. Note also that the gating mechanism is not necessarily328

voltage-dependent, but could be mediated by chemical signals such as ionic329

concentrations, as for L-type calcium current inactivation, or by mechanical330

stimuli, as with stretch-activated channels.) The probability that the channel331

will be open, Popen, is the same as the fraction of the total N channels in332

the open position, k, and so we can say Popen = k. If all of the N channels333

are open, k = 1, if all the channels are closed, k = 0. If k is the fraction of334

channels in the open state, then because the number of channels is constant,335

1− k is the fraction of channels in the closed state, and the rates of opening336

and closing are therefore337

Rate of opening = αk(1− k) , (13)
338

Rate of closing = βkk . (14)

The net rate of change of the fraction of channels in the open state is the339

difference between these rates of opening and closing, and so340

dk

dt
= αk(1− k)− βkk . (15)

It is this differential equation that is used to describe a gating mechanism.341

To see how the equation works, suppose that the membrane potential is342

at some voltage V0 and the gating variable k is at a steady-state value k0343

appropriate to this voltage. The rate coefficients αk and βk also have values344

appropriate to the voltage V0. If V0 is stepped to a new voltage then αk and345

βk instantaneously take on the new values appropriate to this new voltage346

and the differential equation (15) determines how k0 approaches its new value347

k∞. The solution to the differential equation (15) is348

k = k∞ − (k∞ − k0) exp(−t/τk) , (16)

where349

k∞ =
αk

αk + βk

, (17)
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and350

τk =
1

αk + βk

, (18)

where τk is a voltage-dependent time constant. The steady-state function351

for k, equation (17), can be derived by substituting dk/dt = 0 and k∞ = k352

into equation (15) and rearranging with respect to k∞. The time constant353

τk is the reciprocal of the sum of the rate coefficients. Equation (16) shows354

that, upon stepping to a new voltage, k will change from its old value k0355

and approach its new value k∞ with an exponential time course. The rate356

coefficients αk and βk determine how quickly k approaches its new value: if357

the sum of αk and βk is large then τk will be small and the rate of change358

will be fast, and vice versa.359

However, it is still necessary to experimentally determine the voltage-360

dependent rate coefficients αk and βk. To do this, an experimental voltage-361

clamp protocol is utilised such that values of αk and βk can be determined362

at specific voltages. From macroscopic current traces when V is clamped to363

a new voltage, k∞ and τk can be determined and αk and βk for the specific364

clamped voltage are calculated as solutions to365

αk =
k∞
τk

, (19)

366

βk =
1− k∞

τk
, (20)

which are derived from equations (17) and (18). Values of αk and βk can367

then be plotted as functions of the membrane potential at which they were368

recorded, and an equation fitted to these data in order to obtain continuous369

functions of αk and βk. It is this protocol that Hodgkin and Huxley utilised370

when determining the time course of the conductances gNa and gK during an371

action potential, and which will now be described.372

For the Hodgkin-Huxley model, it is perhaps easier to start with the K+
373

conductance gK, as only a single process is involved. Figures 5A and B show374

experimental voltage clamp recordings (open circles) of the K+ conductance375

from [45]. In Fig. 5A, the membrane is depolarised and the conductance gK376

follows a sigmoidal increase to its new value. Upon depolarisation, gK follows377

an exponential decrease to its original value. Hodgkin and Huxley modelled378

this conductance by raising a single gating process as described above to the379

fourth power, such that380

gK = ḡKn
4 , (21)
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C
B

A

Figure 5: Experimentally recorded conductance changes in squid giant axon (open circles)
and solutions to the Hodgkin-Huxley equations (smooth curves), as functions of time. (A)
Response of K+ conductance to a step increase in membrane potential, followed by a step
decrease. (B) Responses of K+ conductance to step increases in membrane potential of
varying magnitudes. The ordinate scale is identical for curves A to J , but is increased
fourfold for curvesK and L for clarity. (C) Responses of Na+ conductance to step increases
in membrane potential of varying magnitudes. Ordinate scale bars are shown on the right.
Each trace in panel B and C is labelled with the magnitude of the step voltage v from
resting membrane potential in mV (i.e. V = Vrest + v). From [45].
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where ḡK is the maximal K+ conductance (which is also determined from381

the experimental recordings), and n is the fraction of K+ channels in the382

open state (also known as the K+ channel gating variable). This equation is383

analogous to equation (12) described earlier. Raising n to the fourth power384

was not chosen for any physiological reason, but simply because it gave the385

best fit to the experimental data. The differential equation describing the386

rate of change of n is therefore387

dn

dt
= αn(1− n)− βnn . (22)

As described before, the solution to this equation is388

n = n∞ − (n∞ − n0) exp(−t/τn) , (23)

with the steady-state value of n given as389

n∞ =
αn

αn + βn

, (24)

and the time constant as390

τn =
1

αn + βk

. (25)

To construct continuous functions of αn and βn, values for n∞ and τn were de-391

termined at specific voltages from the experimental results shown in Fig. 5B,392

utilising a form of equation (23) along with equation (21) that was suitable393

for fitting to the experimental recordings, namely394

gK =
{
(gK∞)1/4 −

[
(gK∞)1/4 − (gK0)

1/4
]
exp(−t/τn)

}4

, (26)

with gK0 the initial conductance at t = 0, and gK∞ the conductance at the end395

of the voltage pulse. The value for n∞ at a particular voltage was then given396

by gK∞, as a fraction of the maximal gK∞ attained during all the voltage397

clamp experiments, with τn for a particular voltage chosen to give the best398

fit to the experimental data. (Although Hodgkin and Huxley fitted curves399

to data showing the time course of the K+ conductance in order to obtain400

values of n∞ and τn, the same results can be obtained from macroscopic401

current traces without isolating the conductance; see reference [48].) αn and402

βn were then calculated at each voltage using equations (19) and (20), these403
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Figure 6: Steady state values (A) and time constants (B) of the Hodgkin-Huxley gating
variables as functions of v. Gates m and h are the Na+ channel activation and inactivation
gates, respectively. Gate n is the K+ channel gate

were plotted against voltage, and best fit functions were determined. These404

functions, which are voltage-dependent, are405

αn = 0.01
10− v

exp
(

10−v

10

)
−1

, (27)

406

βn = 0.125 exp

(−v

80

)
, (28)

where v is the deviation of the membrane potential V from rest (V = Vrest+v)407

in mV. It is these αn and βn rate coefficients that are used to calculate the408

voltage-dependent steady-state gating values [n∞; equation (24] and time409

constants [τn; equation (25)] for the K+ channel, as shown in Fig. 6.410

Examining the time course of the experimentally recorded Na+ conduc-411

tance in Fig. 5C (open circles), it is apparent that two processes are working.412

The first is responsible for the increase in conductance, the second causing413

the conductance to decrease. Thus, during a voltage clamp to a new mem-414

brane potential, the current first activates and then inactivates, all at the415
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same membrane potential. To model this, Hodgkin and Huxley proposed416

that the Na+ conductance takes the form417

gNa = ḡNam
3h , (29)

where ḡNa is the maximal Na+ conductance, m is the Na+ activation gating418

variable, and h the Na+ inactivation gating variable. Both gating variables419

are modelled using the differential equation (15), as for the K+ current gating420

variable n, and functions for αm, βm, αh and βh determined in a similar way421

to that described for the K+ conductance:422

αm = 0.1
25− v

exp
(

25−v

10

)
−1

, (30)

423

βm = 4 exp

(−v

18

)
, (31)

424

αh = 0.07 exp

(−v

20

)
, (32)

425

βh =
1

exp
(

30−v

10

)
+1

, (33)

The resultant Na+ channel voltage-dependent steady-state activation and426

inactivation gating values (m∞ and h∞, respectively) and their associated427

time constants (τm and τm) are shown in Fig. 6.428

The descriptions of the time- and voltage-dependence for both the Na+429

and K+ conductances – equations (29) and (21) – can now be substituted430

into equation (9) to complete the model.431

2.4.1. The Hodgkin-Huxley model of the action potential in the squid giant432

axon433

In the previous section it was shown how Hodgkin and Huxley quantita-434

tively described the dynamics of the gates m, h and n that determine the435

time course of V during an action potential. Here it will be shown how these436

dynamics interact to result in the action potential. Note that Hodgkin and437

Huxley used the term v to denote the deviation of V from its resting level,438

where negative v denotes depolarisation. In this section, v = V −Vrest will be439

used such that depolarisation is denoted by positive v, which is perhaps more440

intuitive as a depolarisation results in an increased membrane potential.441
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When the cell is at rest (v = 0 mV) the K+ conductance gating variables442

n4 are dominant over the Na+ conductance gating variables m3h (see Fig.443

6A) and so v tends towards the reversal potential for K+, vK = −12 mV. If a444

small current is applied to the cell, a small depolarisation occurs but v returns445

to the equilibrium resting value v = 0 mV. However, if the stimulus current446

is large enough to take v past a threshold then m, which is approaching447

m∞ with a small time constant (see Fig. 6B) such that the process is fast,448

causes an increase in Na+ conductance, an increase in the inward Na+ current449

and a further, regenerative depolarisation. (For a qualitative phase space450

analysis of this threshold phenomenon, see reference [49].) Now the Na+451

conductance dominates over the K+ conductance and v tends towards vNa =452

115 mV. The gates h and n have also been moving towards their new voltage-453

dependent values h∞ and n∞, although with much slower time constants454

(Fig. 6B). Eventually, however, h takes on its new, low value, the Na+455

conductance falls and the Na+ current inactivates. At around the same456

time, K+ activation is increasing as n approaches its new, high value. K+
457

conductance then increases and becomes dominant, the K+ current activates,458

and the membrane potential repolarises as v tends back towards vK. There459

is then a refractory period during which further stimuli will not cause an460

increase in Na+ conductance or, therefore, an action potential. This is due461

to the large time constant of the Na+ inactivation gate h (i.e. a slow process),462

which causes a relatively long delay in h moving to its resting, open value463

at v = 0 mV. The time course of the gating variables m, h and n and464

the conductances gNa and gK are shown in Fig. 7A,B in response to a supra-465

threshold stimulus. These changing conductances result in the depolarisation466

and subsequent repolarisation of the membrane – the action potential, which467

is shown in Fig. 7C.468

2.5. The FitzHugh-Nagumo Model469

The FitzHugh-Nagumo (FHN) model [50–53] is a caricature of the four-470

variable Hodgkin-Huxley model that is still used, sometimes in modified form471

[54, 55], as a computationally tractable excitation model for studying propa-472

gation in cardiac tissue. The model has two variables, and can be related to473

the Hodgkin-Huxley model by assuming that m is an instantaneous function474

of v, while h+ n is constant at 0.8 (see Figs. 6A and 7A). Therefore m as a475

state variable can be removed by setting m = m∞, and h as a state variable476

can be removed by setting h = 0.8 − n. The two remaining state variables,477

v and n, then become excitation and recovery variables, respectively. The478
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qualitative features of the Hodgkin-Huxley model are kept if the excitation479

and recovery variables in the FHN model – which are termed v and w, re-480

spectively – have similar dynamics (see Fig. 8 and compare to Fig. 7C).481

The only constraints on choosing functions for the FHN equations are that482

the nullcline of v is cubic, the nullcline of w monotonically increases and,483

for an excitable system, the choice of parameter values results in a stable484

steady state where the nullclines cross (see [49] for a description of FHN485

model nullclines). One choice is486

dv

dt
=

1

ǫ

(
v − v3

3
− w

)
, (34)

487

dw

dt
= ǫ(v + β − γw) , (35)

where the parameters 0 < ǫ ≪ 1, 0 < γ and |β| <
√
3.488

2.6. Markovian Formulations of Ion Channels489

Markovian formulations for ion channels are used to model findings from490

molecular studies where an individual channel, away from its physiological491

cell environment, is found to exist in one of several specific states (e.g. closed,492

open, fast inactivated, slow inactivated). As such, Hodgkin-Huxley formal-493

ism, as represented by the simple schematic shown in Fig. 4, is unable to494

capture the more complicated dynamics exhibited by these channels. (Note495

that channels described by Hodgkin-Huxley formalism can be described using496

a simple Markovian formulation, but more complicated Markovian formula-497

tions cannot be represented using Hodgkin-Huxley formalism – see [56] for a498

detailed discussion.) Markovian formulations are particularly useful for mod-499

elling channelopathies due to genetic mutations or drug applications, where500

the ion channels are studied in isolated expression systems. A Markovian501

description of such experimental data combined with a cell or tissue model502

therefore enables the study of the effects of these single channel mutations503

on whole cell electrophysiology (e.g. [21, 57–62]).504

For a general Markov gating model where each of N states can potentially505

change to any other state, the probability of occupying a particular state, Pi,506

at a given time t and voltage V can be given by a series of first-order linear507

differential equations:508

dPi

dt
= −

N∑

j=1

[kji · Pi(t, V )] +
N∑

j=1

[kij · Pj(t, V )] , (36)
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509

dPN

dt
= −

N−1∑

j=1

[
dPi

dt

]
, (37)

for i = 1, 2...N − 1, i 6= j, and where kij is a voltage-dependent rate constant510

leading from state j to state i [63]. The rate constants, which are functions511

of membrane potential, are given by512

kij = exp(Aij +BijV + CijV
2) , (38)

where the parameters describe the potential energy barriers between the513

states: Aij represents the energy barrier height in the absence of an electrical514

field, Bij represents the energy barrier height that exists due to charge-field515

and dipole-field interactions and Cij represents the contribution of total dis-516

tortion polarisation or field induced dipoles [64]. In the limiting case of a517

low transmembrane field strength where the squared term is not required,518

equation (38) can be reduced to:519

kij = exp(Aij +BijV ) . (39)

However, Matsuoka et al. [65] found that high membrane potentials produced520

large rate constants that interfered with integration of cellular equations.521

An alternative, four parameter format that included saturation of the rate522

constants was therefore proposed:523

kij =
1

Aij exp(V/Bij) + Cij exp(V/Dij)
. (40)

Thus for a simple three-state chain Markov model of a single channel where524

C is a closed state, O an open state and I an inactivated state, the state525

diagram is526

C
kOC−−−⇀↽−−−
kCO

O
kIO−−⇀↽−−
kOI

I ,

and from equations (36) and (37), the equations to this model are:527

dPC

dt
= −kOCPC + kCOPO , (41)

528

dPO

dt
= kOCPC − (kCO + kIO)PO + kOIPI , (42)
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529

dPI

dt
= −dPC

dt
− dPO

dt
. (43)

Substituting equations (41) and (42) into equation (43) and simplifying gives:530

dPI

dt
= −kOIPI + kIOPO . (44)

In this situation there are four independent voltage-dependent rate constants531

(kCO, kOC , kOI and kIO) each having four parameters if equation (40) is532

used to define the rate constants, giving a total of 16 parameters (methods533

for obtaining these parameter values are discussed in [56, 66]). A typical534

equation for an ionic current will then take the form535

Iion = ḡPO(V − Erev) , (45)

so that the Hodgkin-Huxley-type gating variables are replaced with a single536

open probability, PO, describing the conductance of the channel.537

2.7. Development of Cardiac Cell Models538

Although the Hodgkin-Huxley model provided a formalism for modelling539

the action potential and the FitzHugh-Nagumo model is useful for study-540

ing phenomena associated with propagation where the spatio-temporal be-541

haviour of the wave of excitation is more important than the shape of the542

action potential, at a biophysical level they are models of neuronal action543

potentials and do not quantitatively reproduce the cardiac action potential544

due to their lack of ion channels specific to cardiac cells. Therefore a series545

of cardiac models have been developed to study problems specific to cardiac546

cells and tissue.547

The development of the current generation of biophysically detailed ven-548

tricular cell models can be traced back to the Hodgkin-Huxley model, as it549

provided a formalism for modelling the action potential. The model of No-550

ble [68, 69] for the Purkinje fibre was an adaptation of the Hodgkin-Huxley551

equations, and was the first biophysical model specifically for a cardiac cell.552

Cell models continued to be updated as the ionic basis of the cardiac ac-553

tion potential was determined experimentally. The discoveries of the cardiac554

Ca2+ current [70] and various components of what until then was considered555

as a single K+ current [71, 72] were followed in the 1970s by the McAllister-556

Tsien-Noble model [73], again for the Purkinje fibre, and the first model of a557
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Figure 9: (A) Schematic of the O’Hara-Rudy human ventricular cell model, from [67].
(B) Periodic steady-state O’Hara-Rudy model action potentials at a basic cycle length of
1000 ms. Solid line, endocardial cell model; dashed line, midmyocardial cell model; dotted
line, epicardial cell model. Note the morphological differences – especially the action
potential duration – between these biophysically-detailed human cardiac cell models and
the Hodgkin-Huxley model action potential in Fig. 7C
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ventricular muscle cell, the Beeler-Reuter model [74]. The inclusion of ionic558

concentration changes along with the Na+-K+ ATPase and the Na+-Ca2+559

exchanger came with the publication of the DiFrancesco-Noble Purkinje fi-560

bre model [75], although the Ca2+ transient in the model was too large [10].561

Accurate modelling of the intracellular calcium transient was the main fo-562

cus of the Hilgemann-Noble model [76] that, while being a model for atrial563

cells, provided a basis for future models of ventricular calcium handling. In564

1991 came the first phase of the Luo-Rudy model [77] followed in 1994 by565

the second phase incorporating dynamic concentration changes [27, 78]. The566

general outline of the Luo-Rudy model can be seen as a basis for many of to-567

day’s biophysically detailed cell models which as a matter of course contain568

various membrane currents (including those activated only during patho-569

logical conditions), dynamic ion concentrations and various levels of Ca2+570

handling, along with β-adrenergic control of E-C coupling (e.g. [79]) and dif-571

ferent metabolic pathways (e.g. [80]). In recent years, data describing ionic572

currents and action potentials in human ventricular cells and tissues have573

become available, and this has allowed the development and validation of574

models describing human ventricular electrophysiology [67, 81–83] (see Fig.575

9) that are perhaps more relevant than models of animal electrophysiology576

(especially rodents) in terms of clinical translatability.577

The increased complexity in these models has been paralleled by an in-578

crease in computing power that allows large-scale temporal and spatial prob-579

lems to remain tractable despite the increased levels of physiological detail;580

the current generation of biophysically detailed models typically include over581

20 state variables for voltage, gating, ionic concentrations etc., each with582

a differential equation to solve, as well as numerous other variables mod-583

elled using upwards of 100 algebraic equations. A more detailed review of584

the development of biophysically detailed cardiac cell models highlighting585

the iterative interaction between modelling and experimentation is given in586

references [5, 10, 84].587

2.8. Modelling Calcium Handling588

Influx of Ca2+ through the L-type Ca2+ channels results in a large re-589

lease of Ca2+ from the sarcoplasmic reticulum (an intracellular Ca2+ store),590

termed Ca2+-induced Ca2+ release (CICR), and a transient rise of intracellu-591

lar Ca2+ concentration (the “Ca2+ transient”). This Ca2+ transient not only592

causes contraction of the cell through binding of Ca2+ to troponin and the593
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subsequent interaction of actin and myosin filaments, but modulates mem-594

brane activity (e.g. via the Na+-Ca2+ exchanger) and can, under certain595

conditions, be arrhythmogenic (e.g. [20]). Accurate modelling of intracellu-596

lar Ca2+ handling is therefore necessary if an electrophysiology model is to be597

used to examine electrophysiological consequences of pathological conditions598

associated with Ca2+ overload and abnormal Ca2+ handling. A detailed de-599

scription of modelling of Ca2+ handling in cardiac cells is presented in Part600

1 of this two-part article (Colman et al., in this issue), while a historical ex-601

amination of the interaction between experiment and modelling with regards602

to Ca2+ handling can be found in [85–88].603

2.9. Methods of Integration604

2.9.1. The forward Euler method605

Although the ordinary differential equations used to describe the action606

potential in biophysically detailed excitation models are high order (i.e. many607

variables) and stiff (variables change with different time scales), they can be608

solved by simple finite difference methods. Typically, differential equations609

for membrane potential, e.g. those of the form of equation (6), and ionic con-610

centrations are solved using a simple forward Euler method. If we represent611

such an equation by612

dx

dt
= f(x) , (46)

then by integrating we wish to find the solution x(t), subject to the condition613

that x = x0 at time t = t0. The forward Euler method assumes that over614

a sufficiently small time step ∆t, the function f(x) remains constant and so615

the change in x during the time step can be approximated by f(x0)∆t. The616

new value of x at t0 +∆t, which we shall call x1, is therefore given as617

x1 = x0 + f(x0)∆t . (47)

The variable x is now at x1, the function f(x0) becomes f(x1), and t becomes618

t0 + ∆t. The next iteration will give us x2 = x1 + f(x1)∆t and take us to619

t = t1 +∆t, and so on. The general scheme is given by620

xn+1 = xn + f(xn)∆t , (48)

and is the simplest possible method of numerical integration, although one621

that is prone to errors in the calculated solution if the time step ∆t is not suf-622

ficiently small. For increased numerical accuracy, an integration scheme such623

as the fourth order Runge-Kutta method may be employed [89], although this624

will increase computation time with respect to the Euler method.625
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2.9.2. Integrating equations for gating variables626

Integration of the equations describing gating variables with Hodgkin-627

Huxley formalism is carried out using the scheme of Rush and Larsen [90],628

who showed that the solution to the general gating equation629

dk

dt
= αk(V )(1− k)− βk(V )k . (49)

could be given by630

k = k∞(V )− (k∞(V )− k0) exp(−∆t/τk(V )) , (50)

where ∆t replaces t from the exact solution as in equation (16) if it was631

assumed that the α and β rate coefficients that define k∞ and τk – equations632

(17) and (18) – remained constant over the sufficiently small time step ∆t.633

For the subsequent iteration, k becomes k0. This is known as the Rush-634

Larsen scheme, and is more accurate than integrating equation (49) with the635

forward Euler method as the solution to equation (50) is dependent only on636

the membrane potential V rather than the derivative of k.637

2.9.3. Variable time steps638

As the choice of ∆t determines, to a large extent, the speed of integra-639

tion, then it is desirable to have as large a time step as possible without640

reducing accuracy of the solutions, particularly during simulations with long641

pacing runs or when searching parameter space. When the solutions to the642

differential equations are changing slowly then a large time step may be used643

without compromising accuracy. As dV/dt is the variable that changes most644

rapidly in the majority of models, a variable time step dependent on dV/dt645

can be used such that ∆t is large when dV/dt is small, and vice versa. Thus,646

during the upstroke of the action potential, ∆t will be small, but during647

the plateau and at resting membrane potentials, ∆t can be large, allowing648

for faster integration. One relatively simple scheme for a variable time step649

that is used to integrate the Hund-Rudy equations describing canine ventric-650

ular electrophysiology [29] has the following conditions: if dV/dt exceeds 1651

mV/ms, up to 5 ms after dV/dt exceeds this threshold, or within 2 ms before652

or after a stimulus current is applied, a minimum time step of ∆t = 0.005 ms653

is used; between 5 and 20 ms after dV/dt exceeds the 1 mV/ms threshold, a654

medium time step of ∆t = 0.01 ms is used; at all other times a time step of655

∆t = 0.1 ms is used. Therefore, a small time step is used when the membrane656
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potential will be changing rapidly, i.e. phase 0 depolarisation, with larger657

time steps used at other times, and the time taken to integrate the equations658

is considerably reduced.659

2.9.4. Tabulating exponential functions660

One major computational demand is solving the exponential functions661

in the equations describing cell electrophysiology, as the program must call662

libraries of functions to solve the exponentials, a time-consuming process, es-663

pecially with tissue-level simulations. As most of these exponential functions664

are explicitly voltage-dependent, it is possible to pre-calculate their values at665

certain voltages, and store these values in a lookup table that can be referred666

to by the program when needed. For cardiac excitation models, voltage-667

dependent exponential functions can be calculated for every voltage between668

−100 and +100 mV in 0.1 mV steps. Typically, there are around 40 such669

exponential equations in a cell model, and so a 40 × 2001 array is needed670

to store the pre-calculated function values. (Note that these lookup tables671

need to be expanded when simulating the effects of shocks on tissue, where672

voltage may go out of physiological ranges [91].) To further speed up com-673

putation time, the process could be extended to include other exponential674

or logarithmic functions such as reversal potentials and equations describing675

calcium handling.676

3. Modelling Propagation in Ventricular Tissue677

In an excitable medium such as cardiac tissue, cellular excitation prop-678

agates as waves of excitation. During normal sinus rhythm, the wave of679

excitation begins at the sinoatrial node, then propagates through the atria680

and the atrioventricular node, before moving down the His-Purkinje con-681

ducting system and exciting the endocardial surfaces of the ventricles. This682

is essentially a one-dimensional sequence, although propagation through the683

thin-walled atria may be considered as two-dimensional, and can be mod-684

elled as propagation in a two-dimensional sheet of tissue. The ventricles,685

however, are three-dimensional structures, with transmural and base-apical686

heterogeneities that affect both local excitation (e.g. membrane current den-687

sities and kinetics, and calcium handling) and the propagation of excitation688

(e.g. due to the influence of myocyte orientations and sheet structure), and689

so the modelling of propagation of excitation through the ventricles should be690

in three dimensions. However, one- and two-dimensional simulations can be691
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Iad

Im

Figure 10: Schematic of a linear one-dimensional cable. Im denotes the membrane current,
Ia the axial current and d the diameter of the cable

useful for examining phenomena related to, for example, re-entrant arrhyth-692

mias, such as conduction velocity restitution (in 1D) and wavefront curvature693

(in 2D) [5].694

If the coupling between cells is strong, as in the ventricles, then the ul-695

trastructure of the tissue (cell membranes, connexins and gap junctions etc.)696

can be neglected and the tissue can be thought of as a continuous medium697

[92]. Such a continuous medium can be described using partial differential698

equations (PDEs), and so the tissue model in this case will be continuous699

state, continuous space and continuous time. Local membrane excitability700

in these PDE models can be described either by simple models such as the701

FitzHugh-Nagumo excitation equations [50–53] or their derivatives [54, 55]702

(see section 2.5), or by using biophysically detailed models such as those de-703

scribed in section 2.7. The propagation of excitation throughout the medium704

is then described using non-linear cable theory [93].705

3.1. Propagation in One Dimension: Non-Linear Cable Theory706

Propagation throughout ventricular tissue can be modelled using non-707

linear cable theory, extended from one spatial dimension to two or three as708

appropriate. Here, propagation along a simple cylindrical cable is considered709

– non-linear cable theory. Linear cable theory is discussed in detail in Jack et710

al. [93], with the non-linear excitation equations discussed earlier in Section711

2 leading to a need to extend the theory to include non-linearities. Regardless712

of whether linear or non-linear, the derivation of the axial component of the713

cable equation is the same.714

Figure 10 shows a schematic of a linear one-dimensional cable where the715

extracellular resistance is neglected such that the model is described as mon-716
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odomain. The membrane current Im is modelled with capacitive and ionic717

components as described in Section 2. The intracellular fluid resistance is718

represented by an ohmic resistance so that, in the case where membrane con-719

ductance is zero and so no current flows across the membrane, the relation720

between intracellular voltage V and the axial current Ia can be be given by721

Ohm’s law:722

∆V

∆x
= −raIa , (51)

where x is the distance along the cable, and ra is the intracellular resistance723

to axial flow of current per unit length of cable, given by Ri/πd
2 where Ri is724

the specific intracellular resistivity and d the diameter of the cable. Here it725

is assumed that the membrane conductance, and so the membrane current726

Im, along the length ∆x is zero. In the one-dimensional cable, larger values727

of V at smaller values of x (i.e. a negative ∆V/∆x) should give rise to a728

positive axial current, i.e. the current flows down a potential gradient; the729

negative sign in equation (51) imposes this condition.730

Membrane conductance, however, is rarely negligible, even at steady state731

due to the presence of leakage currents. It is therefore necessary to consider732

the differential form of equation (51) where ∆x is given by the limit ∂x, and733

∂V is the voltage difference:734

∂V

∂x
= −raIa , (52)

where ∂V/∂x and Ia are measured at the same point along the cable. As735

any change in the axial current Ia should come from flow of the membrane736

current Im, then from Kirchhoff’s current law the membrane current must737

be equal and opposite to the change in axial current across that point738

∂Ia
∂x

= −Im . (53)

If we assume that ra remains constant along the length of the cable and739

differentiate equation (52) with respect to space to obtain740

∂2V

∂x2
= −ra

∂Ia
∂x

, (54)

we can then substitute equation (53) into equation (54) to obtain741

∂2V

∂x2
= raIm , (55)
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and rearranging gives an equation for the membrane current742

Im =
1

ra

∂2V

∂x2
. (56)

It has already been shown in section 2.3 that Im is composed of a capacitive743

and an ionic component such that744

Im = Cm
∂V

∂t
+ Iion . (57)

We now have two differential equations for the membrane current, one differ-745

entiated twice with respect to space, the other differentiated with respect to746

time. By combining these two equations, (56) and (57), we obtain the basic747

partial differential equation of non-linear cable theory:748

1

ra

∂2V

∂x2
= Cm

∂V

∂t
+ Iion . (58)

As Iion is related to V in a non-linear fashion, the equation cannot be solved749

analytically and so solutions must be obtained by numerical integration. Jack750

et al. [93] discuss the situation where Iion has a linear relation with V and751

so can be solved analytically. By rearranging equation (58) and substituting752

in D = 1/(Cmra), where D is an electrical diffusion coefficient with units of753

mm2ms−1, to give754

∂V

∂t
= D

∂2V

∂x2
− 1

Cm

Iion , (59)

we have a version of the non-linear cable equation which is a parabolic partial755

differential equation of the reaction-diffusion type, the component (1/Cm)Iion756

being the membrane reaction and the componentD(∂2V/∂x2) the diffusion of757

voltage along the cable. Equation (59) assumes that the diffusion coefficient758

D is constant throughout the medium. However, if D changes spatially,759

as is the case when fibre orientation is included in the model geometry or760

when including regions of ischaemic tissue, for example, we must take into761

consideration its spatial rate of change ∂D/∂x, and so equation (59) becomes762

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
− 1

Cm

Iion . (60)

It is sometimes more convenient to write equations (59) and (60) in the forms763

∂V

∂t
= D∆V − Iion , (61)
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Figure 11: Re-entrant spiral wave solution in a 12 cm square homogeneous, isotropic two-
dimensional virtual tissue, with excitation described using the epicardial ten Tusscher-
Noble-Noble-Panfilov human ventricular model [81]

and764

∂V

∂t
= ∇(D∇V )− Iion , (62)

respectively. Here ∆ = ∇2 = ∂2/∂x2 is the Laplace operator, and ∇ =765

∂/∂x is the spatial gradient operator, both in one spatial dimension for this766

example. The term 1/Cm is omitted here as Cm = 1 µF.cm−2 in most767

ventricular models.768

3.2. Propagation in Two and Three Dimensions769

Simulated propagation of excitation in two- and three-dimensional media770

allows a variety of wave phenomena to be studied, including, for example, re-771

entrant waves (e.g. [82]; see Fig. 11) and the effects of wavefront curvature772

[94]. The effects of myocyte orientations can be included in such models,773

an important consideration as propagation occurs faster along the myocyte774

than across it [95]. The equations used to model propagation in two- and775

three-dimensional media are extensions of the one-dimensional non-linear776

cable equation, extended to two and three dimensions and with the effects777

of myocyte orientation (and therefore anisotropy of diffusion) included.778

There are three principal axes of diffusion throughout ventricular tissue779

– the myocyte direction (historically called the “fibre” direction), the sheet780

plane and the sheet normal [96]. Orthotropic propagation (i.e. different dif-781

fusion coefficients in each of these three principal directions), that can only782
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Figure 12: Snapshots of propagating wavefronts from a central spherical source in homo-
geneous 2 cm cubes of ten Tusscher-Noble-Noble-Panfilov endocardial human tissue [81].
(A) A spherical wavefront is obtained in isotropic tissue (A). In anisotropic tissue the
wavefront is a prolate ellipsoid (B), while in orthotropic tissue it is a scalene ellipsoid (C)

be modelled in three dimensions, results in different wavefront geometries783

compared to isotropic or anisotropic propagation. The effects of introduc-784

ing anisotropy and orthotropy of diffusion on the geometry of a propagating785

wavefront are illustrated in Fig. 12. The cubes are 2 cm slabs of endocar-786

dial ten Tusscher-Noble-Noble-Panfilov model [81] tissue with homogeneous787

myocyte orientations, with the Cartesian axes f, s, and n corresponding to788

the myocyte, sheet, and sheet normal directions, respectively. If diffusion789

is isotropic then diffusion and conduction velocity are identical in all direc-790

tions and the shape of the propagating wavefront is spherical (Fig. 12A).791

If anisotropy of diffusion is introduced then propagation is fastest in the792

myocyte direction (f), but is equal in the sheet (s) and sheet normal (n)793

directions; thus the wavefront geometry is prolate ellipsoidal with the polar794

axis in the f direction (Fig. 12B). Reducing the diffusion coefficient in the795

sheet normal direction introduces orthotropy of diffusion; propagation is then796

different along the three principal axes, being fastest along the myocyte (f)797

and slowest in the sheet normal (n) direction, to give a wavefront geometry798

that is scalene ellipsoidal (Fig. 12C).799

Because of these differences from one-dimensional propagation, and for800

completeness, the equations for three-dimensional propagation are presented801

here in full. To model two-dimensional media, the same equations can be802
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used but with any reference to the z or n directions removed (for example,803

in a two-dimensional medium the electrical diffusion tensor D in equation 65804

will become a 2× 2 tensor with four terms: Dxx, Dxy, Dyx and Dyy).805

3.2.1. Reaction-diffusion equation in three dimensions806

In three dimensions the reaction-diffusion equation is807

∂V

∂t
= ∇(D∇V )− Iion , (63)

where the spatial gradient operator ∇ is808

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
, (64)

and D is an electrical diffusion tensor, a 3× 3 symmetrical matrix:809

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 . (65)

Equation (63) can be written as a sum of doubly repeated indices [97] where810

we introduce the terms i and j to represent two of either x, y or z:811

∂V

∂t
=

∑

i,j=x,y,z

[
∂

∂i

(
Dij

∂V

∂j

)]
− Iion . (66)

The sum in three dimensions will have nine terms, as there are nine possible812

pair combinations of x, y and z. The sum in two dimensions will only have813

four terms as there are four possible pair combinations of x and y: (x, x),814

(x, y), (y, x) and (y, y).815

3.2.2. Calculating the electrical diffusion tensor816

Diffusion throughout the 3D heart (or a 2D sheet), and therefore the817

diffusion tensor D, are functions of space and are determined by the tissue818

myocyte and sheet structure at any given point. The directions f , s and n can819

be determined experimentally using histological methods, as for the Auckland820

canine cardiac geometry [98–100] and the San Diego rabbit cardiac geometry821

[101], or using diffusion tensor magnetic resonance imaging [18, 102, 103]822
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(see section 4.1). In a local coordinate system based on these vectors, the823

electrical diffusion tensor at a particular point in space is824

D̃ =




D‖ 0 0
0 D⊥1 0
0 0 D⊥2


 , (67)

where D‖ is electrical diffusion along the myocyte axis, D⊥1 is diffusion in the825

sheet plane perpendicular to the fibre axis, and D⊥2 is diffusion normal to the826

sheet plane (i.e. in the directions f , s and n, respectively). In order to find827

the components of the diffusion tensor D in the global Cartesian coordinate828

system, we must transform D̃ which uses a local coordinate system. As the829

three directions f , s and n are the eigenvectors of the diffusion tensor D with830

corresponding eigenvalues D‖, D⊥1 and D⊥2, then from linear algebra [97]831

the transformation matrix of D̃ to D is an orthogonal matrix832

A = (f , s,n) , (68)

where833

f =




fx
fy
fz


 , s =




sx
sy
sz


 , n =




nx

ny

nz


 , (69)

and where the subscripts x, y and z denote the components of the corre-834

sponding vectors with respect to the global Cartesian coordinate system. In835

this global Cartesian coordinate system the diffusion tensor D is then836

D = AD̃AT , (70)

where the superscript T denotes matrix transpose. The matrices A and AT
837

are the transformation matrices from the local to global coordinate systems838

and vice versa. Substitution of equation (68) into equation (70) then gives839

[104]840

D = D‖ff
T +D⊥1ss

T +D⊥2nn
T . (71)

If it is assumed that diffusion perpendicular to the myocyte axis is the same in841

all directions (i.e. D⊥1 = D⊥2) then equation (71) can be simplified [97, 104]842

using the fact that A is an orthogonal matrix such that843

ffT + ssT + nnT = I , (72)
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where844

I =




1 0 0
0 1 0
0 0 1


 (73)

is the identity matrix. Substituting equation (72) into equation (71) then845

gives a representation of the electrical diffusion tensor D in terms of the846

vector describing myocyte axis orientation, f , and the diffusion coefficients847

D‖ and D⊥1:848

D = D⊥1I+ (D‖ −D⊥1)ff
T . (74)

Therefore, for modelling anisotropic propagation where diffusion is the same849

in the sheet plane and across the sheet plane, the diffusion tensor can be850

calculated using equation (74). However, for modelling orthotropic propaga-851

tion, where diffusion in the sheet plane and across the sheet plane is different,852

the diffusion tensor must be calculated using equation (71).853

3.2.3. Calculating the diffusion term854

The sum of the diffusion terms in equation (66) can now be calculated.855

The derivatives in the equation are expanded as follows856

∂

∂i

(
Dij

∂V

∂j

)
=

∂Dij

∂i

∂V

∂j
+Dij

∂2V

∂i∂j
, (75)

and so the sum term from equation (66) becomes857

∑

i,j=x,y,z

[
∂

∂i

(
Dij

∂V

∂j

)]
=

∑

i,j=x,y,z

(
∂Dij

∂i

∂V

∂j

)
+

∑

i,j=x,y,z

(
Dij

∂2V

∂i∂j

)
. (76)

Equation (66) can therefore be conveniently written as858

∂V

∂t
= S1 + S2 − Iion , (77)

giving two sum terms, S1 and S2, that can be treated individually. For the859

first sum term, S1, we expand as follows860

S1 =
∑

i,j=x,y,z

(
∂Dij

∂i

∂V

∂j

)
=

861

∂Dxx

∂x

∂V

∂x
+

∂Dxy

∂x

∂V

∂y
+

∂Dxz

∂x

∂V

∂z
+

∂Dyx

∂y

∂V

∂x
+

∂Dyy

∂y

∂V

∂y
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+
∂Dyz

∂y

∂V

∂z
+

∂Dzx

∂z

∂V

∂x
+

∂Dzy

∂z

∂V

∂y
+

∂Dzz

∂z

∂V

∂z
. (78)

For the second sum term, S2, we expand as follows, bearing in mind that the863

diffusion tensor D is symmetric (that is, Dxy = Dyx and so on)864

S2 =
∑

i,j=x,y,z

(
Dij

∂2V

∂i∂j

)
=

865

Dxx
∂2V

∂x2
+Dyy

∂2V

∂y2
+Dzz

∂2V

∂z2
866

+ 2

(
Dxy

∂2V

∂x∂y
+Dxz

∂2V

∂x∂z
+Dyz

∂2V

∂y∂z

)
. (79)

3.2.4. Discretisation scheme in three dimensions867

We can now discretise the three dimensional reaction-diffusion equation868

(66) by taking discrete time steps ∆t such that t at time step k is given by869

tk = t0 + k∆t k = 0, 1, 2, . . . , K , (80)

and discrete space steps ∆x = ∆y = ∆z = h such that the point in space870

(x, y, z) at space step (l,m, n) is given by871

xl = x0 + l · h l = 0, 1, 2, . . . , L , (81)
872

ym = y0 +m · h m = 0, 1, 2, . . . ,M , (82)
873

zn = z0 + n · h n = 0, 1, 2, . . . , N . (83)

The time derivative on the left-hand side of equation (66) is discretised using874

the Euler method as in equation (48). The derivatives in S1 and S2 (equations875

(78) and (79)) are approximated using central difference methods and values876

of V and D at time step k:877

∂V

∂x
=

V k
(l+1,m,n) − V k

(l−1,m,n)

2h
, (84)

878

∂V

∂y
=

V k
(l,m+1,n) − V k

(l,m−1,n)

2h
, (85)
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879

∂V

∂z
=

V k
(l,m,n+1) − V k

(l,m,n−1)

2h
, (86)

880

∂2V

∂x2
=

V k
(l+1,m,n) − 2V k

(l,m,n) + V k
(l−1,m,n)

h2
, (87)

881

∂2V

∂y2
=

V k
(l,m+1,n) − 2V k

(l,m,n) + V k
(l,m−1,n)

h2
, (88)

882

∂2V

∂z2
=

V k
(l,m,n+1) − 2V k

(l,m,n) + V k
(l,m,n−1)

h2
, (89)

883

∂2V

∂x∂y
=

V k
(l+1,m+1,n) + V k

(l−1,m−1,n) − V k
(l+1,m−1,n) − V k

(l−1,m+1,n)

4h2
, (90)

884

∂2V

∂x∂z
=

V k
(l+1,m,n+1) + V k

(l−1,m,n−1) − V k
(l+1,m,n−1) − V k

(l−1,m,n+1)

4h2
, (91)

885

∂2V

∂y∂z
=

V k
(l,m+1,n+1) + V k

(l,m−1,n−1) − V k
(l,m+1,n−1) − V k

(l,m−1,n+1)

4h2
, (92)

886

∂Dxx

∂x
=

Dxx(l+1,m,n) −Dxx(l−1,m,n)

2h
, (93)

887

∂Dxy

∂x
=

Dxy(l+1,m,n) −Dxy(l−1,m,n)

2h
, (94)

888

∂Dxz

∂x
=

Dxz(l+1,m,n) −Dxz(l−1,m,n)

2h
, (95)

889

∂Dyx

∂y
=

Dyx(l,m+1,n) −Dyx(l,m−1,n)

2h
, (96)

890

∂Dyy

∂y
=

Dyy(l,m+1,n) −Dyy(l,m−1,n)

2h
, (97)

891

∂Dyz

∂y
=

Dyz(l,m+1,n) −Dyz(l,m−1,n)

2h
, (98)

892

∂Dzx

∂z
=

Dzx(l,m,n+1) −Dzx(l,m,n−1)

2h
, (99)

893

∂Dzy

∂z
=

Dzy(l,m,n+1) −Dzy(l,m,n−1)

2h
, (100)

894

∂Dzz

∂z
=

Dzz(l,m,n+1) −Dzz(l,m,n−1)

2h
. (101)
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Using equations (48) and (84)-(101), the three dimensional reaction-diffusion895

equation (66) can be discretised and rearranged to give a solution for V at896

time step k + 1.897

3.3. Boundary conditions898

Boundary conditions determine what happens to a variable of interest899

at the edge of a geometry, and generally take one of two forms in cardiac900

models: Euler or Neumann. For a one-dimensional cable, Euler (or cut-end)901

boundary conditions represent the cut end of a fibre where the potential is902

abolished, such that903

V |x=0,L = 0 , (102)

and so in a discretisation scheme is simply implemented by setting V = 0 mV904

at x = 0 and x = L (i.e. at each end of the fibre). Alternatively, Neumann905

(or no-flux) boundary conditions represent the experimental situation where906

the ends of a cut fibre or the edges of an extracted slice or slab of tissue seal907

over within a minute [105], or the physiologic boundaries of an in vivo or908

ex vivo tissue or organ, the entire ventricles for example. A such, Neumann909

boundary conditions are the appropriate choice for modelling cardiac tissue910

in the majority of situations. In a 1D model, Neumann boundary condi-911

tions represent a cable with sealed ends where the axial current is zero, and912

therefore913

∂V

∂x

∣∣∣∣
x=0,L

= 0 . (103)

In a discretisation scheme for a 1D model, Neumann boundary conditions914

are implemented using915

V k+1
0 = V k+1

1 ,

V k+1
L = V k+1

L−1 .
(104)

In 2D and 3D models, Neumann boundary conditions are implemented using916

∂V

∂v

∣∣∣∣
∂Ω

= 0 , (105)

where v is the exterior normal to the boundary ∂Ω of the two-dimensional917

medium R2 or three-dimensional medium R3, and where ∂Ω ⊂ R2 in 2D and918

∂Ω ⊂ R3 in 3D. For a simple cuboid of dimensions L×M ×N space steps,919

this becomes920

∂V

∂x

∣∣∣∣
x=0,L

=
∂V

∂y

∣∣∣∣
y=0,M

=
∂V

∂z

∣∣∣∣
z=0,Z

= 0 , (106)
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which in the discretisation scheme is implemented using921

V k+1
(0,m,n) = V k+1

(1,m,n) , V k+1
(L,m,n) = V k+1

(L−1,m,n) for all m,n ,

V k+1
(l,0,n) = V k+1

(l,1,n) , V k+1
(l,M,n) = V k+1

(l,M−1,n) for all l, n ,

V k+1
(l,m,0) = V k+1

(l,m,1) , V k+1
(l,m,N) = V k+1

(l,m,N−1) for all l,m .

(107)

For irregular geometries such as whole ventricles or ventricular wedges, how-922

ever, the implementation of boundary conditions is not so straightforward.923

The process involves finding the surface-normal vector for each node lying on924

the surface of the geometry. By assuming that the entire heart tissue is isopo-925

tential and at a different potential from outside the tissue, the fact that the926

current flow in an isotropic medium is normal to equipotential surfaces can927

be used to determine these surface normals [97, 106]. The node on the surface928

of (but inside) the tissue is then paired with its nearest-neighbour node lying929

outside the tissue and closest to the surface normal. Both are then assigned930

the same voltage, given for the node in the tissue by the reaction-diffusion931

PDE. An alternative algorithm based on the phase-field method, rather than932

calculating the surface normal, has also been suggested [107, 108].933

3.4. Stability of the discretisation scheme934

An important consideration when determining a differencing scheme for935

the reaction-diffusion PDE, in addition to the computational efficiency of the936

discretisation method, is the stability of the chosen method. von Neumann937

linear stability analysis [89] places constraints on the choice of ∆t and ∆x so938

that the stability criterion for any given discretisation scheme is939

D‖
∆t

(∆x)2
≤ 1

2d
, (108)

where d is the number of spatial dimensions. However, due to the stiff, non-940

linear nature of the reaction-diffusion PDE and the biophysically detailed941

equations used to determine Iion, this stability criterion is sometimes not942

sufficient; in such cases, the stability of the discretisation scheme can be943

checked by comparing the convergence of the solutions under variations of944

∆t and ∆x.945
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3.5. Additional Methods for Integrating PDEs946

The discretisation schemes presented in this chapter so far have all been947

Forward Time Centred Space explicit methods that, while being the sim-948

plest methods available and in terms of computational load are relatively949

undemanding, produce accurate numerical solutions. However, when work-950

ing with biophysically detailed excitation equations that can have more than951

20 differential equations and upwards of 100 algebraic equations to solve,952

and large geometries such as the whole ventricles that contain upwards of953

106 nodes, it becomes necessary to utilise additional methods of integration954

in order to reduce computation time. In addition to the tabulation of ex-955

ponential functions as described in section 2.9.4, the following methods may956

decrease computation time and increase tractability of computational simu-957

lations.958

3.5.1. Operator splitting and adaptive time steps959

As discussed in section 2.9.3, the integration time of single cardiac cell960

ODEs could be significantly reduced by applying an adaptive time step al-961

gorithm, where a small time step was used when the membrane potential962

was changing rapidly (e.g. during the phase 0 action potential upstroke)963

while a larger time step could be utilised when the membrane potential was964

changing more slowly. While applying such an adaptive time step algorithm965

would obviously be advantageous when solving the equations for simulations966

where total integration time is long-term and/or where large-scale geome-967

tries are being used, its direct application to the reaction-diffusion PDE is968

not straightforward. The problem of applying an adaptive time step algo-969

rithm arises because the diffusion component of the PDE must be calculated970

when all nodes in the tissue are at the same point in time. Using a large time971

step in a part of the tissue where the membrane potential is changing slowly972

will result in that part of the tissue moving forwards in time at a greater rate973

than a part of the tissue where a smaller time step is being utilised, and a974

disturbance to the synchronisation of time arises between nodes throughout975

the tissue. However, the technique of operator splitting [89] can be applied to976

the reaction-diffusion PDE to separate the reaction and the diffusion com-977

ponents, which can then be solved separately, with an adaptive time step978

algorithm being applied to the reaction component. This technique has been979

verified for the one- and two-dimensional cardiac reaction-diffusion PDE by980

Qu & Garfinkel [109], and will be described here using their method. The981
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reaction-diffusion PDE in one-, two- or three-dimensional cardiac tissue is982

∂V

∂t
= ∇(D∇V )− Iion , (109)

where ∇ is the spatial gradient operator in one, two or three dimensions as983

appropriate. Now consider the analogous differential equation984

∂V

∂t
= (Γ1 + Γ2)V , (110)

where Γ1 and Γ2 are differential operators for the diffusion and the reaction985

components, respectively. Equation (110) can be integrated approximately986

as987

V (t+∆T ) = e(Γ1+Γ2)∆TV (t) , (111)

where we use ∆T to denote a maximum time step for reasons described988

later. Using the operator splitting method [89] this equation can further be989

approximated as990

V (t+∆T ) = eΓ1∆T/2eΓ2∆T eΓ1∆T/2V (t) +O(∆T 3) . (112)

To apply this method to integrate equation (109) in the interval [t, t+∆T ],991

we proceed using 3 integration steps per maximum time step ∆T as follows.992

In step 1 we use initial conditions at time t to integrate equation (109) for a993

time step of ∆T/2 using only the diffusion component:994

∂V

∂t
= ∇(D∇V ) , for a time step ∆T/2 , (113)

which is equivalent to applying the differential operator eΓ1∆T/2 to V (t) in995

equation (112). For step 2, we use as initial conditions the conditions from996

the end of step 1, and integrate equation (109) for a time step ∆T using only997

the reaction component:998

∂V

∂t
= −Iion , for a time step ∆T , (114)

where the state variables (gating, ionic concentrations etc.) in the equations999

describing Iion are also updated. This is equivalent to applying the differential1000

operator eΓ2∆T to the term eΓ1∆T/2V (t) in equation (112). For step 3 we again1001
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integrate equation (109) for a time step of ∆T/2 using only the diffusion1002

component, this time using the results of step 2 as initial conditions:1003

∂V

∂t
= ∇(D∇V ) , for a time step ∆T/2 , (115)

which is equivalent to applying the differential operator eΓ1∆T/2 to the eΓ2∆T eΓ1∆T/2V (t)1004

term in equation (112). This step completes the integration of equation (109)1005

in the interval [t, t+∆T ], and t then takes on the value t+∆T before the three1006

steps are repeated over the next time step ∆T . The advantage of using this1007

operator splitting method is that we can now apply an adaptive time step al-1008

gorithm during step 2, as there is no diffusion component to solve during this1009

step and so, as long as all nodes are integrated for a total time ∆T , the time1010

synchrony between nodes during the step is irrelevant. As the majority of1011

computations (i.e. the stiff, high-order membrane excitation equations) are1012

carried out during step 2, the application of an adaptive time step algorithm1013

here dramatically decreases computation time. A minimum time step ∆tmin1014

must be chosen so that ∆T/∆tmin is an integer in order to keep all nodes1015

synchronised at the end of step 2, and so that integration of the equations1016

describing Iion is accurate. The maximum time step ∆T is chosen bearing in1017

mind numerical stability of the integration, and is generally checked for by1018

comparing convergence of solutions under variation of ∆T . The actual time1019

step used during step 2, ∆t, is then some integer multiple of ∆tmin up to a1020

maximum of ∆t = ∆T . Qu & Garfinkel [109] suggested an adaptive time1021

step algorithm where ∆tmin = 0.01 ms and ∆T was set up to 0.4 ms for one-1022

dimensional simulations and up to 0.3 ms for two-dimensional simulations.1023

∆t was then determined according to ∆t = ∆T/k where k = k0+int(|∂V/∂t|)1024

and where k0 = 5 if ∂V/∂t > 0 else k0 = 1, in order to set up a protective1025

zone to maintain safe propagation of any excitation wavefront. Finally, if1026

k > ∆T/∆tmin then k = ∆T/∆tmin. However, any adaptive time step algo-1027

rithm that integrates the cellular membrane excitation equations accurately1028

can be utilised.1029

3.5.2. Parallelisation under openMP and MPI1030

Because of the large spatial and temporal scales of cardiac simulations,1031

and the limitations in terms of the computing power of single processors, it is1032

necessary that computer codes are parallelised to run on multiple processors.1033

Each processor then generally handles the equations needed to solve excita-1034

tion and propagation in a specific subsection of the geometry, with communi-1035
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cation between processors necessary for calculating the diffusion terms at the1036

boundaries of each smaller geometry. Two of the most important standards1037

for parallelisation of computer codes are openMP (open multi processing)1038

and MPI (message passing interface).1039

openMP is a specification for parallelising codes for shared memory ma-1040

chines (where there are multiple processors but a single memory shared be-1041

tween all these processors) and takes the form of a set of compiler directives,1042

library routines and environment variables for use with the C, C++ and1043

Fortran computer programming languages. One advantage of using openMP1044

is that the serial source code (e.g. a three-dimensional model) need not be1045

considerably altered, and requires the placement in the code of directives1046

that parallelise some form of looping construct such as a for loop.1047

MPI is an interface standard for parallelising codes for machines with a1048

distributed memory architecture (where there are multiple processors each1049

with its own memory). With these architectures it is necessary for processors1050

to send and receive messages to and from other processors when determining1051

the diffusion terms at the boundaries of their own local geometries. Imple-1052

menting MPI requires that the source code be adapted to the specific needs1053

of MPI, e.g. the programmer has to specifically define when messages will be1054

sent and received, and is therefore not as straightforward as implementing1055

openMP.1056

The exact implementation of openMP or MPI is dependent on the code1057

being parallelised, and so a detailed description of the parallelisation of spe-1058

cific cardiac model codes is not given here other than to say that, in gen-1059

eral, any construct such as a for statement that loops through the car-1060

diac geometry can be parallelised. For more information on openMP and1061

MPI see references [110, 111] or online at http://www.openmp.org/ and1062

http://www.mpi-forum.org/.1063

3.5.3. Parallelising irregular geometries1064

Parallelisation is usually undertaken by assigning a regular subsection of1065

the total geometric area (e.g. a number of slices) to individual processors.1066

If the tissue geometry is irregular, such as the whole ventricles, this regular1067

assigning of space to processors may result in one processor solving equations1068

for more tissue nodes than another processor – consider, for example, one1069

processor handling the nodes in several apical slices of the geometry where1070

relatively few nodes are inside the tissue, versus another processor handling1071

nodes in the same number of basal slices where there are more nodes lying1072
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in the tissue. This will reduce computation time as the processor with fewer1073

tissue nodes waits for the other processors to calculate to the end of the time1074

step (with parallelisation, each processor must be synchronised in time when1075

the diffusion term of the reaction-diffusion PDE is calculated). In order1076

to solve this problem, linear N element arrays containing the x, y and z1077

locations of all nodes lying in the tissue can be created, with the elements of1078

the arrays labelled 0 . . . N − 1, where N is the total number of nodes in the1079

tissue. Each processor is then assigned an equal number of these N nodes1080

to solve equations for, with the x, y and z locations from the linear arrays1081

allowing reference to the state variables for each node.1082

4. Experimental Data for Parameterising and Validating Tissue-1083

Level Cardiac Models1084

With a mathematical/computational framework in place to describe tissue-1085

level cardiac electrophysiology, experimental data are required to fulfil two1086

major purposes: parameterisation and validation. Parameterisation is the1087

process of assigning values or functions to model parameters such as ion1088

channel maximal conductances (ḡ) and kinetics (τ), and the components of1089

the electrical diffusion tensor D̃ (i.e. values for D‖, D⊥1 and D⊥2) [5, 112].1090

Validation is the process of checking that model outputs, such as action po-1091

tential duration and conduction velocity, are acceptable with respect to those1092

measured experimentally [24, 84, 113].1093

Experimental techniques used for parameterising and validating sub-cellular1094

models of calcium handling are discussed in Part 1 of this two-part article1095

(Colman et al., in this issue), while the use of ion channel and action po-1096

tential data in constructing cell-level electrophysiology models are discussed1097

in [112]. Here we briefly discuss two tissue-level imaging techniques used to1098

parameterise and validate ventricular models, namely ex vivo diffusion tensor1099

magnetic resonance imaging (DT-MRI) and optical imaging.1100

4.1. Diffusion Tensor Magnetic Resonance Imaging1101

Myocyte orientation and sheet structure throughout the ventricular my-1102

ocardium is responsible for many of the phenomena associated with the func-1103

tion of the heart, including spread of electrical excitation during both nor-1104

mal sinus rhythm and arrhythmias [95]. Propagation of electrical activity1105

is anisotropic, being fastest in the direction of the long axis of the myocyte1106

due to the presence of gap junctions that are principally located at the ends1107
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of the myocytes [114–116]. Where sheets are present, propagation is or-1108

thotropic, being slowest in the direction normal to the sheet plane [117].1109

The myocyte and sheet architecture throughout the ventricles could itself1110

be a substrate for arrhythmias including ventricular tachycardia and fibrilla-1111

tion, and sudden cardiac death, as has been suggested in both experimental1112

(e.g. [118–121]) and theoretical (e.g. [55, 122–124]) studies. Furthermore,1113

fibre orientation can change during certain pathological conditions such as1114

hypertrophy [125], ischaemic heart disease [126] and heart failure [124]. If1115

one wishes to study these phenomena, it is therefore important to include1116

accurate representations of the three-dimensional geometry (shape) and ar-1117

chitecture (myocyte/sheet structure) of the ventricles into tissue-level mod-1118

els.1119

Previous studies characterising the structure of the myocardium have1120

utilised histological techniques in order to determine both myocyte orienta-1121

tion [127–129] and sheet structure [96, 130], or polarised light microscopy1122

for determining myocyte orientation [131]. Myocyte orientation is known to1123

follow a transmural helical pattern such that the inclination of the myocytes1124

with respect to the short axis of the heart (the “inclination angle”, also re-1125

ferred to as the “helix angle”) shifts from positive at the endocardium to neg-1126

ative at the epicardium, changing sign at the midwall. The meticulous study1127

of LeGrice et al. [96] suggested an organisation of the myocytes at a higher1128

level into a laminar structure with sheets approximately four myocytes thick,1129

with these sheets separated by sheet cleavage planes. The cleavage planes1130

ran radially from the endocardium to the epicardium and, when viewed in1131

a long axis transmural plane, could be seen to shift from a base-apex di-1132

rection near the apex through to an apex-base direction in basal regions.1133

However, histological techniques, even if the tissue does not require fixing as1134

for polarised light microscopy, require reconstruction of myocyte and sheet1135

orientations from sections and therefore introduce problems of distortion and1136

alignment, and it is difficult to reconstruct the three-dimensional orientation1137

of a myocyte or sheet as only angles in the stack of cut planes can be directly1138

measured. Furthermore, most datasets describing geometry and architecture1139

obtained using histological methods – such as the Auckland canine model1140

[98–100] and the San Diego rabbit model [101] – are spatially smoothed; as1141

such, they may not allow one to study the role of abrupt changes in myocyte1142

orientation in arrhythmogenesis, for example.1143

Diffusion tensor magnetic resonance imaging (DT-MRI) [132] has been1144

developed as a non-destructive, high-throughput method to reconstruct in1145
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Figure 13: (A) Schematic of cardiac myocytes arranged into a laminar sheet structure.
The arrows indicate how DT-MRI eigenvectors correspond to ventricular architecture.
Adapted from [100]. (B) Maps of “fibre helix angle” (the inclination of the local myocyte
axis with respect to the short axis of the heart) on a cut surface along the long axis of
a rat heart (the grey surface is the endocardium of the left ventricle), and in three short
axis slices taken from basal, equitorial and apical regions. From [18]

three-dimensions both the myocyte orientation and sheet structure through-1146

out the ventricles. (The technique was originally applied to trace fibre tracts1147

in the central nervous system [133–135], hence the common use of the term1148

“fibre orientation” in the literature when DT-MRI is applied to the heart,1149

even though “fibres” as such do not exist in the myocardium.) A detailed1150

description of the DT-MRI technique is beyond the scope of this article, but1151

interested readers are directed to reference [136]. Briefly, however, DT-MRI1152

measures the diffusion of the proton (1H) of water molecules (H2O) in at least1153

six different directions, at locations (voxels) throughout the sample of inter-1154

est [137]. These directional diffusion data are then used to construct a 3× 31155

proton diffusion tensor at each voxel, that describes the three-dimensional1156

diffusion of protons at that point in space. The eigenvectors and eigenvalues1157

of the tensor are then calculated: these three eigenvectors correspond to the1158

principal orthogonal directions of proton diffusion, with the associated eigen-1159

values quantifying the magnitude of the diffusion in those directions. The1160

three eigenvectors are ranked as primary, secondary or tertiary (v1, v2 or v3,1161

respectively) according to the magnitudes of their associated eigenvalues (λ1,1162

λ2 and λ3, respectively): the eigenvector with the largest eigenvalue is the1163
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primary eigenvector, v1, while the tertiary eigenvector, v3, is the eigenvector1164

with the smallest eigenvalue; the remaining eigenvector (with the intermedi-1165

ate eigenvalue) is the secondary eigenvector, v2.1166

Because cardiac myocytes have an elongated, rod-like shape [138], proton1167

diffusion is greatest along the axis of the myocyte. As such, the primary1168

eigenvector of the proton diffusion tensor corresponds to local myocyte ori-1169

entation [139–141]. Where myocytes are organised into sheet-like structures,1170

proton diffusion will be smallest normal to the sheet plane: therefore, as the1171

three diffusion tensor eigenvectors are orthogonal, the secondary eigenvector1172

corresponds to the direction perpendicular to the myocyte axis but lying in1173

the sheet plane, while the tertiary eigenvector is normal to the sheet plane.1174

As such, the secondary and tertiary eigenvectors give a measure of ventricular1175

sheet structure [142, 143] (see Fig. 13A). Eigenvector orientations can there-1176

fore be quantified to give maps of myocyte and sheet structure throughout1177

the myocardium (see Fig. 13B).1178

It follows from the above that the directions of the primary, secondary1179

and tertiary DT-MRI eigenvectors (v1, v2 and v3) correspond to the vectors1180

f , s and n, respectively, in equation (69), i.e. v1 = f , v2 = s and v3 = n.1181

Therefore, the DT-MRI eigenvectors can be used to calculate the electrical1182

diffusion tensor (equation 65) in the PDE describing propagation of elec-1183

trophysiological excitation (equation 63), through equation (70). However,1184

although the DT-MRI eigenvectors (i.e. the principal directions of proton1185

diffusion) relate to the vectors f , s and n (i.e. the principal directions of1186

local myocyte orientation), we are not aware of any data suggesting that the1187

DT-MRI eigenvalues (i.e. the magnitudes of proton diffusion) relate to the1188

parameters D‖, D⊥1 and D⊥2 (i.e. the magnitudes of electrical diffusion).1189

We therefore need additional experimental data to allow us to completely1190

parameterise the electrical diffusion tensor D in equation (65).1191

4.2. Optical Imaging1192

Optical imaging (also known as optical mapping) of the heart can provide1193

data to parameterise and partially validate cardiac tissue models. The ap-1194

plication of voltage sensitive dyes to isolated and perfused cardiac tissue and1195

hearts (using the Langendorff technique) allows the visualisation of spatio-1196

temporal electrical activity, and has allowed the quantitative study of normal1197

sinus rhythm and the organisation and development of cardiac arrhythmias1198

(e.g. [26, 145]). As with the DT-MRI technique, a detailed description of1199
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Figure 14: Optical imaging data used to parameterise and validate tissue-level cardiac
electrophysiology models. (A) Colour-coded activation times across the right ventricular
epicardial surface of an isolated perfused rat heart. (B) Optical imaging-derived con-
duction velocity restitution from healthy and diseased rat hearts: CON, control; HYP,
hypertrophic; FAIL, failing. (C) Simultaneous optical imaging measurements of changes
in membrane voltage (RH237 fluorescence) and intracellular Ca2+ (Rhod-2 fluorescence)
from a 1 cm2 area on the right ventricular epicardial surface of an isolated perfused rat
heart, stimulated at a frequency of 5 Hz. (D) Optical imaging experiment outputs for
a single rat heart (top panels) and the corresponding simulation outputs for a “heart-
specific” model built using DT-MRI and optical imaging data from the heart in the top
panels (bottom panels). Panels left to right show activation times, action potential dura-
tion maps and action potential traces acquired from areas indicated by asterisks (aligned
by activation times). Pacing was at the site indicated by the arrow. A quantitative and
qualitative comparison of optical imaging data and simulation outputs can be used as a
means of model validation. Panels A and B from [144], panel D from [19]
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optical imaging is beyond the scope of this article, but the interested reader is1200

referred to references [8, 146] for reviews and [147, 148] for technical details.1201

In order to obtain focussed images and maintain spatial alignment over1202

time, contraction of the isolated perfused heart is usually blocked by an1203

excitation-contraction decoupler, such as blebbistatin: this results in a sta-1204

tionary heart with a geometry similar to end diastole (this compromise1205

should be accounted for when optical imaging data are interpreted). Voltage-1206

sensitive dyes, such as RH237, can then be introduced through coronary flow1207

in perfused tissue preparations, or by superfusion in smaller tissue samples.1208

These voltage-sensitive dyes bind to cardiac cell membranes and respond to1209

changes in membrane potential (i.e. the action potential) by changes in their1210

excitation and emission spectra. Spatio-temporal data acquisition of fluo-1211

rescence is usually achieved by photodiode arrays or charge-coupled device1212

(CCD) cameras. Contemporary CCD cameras readily allow high sampling1213

rates (2 kHz and more) combined with superior spatial resolution. In con-1214

ventional epi-fluorescence imaging of a perfused heart, both the light source1215

for excitation of the dye and the detector are aimed at the epicardial sur-1216

face; although fluorescence is obtained from the epicardial surface, significant1217

contributions to the fluorescent signal originate from deeper myocardial lay-1218

ers due to the optical scattering and absorptive properties of tissue with1219

respect to visible light (see [8] for details). Nevertheless, the data obtained1220

from optical imaging under a variety of pacing protocols – principally spatial1221

maps of activation times, repolarisation times, action potential durations and1222

their restitution, and conduction velocities and corresponding restitution (see1223

Fig. 14A,B) – allows partial parameterisation of tissue-level electrophysiol-1224

ogy models. For example, although conduction velocity data obtained with1225

optical imaging does not give absolute values for the components of the model1226

electrical diffusion tensor D̃ (i.e. D‖, D⊥1 and D⊥2 in equation 67), values for1227

these parameters can be scaled until the model conduction velocities (along1228

and across the myocyte axis) match those recorded using optical imaging. A1229

relatively recent development in optical imaging of the heart is the concurrent1230

recording of membrane voltage and intracellular Ca2+, through the simulta-1231

neous use of voltage- and Ca2+-sensitive dyes (such as the Ca2+-sensitive dye1232

Rhod-2) with different excitation and emission spectra [149] (Fig. 14C). As1233

with membrane potential data, the intracellular Ca2+ data obtained from1234

optical imaging can be used to parameterise the Ca2+ handling aspects of1235

the cell electrophysiology model being developed.1236

The same optical imaging data can also be used, in part, to validate1237
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developed models. This is particularly the case when “heart-specific” mod-1238

els are constructed, where functional (electrophysiological) data from optical1239

imaging and structural data from DT-MRI are collected from the same heart1240

and these data used to construct a specific model [18] (Fig. 14D). Such1241

models are especially useful, as they allow one to study heart-specific phe-1242

nomena that may be attributable to, for example, sample-specific myocyte1243

arrangements or electrotonic interactions [19]. In these situations, the quali-1244

tative and quantitative similarities between the experimental and simulated1245

activation, repolarisation, action potential duration and conduction velocity1246

maps provides a partial validation for the developed models – see Fig. 14D.1247

In the case where both membrane voltage and intracellular Ca2+ are simul-1248

taneously mapped using optical imaging, the subsequent model validation1249

places tighter constraints on the model, as two experimental measures must1250

be simultaneously and consistently matched over both time and space.1251

5. Conclusions1252

Computational models of the heart (from cell-level models, through one-1253

, two- and three-dimensional tissue-level simplifications, to biophysically-1254

detailed three-dimensional models of the ventricles, atria or whole heart)1255

allow the simulation of excitation and propagation of this excitation, and1256

have provided remarkable insight into the normal and pathological function-1257

ing of the heart. In this article we have presented equations, along with1258

discretisation and integration schemes, and some experimental methods that1259

allow parameterisation and validation of tissue-level models, that can be1260

used to simulate cardiac electrophysiological function at the cell and tissue1261

levels. Open-source code covering the modelling presented in this article is1262

available in the Multi-scale Cardiac Simulation Framework available from1263

http://www.physicsoftheheart.com/.1264

6. Acknowledgements1265

Parts of this work were undertaken on ARC3, part of the High Perfor-1266

mance Computing facilities at the University of Leeds, UK.1267

Funding: This work was supported by the British Heart Foundation1268

[grant number PG/16/74/32374 to AB and EW]; the Medical Research Coun-1269

cil [Special Training Fellowship in Biomedical Informatics G0701776 to AB1270

and Strategic Skills Fellowship MR/M014967/1 to MC]; the University of1271

52



Leeds [Biomedical Sciences Demonstrator Studentship to HS-C]; and the1272

Wellcome Trust [Early Career Researcher Fellowship to DW, through In-1273

stitutional Strategic Support Fund 204825/Z/16/Z].1274

References1275

[1] D. Bers, Excitation-Contraction Coupling and Cardiac Contractile1276

Force, second ed., Klewer Academic Publishers: Dordrecht, The1277

Netherlands, 2001.1278

[2] D. Bers, Cardiac excitation-contraction coupling, Nature 415 (2002)1279

198–205.1280

[3] D. Eisner, J. Caldwell, K. Kistamás, A. Trafford, Calcium and1281

excitation-contraction coupling in the heart, Circulation Research 1211282

(2017) 181–195.1283

[4] A. Panfilov, A. Holden, Computational Biology of the Heart, John1284

Wiley and Sons: Chichester, UK, 1997.1285

[5] R. Clayton, O. Bernus, E. Cherry, H. Dierckx, F. Fenton, L. Mirabella,1286

A. Panfilov, F. Sachse, G. Seemann, H. Zhang, Models of cardiac tissue1287

electrophysiology: progress, challenges and open questions, Progress1288

in Biophysics and Molecular Biology 104 (2010) 22–48.1289

[6] J. Jalife, Introduction to the series on computational approaches to car-1290

diac arrhythmias: translation into diagnostics and therapy, Circuation1291

Research 112 (2013) 831–833.1292

[7] N. Trayanova, K. Chang, How computer simulations of the human1293

heart can improve anti-arrhythmia therapy, Journal of Physiology 35941294

(2016) 2483–2502.1295

[8] R. Walton, O. Bernus, Towards depth-resolved optical imaging of car-1296

diac electrical activity, Advances in Experimental Medicine and Biol-1297

ogy 859 (2015) 405–423.1298

[9] D. Hooks, M. Trew, B. Caldwell, G. Sands, I. LeGrice, B. Smaill, Lam-1299

inar arrangement of ventricular myocytes influences electrical behavior1300

of the heart, Circulation Research 101 (2007) e103–e112.1301

53



[10] D. Noble, Y. Rudy, Models of cardiac ventricular action potentials:1302

iterative interaction between experiment and simulation, Philosophical1303

Transactions of the Royal Society A – Mathematical, Physical and1304

Engineering Sciences 359 (2001) 1127–1142.1305

[11] P. Hunter, P. Robbins, D. Noble, The IUPS human physiome project,1306
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[108] A. Bueno-Orovio, V. Pérez-Garćıa, F. Fenton, Spectral methods1608

for partial differential equations in irregular domains: the spectral1609

smoothed boundary method, SIAM Journal on Scientific Computing1610

28 (2006) 886–900.1611

63



[109] Z. Qu, A. Garfinkel, An advanced algorithm for solving partial differen-1612

tial equation in cardiac conduction, IEEE Transactions on Biomedical1613

Engineering 46 (1999) 1166–1168.1614

[110] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared1615

Memory Parallel Programming, The MIT Press: Cambridge, MA,1616

2008.1617

[111] P. Pacheco, Parallel Programming with MPI, Morgan Kaufmann Pub-1618

lishers, Inc: San Francisco, CA, 1997.1619

[112] S. Dokos, N. Lovell, Parameter estimation in cardiac ionic models,1620

Progress in Biophysics and Molecular Biology 85 (2004) 407–431.1621

[113] S. Niederer, E. Kerfoot, A. Benson, M. Bernabeu, O. Bernus,1622

C. Bradley, E. Cherry, R. Clayton, F. Fenton, A. Garny, E. Heidenre-1623

ich, S. Land, M. Maleckar, P. Pathmanathan, G. Plank, J. Rodŕıguez,1624
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