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Abstract 

Simple shear deformation is prevailing in geotechnical problems. One of its salient features is the rotation of the principal stress axes. Early 
numerical modelling of soil simple shear behaviour usually neglects the plastic deformation induced by principal stress rotation. Recent 
attempts at accurately modelling the sand simple shear behaviour have accounted for this loading mechanism, but those for the clay simple 
shear modelling are rare. To fill the gap, this paper presents a simple constitutive model for the simulation of clay simple shear behaviour with 
consideration of the effect of the principal stress rotation. The model uses a non-associative flow rule and incorporates an additional mechanism 
associated with the principal stress rotation. The new mechanism caters for the soil non-coaxiality and plastic volumetric response under pure 
rotation of principal stress axes. Stress-strain incremental linearity is maintained in the proposed model. Comparisons of simulations with clay 
simple shear test data justify the importance of the principal stress rotation. The model satisfactorily captures the undrained shear strength. The 
soil non-coaxial behavior is also well reproduced.  
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1. Introduction  

The simple shear type of deformation exists in many 
geotechnical engineering applications. For example, soils 
adjacent to a friction pile or underneath an offshore 
foundation, deform essentially in the simple shear mode. In 
the laboratory, the simple shear deformation is duplicated, in 
general, using the direct simple shear apparatus. Criticisms 
against the simple shear test are mainly for two reasons: the 
non-uniform stress and strain distribution within the soil 
specimen, and the lack of lateral stress measurement in the 
routine simple shear tests. Despite these drawbacks, the 
simple shear test has apparent advantages such as the ease of 
setting up and rapid consolidation [1], the ability to apply 
some rotation of principal stress axes [2], and most 
importantly, the relevance to in situ conditions. 

Early numerical modelling of soil simple shear behaviour 
was focused on the stress and strain non-uniformity and the 
influence of boundary conditions [3-5]. The effect of the 
principal stress rotation is usually neglected for simplicity. 
However, it has been long recognized through experiments 
that the principal stress directions have strong impacts on the 
soil strength and deformation characteristics [6-9]. Roscoe [2] 
reported that the principal directions of stress and plastic 
strain rate are non-coaxial (known as non-coaxiality) in the 
presence of the principal stress rotation in the simple shear. A 
few attempts at modelling the effect of the stress rotation in 
the simple shear were made recently. Osinov and Wu [10] and 
Yang and Yu [11] numerically evaluated the influence of the 
principal stress rotation on the soil stress-strain response and 
non-coaxiality in the simple shear. Gutierrez et al. [12] 
proposed a two-dimensional sand model which incorporates a 
non-coaxial stress-dilatancy relation and an anisotropic 
strength criterion. Jefferies et al. [13] idealized the influence 
of the principal stress rotation as the ‘shrink’ of the yield 
surface and simulated the cyclic simple shear tests of sand. 
Nevertheless, most of these models were dedicated to the sand 
modelling, whilst those for the clay simple shear behaviour 
are rare. Responses of sand and clay are very different and 
usually require different types of yield surfaces and flow rules.  

Therefore, the objective of this paper is to develop a 
constitutive model for the clay behaviour during monotonic 
simple shearing with specific consideration of the principal 
stress rotation. The model is based on a non-associative 
version of the classical Modified Cam-Clay (MCC) model 
[14]. The effect of principal stress rotation is considered by 

including an additional plastic loading mechanism. The 
proposed model is validated by comparing the simulation 
results with those from the associative and non-associative 
MCC models (i.e., without considering the principal stress 
rotation), and with the clay simple shear experimental date.  

 

2. Model formulation 

By applying the additive decomposition of the total strain 
rate, one has 

pe
ij ij ij                  (1) 

where the superscripts e and p denote elastic and plastic 
components, respectively. The elastic relation is the same as 
that in the MCC model, which is expressed in terms of the 
bulk and shear moduli defined as follows 
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where e is the void ratio, κ is the slope of the swelling line in 
the e-lnp space, and ν is the Poisson’s ratio. The plastic strain 

rate, p
ij , consists of two components. The first component, 

denoted by pc
ij , is associated with the conventional plastic 

loading (superscript c). The second part, denoted by pr
ij , is 

associated with the loading mechanism of principal stress 

rotation (superscript r). The development of pc
ij and pr

ij is 

described below. 

2.1. Non-associative clay plasticity model  

The proposed model uses the MCC type ellipse for the 
yield and plastic potential surfaces. Following Jiang et al. [15], 
the critical state stress ratio M is used to configure the plastic 
potential, and another parameter N is used to configure the 
yield surface. Thus, the plastic potential reads as 

2
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and the yield surface reads as 
2
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              (4) 

where (1 3) kkp   and (3 2) ij ijq s s  with ijs being the 

deviatoric stress tensor; pg is the value of p at the intersection 
between the plastic potential surface and the p-axis, and 0p is 
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the hardening parameter. As the soil is saturated in the paper, 
the effective stress principle is used, in which the total stress 
is the summation of the effective stress and excess pore 
pressure. The stress symbol denote the effective stress in the 
paper, or specified otherwise. Fig 1 gives a schematic 
illustration of the two surfaces in the p-q space. The figure 

also shows the conventional loading direction c
ij ijl f   

and flow direction c
ij ijR g    . The value of pg is 

determined by substituting the current stress into Eqn (3), and 
the value of 0p  is prescribed by a hardening rule the same as 

that in the MCC model, reads as 

0
0

(1 ) pc
kk

e p
p 

 





              (5) 

where λ is the slope of the normal compression line in the e-

lnp space. The parameters M and N are defined to be 
functions of the Lode angle θ, reads as 
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where e cc M M with eM and cM being the values of M at 

triaxial extension and compression, respectively, cN  is the 

value of N at triaxial compression, and 3 (1 3) ij jk kiJ s s s . The 

plastic potential and yield surfaces are always convex 
provided 0.6c  [16]. Note that the parameters M and N have 
the same interpolation rule (the same ratio c enters both Eqns 
(6a) and (6b)), indicating an associative flow rule in the π-
plane. It will be shown later that such a choice simplifies the 
model formulation. The N is in general (but not necessarily) 
smaller than M. For the special case of N=M, the associative 
MCC model is retrieved. Jiang et al. [15] showed that the 
non-associative model can better capture the shear strength of 
clays in the triaxial test, but its performance in the simple 
shear hasn’t been investigated. 

2.2. Loading mechanism of principal stress rotation 

This section deals with the additional plastic loading 
mechanism associated with the principal stress rotation. This 
mechanism is defined by 

0r r r
ij ij pwl K L                (8a) 

 1
m

w M               (8b) 

where q p   is the stress ratio, and r
ijl , r

pK and r
L are the 

loading direction, plastic modulus and loading index in the 
new mechanism, respectively, and  is the Macaulay 

bracket that prevents a value from being negative. The m is a 
large positive number which will render w≈1 when η<M, and 

w=0 when η>M. A default value of m=50 is selected in this 
work. The function of w is adopted to freeze this mechanism 
when soils yield on the ‘dry’ side of the yield surface. This 

simplification is because the influence of pure principal stress 
rotation on soils with η>M is not known up to date as no 
experimental investigation has been conducted under this 
condition. A similar concept was firstly used by Gao and 
Zhao [17].  

It is assumed that the loading direction r
ijl  follows the 

direction of the principal stress rotation (i.e., the direction 
orthogonal to the current principal stress directions). For a 
stress vector ( , , , , , )ij x y z xy yz zx       , consider the 

simple case where the intermediate principal stress direction 
is fixed at the Z-direction. In this case, the principal stress 
rotation takes place in the plane of (( ) 2 , )x y xy   . Then, 

the r
ijl  is defined as follows 
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A schematic illustration of the definition of r
ijl  is shown in Fig 

2. Note that Eqns (9) are not exactly the direction of the 

principal stress rotation because the c
ijl , instead of ij , is used 

to define r
ijl . This selection is based on the theoretical 

consideration that r
ijl should be orthogonal to c

ijl . Nevertheless, 

Eqns (9) can approximate the direction of stress rotation 
satisfactorily. Likewise, if the principal stress rotation takes 
place in the planes of (( ) 2, )y z yz   and of 

(( ) 2, )z x zx   , the corresponding loading directions can 

also be defined. Combing them altogether, a complete r
ijl  is 

obtained.  

The plastic modulus, r
pK , is proposed as 
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2
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M
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
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            (10) 

where rh is a new material parameter. The power relation in 

Eqn (10) is to make this loading mechanism less sensitive 
when approaching the critical state, where the principal stress 
rotation is about to cease in the simple shear. It is seen from 

Eqn (10) that for a hydrostatic stress state (η=0), r
pK   , 

indicating the physical meaning that no rotation of principal 
stress axes at hydrostatic state.  

To complete the mechanism, a flow rule is proposed for 
soils subjected to pure principal stress rotation, reads as  

2

3

pr r r r r
ij ijij L l L D                (11) 

where |  | is the symbol of absolute value, r
D is the dilatancy 

ratio in this mechanism, and ij  is the Kronecker delta. A 

subtle point here is that no Macaulay bracket is used to 

prevent the loading index r
L from being negative. The reason 

behind it is because Eqns (9) implicitly assumed a direction of 
anticlockwise rotation in the plane of (( ) 2 , )x y xy   , 

which can either be along or opposite to the correct direction 

of stress rotation. For the latter case, a negative r
L  is obtained 

from Eqn (8a). However, it does not affect the results because 
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the r r
ijL l in Eqn (11) always gives the correct deviatoric flow 

directed along, and not opposite to, the direction of principal 
stress rotation. Meanwhile, the absolute value symbol on the 

r
L in front of r

D in Eqn (11) ensures that the contraction or 

dilation is by all means determined by the sign of r
D . 

According to Eqns (11) and (9), the deviatoric plastic strain in 
the z-direction is always zero in this mechanism, which can be 

inaccurate. A remedying approach is to use t r t r
ijkl kl ijkl klN l N l  

as the deviatoric flow direction, where ||  || denote the norm 

and
t
ijklN is the deviatoric tangential projection tensor [18]. A 

recent study [19] showed that in the simple shear, these two 
deviatoric flow rules produce almost identical results. 
Therefore, the simpler choice of Eqn (11) is kept. Now the 

last variable to be defined is the dilatancy ratio, r
D . 

Experimental results showed that various soils subjected to 
pure principal stress rotation tend to be contractive [20,21,9]. 
Thus, the following expression is proposed 

2 2

[1 exp( )]
2

r r
r

M
D d V

 



              (12) 

where rd is a new material parameter, and r is the 

cumulativeness of the plastic strain induced by this 
mechanism. The V is another large positive constant and has a 
default value of V=100 in this work. The terms in the brackets 

render r
D ≈0 when r ≈0. They are introduced for 

computational stability at the initiation of simple shear 
loading as a strong rotation of stress may bring the updated 
stress point inside the yield surface and causing numerical 
problems.  

2.3. Incremental elastoplastic relation 

Since the deviatoric flow is associative for the 

conventional loading, and note that the r
ijl  is deviatoric and 

orthogonal to the c
ijl , one obtains 0r c

ij ijl R  . Then, using this 

relation in conjunction with Eqn (8a) and the conventional 

consistency condition 0f  , the two loading indices for 

conventional loading and principal stress rotation can be 
respectively derived as 
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and 

2
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3
r r
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where c
pK is the plastic hardening (or softening) modulus, ijklE

is the elastic stiffness tensor and ( )r
sign L denotes the sign of 

r
L . Eqn (13) shows that with the inclusion of the additional 

mechanism for principal stress rotation, the c
L  is coupled with 

the r
L provided 0r

D  . Finally, using Eqns (1) and (13), the 
rate formed elastoplastic stress-strain relation becomes 
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In the above equation, the terms in the first pair of brackets 
represent the contributions from conventional elastoplasticity 
theory, and the rest terms represent the contributions from the 

principal stress rotation. The elastoplastic stiffness tensor ep
ijklE  

does not depend on the direction of ij , indicating an 

incrementally linear stress-strain relation in the proposed 
model.  
 

3. Simulation results 

The proposed model requires eight material parameters, 
namely five traditional parameters λ, κ, ν, cM and eM , one 

non-associative flow rule parameter cN , and two principal 

stress rotation parameters rh and rd . In general, the 

traditional and flow rule parameters should be calibrated 
against data from triaxial tests, where the other two 
parameters rh  and rd  are not operational. Table-1 presents 

the parameters used in this paper. The traditional parameters 
are from Banerjee and Yousif [22] for Kaolin and from 
Whittle [23] for Boston blue clay. The non-associative flow 
rule parameters are from Jiang et al. [15] for both clays.  

A validation of the non-associative flow rule using the 
undrained triaxial compression data of isotopically normally 
consolidated Kaolin (data from Fannin [24]) is firstly made in 
Fig 3. The conclusion is consistent with Jiang et al. [15], in 
that the non-associative model can better capture the shear 
strength of clay than the associative model.  

Table 1.  
Model parameters for Kaolin and Boston blue clay. 

Parameters Kaolin Boston blue clay 

Traditional 

λ 0.14 0.184 

κ 0.05 0.034 

ν 0.3 0.227 

Mc 1.05 1.39 

Me 0.78 1.12 

Non-associative Nc 0.7 0.95 

Principal stress 
rotation 

hr (kPa) 20000 25000 

dr 6 7 
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In Fig 4, the undrained (constant volume) simple shear test 

on normally consolidated Kaolin is simulated, and the 
comparisons with the test data from Airey [25] are made. The 
static lateral stress coefficient K0 is 0.685 [25]. Three sets of 
simulation results are presented, respectively made by the 
associative (i.e. MCC) and non-associative clay models 
(without the principal stress rotation mechanism), and by the 
non-associative model incorporating the additional 
mechanism. It is seen that the associative model significantly 
overpredicts the undrained shear strength. The non-associative 
model gives better predictions, and the further inclusion of the 
principal stress rotation mechanism provides the best match in 
both the stress-strain response and the stress path. It is 
therefore evidenced that it is necessary to account for the 
principal stress rotation if a reasonable prediction is to be 
achieved for the simple shear. In a previous study by Yang 
and Yu [11] using a yield-vertex based non-coaxial model, the 
principal stress rotation affects only the stiffness and not the 
ultimate shear stress of the soil. The basic difference of their 
model from the present one is the omission of the plastic 
volumetric strain in the principal stress rotation mechanism. 
In the present model, a nonzero r

D enables the principal stress 
rotation to weaken the conventional plastic loading through 
the presence of r

L in c
L (see Eqn (14)). Consequently, the 

yield surface expansion is retarded, and the ultimate stress 
state, which must lie at the top of the ellipse in the p-q plane, 
is lower. On the other hand, if rd is chosen to be 0 and 
therefore 0r

D  , the stress-strain response will be similar to 
that in [11].  

Another series of comparisons between the measured and 
predicted results are presented in Fig 5 for the normally 
consolidated Boston blue clay. The experimental data from 
Malek [26] is from a series of undrained simple shear tests 
under various vertical consolidation stresses ranging between 
300-600 kPa. The K0 for this soil is 0.533 according to [27]. 
In the simulation, the calculation of excess pore pressure 
follows the method proposed by Dyvik et al. [28] and is 
estimated as the changes in vertical stress required to keep 
constant volume throughout a simple shear test. Again, Fig 5 
shows that the undrained shear strength is best captured by the 
non-associative model considering the principal stress rotation, 
whilst the initial stiffness is somewhat underpredicted by all 
the simulations, likely due to the ignorance of material 
anisotropy in the models. The pore pressure predictions are 
acceptable for all three sets of simulations. As a final 
investigation, the non-coaxial behaviour of Boston blue clay 
is shown in Fig 6 using results predicted by the non-
associative model incorporating the stress rotation mechanism. 
The authors are not aware of any detailed experimental 
analysis on clays’ non-coaxiality during simple shearing. 
Such data on sands obtained from experiments and DEM 
simulations (e.g. [2,29,30]) showed that during drained simple 
shear, whilst the major principal stress direction gradually 
rotates from 0o towards 45o, the major principal plastic (or 
total) strain rate direction starts from somewhat below 45o and 
quickly approaches that of the principal stress as the shear 
strain develops. Results presented in Fig 6 are in very good 
qualitative agreement with these observations.  

 

4. Conclusions  

This paper presents a simple constitutive model dedicated 
to simulating the clay simple shear behaviour by considering 
the rarely included factor: the principal stress rotation. The 
model uses a non-associative flow rule and incorporates an 
additional mechanism associated with the principal stress 
rotation. The new mechanism caters for the soil non-
coaxiality and plastic volumetric response under pure rotation 
of principal stress axes. Stress-strain incremental linearity is 
maintained in the proposed model. The importance of 
accounting for the principal stress rotation has been justified 
by comparing the simulations of the proposed model with 
those from the base models without considering principal 
stress rotation, and with the clay simple shear experimental 
data. Whilst the associative model significantly overpredicts 
the undrained shear strength, the non-associative model can 
provide better results, and the further inclusion of the 
principal stress rotation mechanism captures the undrained 
shear strength with satisfactory. The soil non-coaxial 
behaviour is also well reproduced.  
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TABLES 

Table-1. Model parameters for Kaolin and Boston blue clay 

Parameters Kaolin Boston blue clay 

Traditional 

λ 0.14 0.184 

κ 0.05 0.034 

ν 0.3 0.227 

Mc 1.05 1.39 

Me 0.78 1.12 

Non-associative Nc 0.7 0.95 

Principal stress 
rotation 

hr (kPa) 20000 25000 

dr 6 7 
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Fig 1. Schematic illustration of the non-associative clay plasticity model in the p-q plane.  
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Fig 2. Schematic illustration of the definition of the loading direction 𝑙𝑖𝑗𝑟  in the plane of 

(( ) 2 , )x y xy   . 
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Fig 3. Validation of the non-associative flow rule against undrained triaxial compression test data of 
isotopically normally consolidated Kaolin (experimental data from [24]).  
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Fig 4. Comparison of measured and predicted stress-strain response and stress path for undrained 

simple shear on normally consolidated Kaolin (experimental data from [25]).  
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Fig 5. Comparison of measured and predicted normalized stress-strain and excess pore pressure 
responses for undrained simple shear on normally consolidated Boston blue clay (experimental data 
from [26]). 
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Fig 6. Predicted non-coaxiality evolution for undrained simple shear on Boston blue clay. 

 

 

 

 

 


