
RESEARCH ARTICLE

Disclosing 3’ UTR cis-elements and putative

partners involved in gene expression

regulation in Leishmania spp.
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Abstract

To identify putative cis-elements involved in gene expression regulation in Leishmania, we

previously conducted an in silico investigation to find conserved intercoding sequences

(CICS) in the genomes of L. major, L. infantum, and L. braziliensis. Here, the CICS databank

was explored to search for sequences that were present in the untranslated regions (UTRs)

of groups of genes showing similar expression profiles during in vitro differentiation. Using a

selectable marker as a reporter gene, flanked by either an intact 3’ UTR or a UTR lacking

the conserved element, the regulatory role of a CICS was confirmed. We observed that the

pattern of modulation of the mRNA levels was altered in the absence of the CICS. We also

identified putative CICS RNA-binding proteins. This study suggests that the publicly avail-

able CICS database is a useful tool for identifying regulatory cis-elements for Leishmania

genes and suggests the existence of post-transcriptional regulons in Leishmania.

1 Introduction

The protozoan parasite Leishmania is the causative agent of leishmaniasis, a spectrum of dis-

eases that range in severity from spontaneously healing cutaneous lesions to potentially fatal

visceral disease [1]. In addition to its medical importance, this ancient eukaryote is used as a

model organism for studying genetic organization and regulation of gene expression. In this

parasite, as in other kinetoplastids and distinct from most eukaryotes, processing of mRNAs

occurs by trans-splicing, transcription is polycistronic and constitutive, and gene expression is

controlled mostly post-transcriptionally [2].

In general, the organisms adapt to changes in their environment by modulating their gene

expression profile. In heteroxenous parasites such as Leishmania and other trypanosomatids,

adaptation to diverse and hostile environments requires an immediate response involving

morphological and physiological changes driven by modifications in gene expression. While

PLOS ONE | https://doi.org/10.1371/journal.pone.0183401 August 31, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Terrão MC, Rosas de Vasconcelos EJ,

Defina TA, Myler PJ, Cruz AK (2017) Disclosing 3’

UTR cis-elements and putative partners involved in

gene expression regulation in Leishmania spp..

PLoS ONE 12(8): e0183401. https://doi.org/

10.1371/journal.pone.0183401

Editor: Gautam Chaudhuri, Meharry Medical

College, UNITED STATES

Received: November 28, 2016

Accepted: August 3, 2017

Published: August 31, 2017

Copyright: © 2017 Terrão et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by FAPESP –

Fundação de Amparo à Pesquisa do Estado de São
Paulo (2013/50219-9 to AKC, 2008/04969-8 to

MCT). AKC is a senior investigator of the Brazilian

Research Council, CNPq.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0183401
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183401&domain=pdf&date_stamp=2017-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183401&domain=pdf&date_stamp=2017-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183401&domain=pdf&date_stamp=2017-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183401&domain=pdf&date_stamp=2017-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183401&domain=pdf&date_stamp=2017-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183401&domain=pdf&date_stamp=2017-08-31
https://doi.org/10.1371/journal.pone.0183401
https://doi.org/10.1371/journal.pone.0183401
http://creativecommons.org/licenses/by/4.0/


transcription initiation is the primary point of gene expression control in most eukaryotes, try-

panosomatid gene expression lacks any processes regulated by RNA polymerase II [2]. In fact,

the available data show that genes in these parasites are transcribed and processed continu-

ously, and gene expression is regulated by selective transport to the cytoplasm, mRNA stability

or translation initiation [3].

A considerable amount of information on the genomes, transcriptomes, proteomes and

metabolomes of trypanosomatids is now available [4]. Accessible data expedites investigations

regarding the biology of these parasites and represents a major tool for studies of the regulation

of gene expression, an area with much remaining to be understood [5].

Many studies on the mechanisms of gene expression control in trypanosomatids have

demonstrated the role of cis-elements present in the 3’ untranslated region (3’ UTR) of tran-

scripts, which in association with RNA-binding proteins (RBP) modulate gene expression.

These cis- and trans-acting elements are involved in controlling either transcript stability

or translation efficiency [2, 6]. Well-characterized regulatory cis-elements include the AU-

rich elements (ARE), which bind to RBPs containing RNA recognition motifs (RRM)

known as RRM-type RBPs to modify the stability (half-life) of RNAs [7]. In Leishmania, in

addition to the AREs, a large family of extinct retroposons termed the SIDERs (Short Inter-

spersed DEgenerated Retroposons) is also involved in post-transcriptional regulation of

gene expression. SIDERs are widely distributed within the 3’ UTRs of unrelated transcripts

[8–10]. Thus, investigation of the cis-elements and their associated proteins is important to

improve the understanding of how gene expression is regulated in different environments

by this parasite.

To identify regulatory cis-elements, we developed a computational pipeline that isolated

conserved sequences present in the genomes of L. braziliensis, L. infantum and L. major [11].

The pipeline was designed to exclude annotated CDSs in order to best compare the remaining

intercoding regions. The 9,225 conserved intercoding sequences (CICS) found in the three

genomes, named LeishCICS, are available as supplementary material elsewhere [11].

To assess the putative functional role of CICS and characterize them as regulatory elements,

in this study four CICS were investigated and their putative RBPs partners were identified.

CICS 1722 and 4405 were investigated as cis- regulatory elements, and the role of CICS1722 in

the regulation of gene expression in Leishmania was experimentally confirmed.

2 Materials and methods

2.1 Cell line, culture conditions, in vitro differentiation and transfection

Promastigotes of Leishmania donovani LdBOB (MHOM/SD/62/1S-CL2D) [12] were grown at

26˚C in M199 medium (Gibco BRL), supplemented as described by Kapler [13]. Differentia-

tion of promastigotes to amastigotes in axenic culture was conducted as described by Barak

[14], S1 Fig.

Cells grown to late log phase were transfected by electroporation (500 μF and voltage of

2.25 kV/cm), and stable transfectants were selected in solid medium with 2X DL50 of G418, as

previously described by Kapler [13]. After selection, transfectants were maintained in the

absence of drug pressure.

To measure mRNA stability, transcription initiation and spliced leader RNA methylation

were inhibited by treating cells with 1 μg/ml of Sinefungin for 5 min at room temperature, fol-

lowed by the addition of Actinomycin D (10 μg/ml). Samples were collected at 0, 30, 60 and

120 min after adding Actinomycin D.
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2.2 Constructs and oligonucleotides

To remove the CICS from its genomic context, we ordered DNA constructs from GenScript

USA Inc. The constructs bore the reporter gene/selectable marker NEO (Neomycin Phospho-

transferase) flanked by 700-bp fragments of the 5’ and 3’ regions present in the original locus.

Sites for the restriction enzyme NdeI were added, flanking the CICS in the 3’ UTR, enabling its

removal in a single cloning step (S2 Fig). Details of all oligonucleotides used in this study are

provided in the Table 1.

2.3 Nucleic acid isolation

Total cellular RNA was extracted from the Leishmania cells using TRIzol1. Quality and integ-

rity of total RNA were assessed on 1% formaldehyde-agarose gels. Intact genomic DNA was

prepared in agarose plugs as described by Coburn [15].

2.4 Protein extraction and quantification

To search for CICS-interacting proteins, total protein extract from L. donovani BOB was frac-

tioned into nuclear and cytoplasmic extracts [16, 17]. Proteins were quantified by the Bradford

method [18].

2.5 RNA pull-down

For the pull-down reaction, biotinylated RNA oligonucleotides synthesized by Integrated

DNA Technologies (USA) were used. The biotinylated RNA (100 pmol) was immobilized in a

streptavidin column (Dynabeads M-280 Streptavidin—Invitrogen, USA) in BW buffer (5 mM

Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl) to a final volume of 100 μL for 30 min at room

temperature. The beads were washed 3 times with BW buffer, and resuspended in protein

extract buffer. Non-specific interactions were removed by incubation of the protein extract

with the beads (1 μl beads / 5 μg proteins) for 2 hours at 4˚C on a rotating platform. The pro-

tein extract (200 μg) was incubated with the biotinylated RNA linked to the beads for 2 hours

at 4˚C on a rotating platform. To eliminate non-interacting proteins, the reaction mixture was

washed 3 times with 100 μl of protein extract buffer containing 0.1% NP-40 [16, 17]. Bound

proteins were eluted by boiling for 5 min with a 20 μl SDS sample buffer (100 mM Tris-Cl pH

6.8, 4% (w/v) SDS, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol, 200 mM DTT) and sub-

jected to SDS-PAGE. The proteins identified as interacting with the RNA-free beads and those

Table 1. Oligonucleotides used in this study.

Primer Sequence 5’! 3’

NEO-RT-F AGACAATCGGCTGCTCTGAT

NEO-RT-R CTCGTCCTGCAGTTCATTCA

Actin-RT-F TGGCACCATACCTTCTACAACGAG

Actin-RT-R CGTCATCTTCTCACGGTTCTGC

5UTR-Lin07.0150-F ATCAGCTACAACCCGTGTCC

5UTR-Lin31.1630-F CTACCTTCTTGACCTTCGCG

NEO::DHFR-F TCGCCTTCTTGACGAGTTCT

DHFR::NEO-R TAGCCGAATAGCCTCTCCAC

RNA-Control UCCUGCUUCAACAGUGCUUGGACGGAAC-Biotin

NEO-end-F GCATCGCCTTCTATCGCCTT

3UTR-07.0150-R CGGCTCATTCTAGCAGCTCA

3UTR-31.1630-R GCAAACGTGTCCACTGTCGA

https://doi.org/10.1371/journal.pone.0183401.t001
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interacting with a control 28-mer 3’ biotinylated RNA sequence absent from the Leishmania
genome (Table 1) were used as negative controls and subtracted from the group of proteins

that bound to the CICS. The cutoff for including a protein as a CICS-binding protein was the

detection of 2 unique peptides in the MS profile.

2.6 Southern blotting

Standard protocols were used for Southern blotting and hybridization analyses. The NEO

probe consisted of a 210-bp fragment of the protein coding sequence from the pX63NEO vec-

tor [19], digested with the restriction enzyme SapI and labeled using the random primer

method [20].

2.7 Real-time PCR and relative quantification

RT-qPCR was performed using an ABI 7500 Sequence Detection System (Applied Biosystems,

USA) in the presence of SYBR Green. The optimization of the RT-qPCR was done according

to the manufacturer’s instructions (Applied Biosystems User Bulletin 2, applied to the SYBR-

Green I core reagent protocol). Reactions were conducted in technical and biological tripli-

cates using SYBR Green (SYBR Green PCR Master Mix, Applied Biosystems, USA). To quan-

tify NEO transcript levels, the primers NEO-RT-F and NEO-RT-R were used (Table 1). As

internal controls, the β-actin (for comparison of the reporter gene in the presence and absence

of the CICS) and 18S rRNA (for RNA decay experiments) genes were used. To evaluate target

amplification efficiency, a standard curve was generated using 10-fold serial dilutions of

cDNA. The relative expression was analyzed by the 2-ΔΔCT method.

3 Results

3.1 Selection of conserved intercoding sequences (CICS)

We previously generated the LeishCICS databank [11] containing 9,225 CICS common to the

genomes of three different Leishmania species: Leishmania braziliensis, Leishmania infantum
and Leishmania major. We detected CICS present in the UTR of a single gene in the three spe-

cies of Leishmania, and CICS that were common to UTRs of more than one gene, functionally

related or not. We hypothesized that different genes bearing the same CICS might be part of a

post-transcriptional regulon. To test this hypothesis, L. donovani transcripts bearing the same

CICS and sharing similar patterns of modulation of expression during differentiation from

promastigote to amastigote stages were selected. Selection of the transcripts with these features

was performed using a microarray databank produced by Lahav and co-workers [4, 21]. Lahav

kindly made available the information on the expression levels of L. donovani genes through-

out differentiation; these data include only those genes with calculated Pearson’s correlation

coefficients (PCC) between replicates above the threshold established by the authors of the

microarray analysis. Those genes sharing the same CICS and presenting similar patterns of

expression with a PCC close to 1 were selected as potential post-transcriptional regulons.

Those “regulons” presenting the highest PCCs (CICS1722, 1861, 3967 and 4405) were selected

(Table 2 and Fig 1). The location of the CICS within the 3’ UTR and the sequence conservation

compared to the reference for each of the genes grouped as part of the putative regulon was

evaluated by BlastN1 analysis (S3 Fig).

3.2 Confirming a functional role for CICS in gene expression regulation

To demonstrate the involvement of CICS in the regulation of gene expression, the effects of

their presence on the transcript level of a reporter gene placed in the primary genomic locus

3’ UTR cis-elements and putative partners involved in gene expression regulation in Leishmania spp.
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were evaluated. Two of the four CICS with opposite patterns of modulation were selected

(CICS1722 and 4405). Neomycin phosphotransferase (NEO) was used as a reporter gene, and

constructs bearing NEO flanked by the upstream and downstream regions of the original gene

were generated. Two versions of the construct for each tested CICS were designed: one keep-

ing the entire CICS embedded in its surrounding sequences, and the other with the CICS

removed from the downstream region (S2A and S2B Fig). These constructs were transfected as

linear fragments to replace, by homologous recombination, one of the alleles of the primary

locus with the reporter gene. Since the CICS are present in several genes, the gene presenting

the most pronounced modulation profile during in vitro differentiation was used in the func-

tional tests (Fig 1). The Leishmania donovani BOB strain was chosen because its differentiation

in vitro is stable and highly reproducible [12].

Table 2. Genes sharing CICS.

CICS1722—GGACCCTGAGATGCCACACGCTGAGGTG—PCC0.6465291

Gene ID Product Description

LinJ.22.0560 3’a2rel-related protein

LinJ.22.0680 3’a2rel-related protein

LinJ.31.1630 hypothetical protein, unknown function

LinJ.32.2670 hypothetical protein, conserved

CICS1861—TGCAGGCAGAGCACAGGGTCTCA—PCC 0.9055025

Gene ID Product Description

LinJ.08.0680 amastin-like protein

LinJ.08.0690 amastin-like protein

LinJ.08.0700 amastin-like protein

LinJ.08.0710 amastin-like protein

LinJ.08.0720 amastin-like protein

LinJ.08.1320 amastin-like protein

LinJ.08.1330 amastin-like protein

LinJ.34.2660 amastin-like surface protein, putative

CICS3967—GCACGCACACGCACATGCACACA—PCC 0.7041785

Gene ID Product Description

LinJ.29.0680 phosphate transporter, putative

LinJ.07.0870 6-phosphofructo-2-kinase-like protein

LinJ.10.1020 hypothetical protein, conserved

LinJ.16.1150 hypothetical protein, conserved

LinJ.24.0680 protein kinase, putative

LinJ.32.0870 CYC2-like cyclin, putative (CYC2)

CICS4405—GTGTGCGCGTGCGTGTGTGT—PCC 0.6059471

Gene ID Product Description

LinJ.16.1390 cytochrome c, putative

LinJ.31.2890 ADP-ribosylation factor, putative

LinJ.32.0590 hypothetical protein, conserved

LinJ.07.0150 acyl-CoA dehydrogenase, mitochondrial precursor, putative

LinJ.13.0470 hypothetical protein, conserved

LinJ.20.1130 hypothetical protein, conserved

PCC: Pearson’s correlation coefficient calculated for transcript levels of genes bearing the same CICS

during the differentiation process, using data from Lahav et al. [21].

https://doi.org/10.1371/journal.pone.0183401.t002
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To study CICS1722, the gene LinJ.31.1630, a conserved putative dynein heavy chain, was

selected. LinJ.07.0150, a putative protein kinase-encoding gene, was selected to investigate the

role of CICS4405. For each gene, constructs were designed for the replacement of one endoge-

nous allele by the selectable marker/reporter gene flanked by sequences identical to the endog-

enous locus or by a similar sequence lacking the CICS (S2A and S2B Fig). The replacement of

the endogenous CDS by the NEO gene, with or without the CICS, was confirmed in the L.

donovani BOB transfectants by PCR (S2C and S2E Fig), Southern blotting (S2D and S2F Fig)

Fig 1. Transcript modulation pattern during differentiation. Comparison of the transcript levels of genes bearing the same CICS in

their UTRs using microarray data [21]. Lahav et. al. measured transcript levels at eight time points (0, 2.5, 5, 7.5, 10, 15, 24 and 120

hours) of differentiation from promastigote to amastigote stages by microarray [21]. We collated four groups of co-regulated genes

sharing the same CICS. In each group, the expression change of the gene selected for replacement by the NEO marker is depicted in

red. The time points 0 hours and 120 hours are respectively equivalent to the metacyclic promastigote and amastigote stages outlined in

S1 Fig.

https://doi.org/10.1371/journal.pone.0183401.g001
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and sequencing (S2G and S2H Fig). Importantly, after confirmation of the correct integration

of the reporter gene, all transfectants were maintained in M199 with no drug selection.

To analyze the role of the CICS in the control of gene expression, reporter transcript levels

were measured in promastigotes (mid-log phase), metacyclic-enriched culture (stationary

phase) and axenic amastigotes (Fig 2 and S1 Fig). The comparative analysis of NEO transcript

levels between the various transfectants in each of the stages was conducted by RT-qPCR.

The 311630::NEO1722 transfectants revealed that, in the absence of CICS1722 (311630::

NEOΔ1722), reporter transcript levels were higher in the procyclic promastigote and metacyc-

lic-enriched cultures when compared to control transfectant, in which NEO was accompanied

Fig 2. Transcript levels of the reporter gene (NEO) in the presence and absence of each CICS. The transcript levels of NEO were

measured by RT-qPCR in Leishmania transfectants in the three stages: (A) procyclic promastigote, (B) metacyclic promastigote and (C)

axenic amastigote. The levels of NEO expression were compared between the transfectants in the presence (white bars, clones:

311630::NEO1722#1–070150::NEO4405#1) and absence of the CICS (black bars, clones: 311630::NEOΔ1722#1 and #2–070150::

NEOΔ4405#1 and #2). P-values (p) were calculated using a two-way ANOVA F-test.

https://doi.org/10.1371/journal.pone.0183401.g002
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by the intact 3’ downstream region (Fig 2A and 2B). In amastigotes, only one of the transfec-

tants lacking CICS1722 (311630::NEOΔ1722 #1) presented significantly increased levels of the

reporter transcript in the absence of this CICS (Fig 2C). In contrast, no significant differences

in NEO transcript levels were observed when comparing the transfectants in the presence and

absence of CICS4405 under the same conditions (Fig 2).

3.3 CICS1722 may target mRNA for degradation

To identify the regulatory pathway involving CICS1722 as a cis-element, mRNA stability was

determined in the presence and absence of CICS. For this purpose, the same transfectants

were treated with Sinefungin and Actinomycin D to halt SLRNA methylation and inhibit the

initiation of transcription, respectively. NEO transcript stability was determined in the treated

cells by RT-qPCR; ribosomal 18S RNA was used as an internal control (Fig 3).

We demonstrated that the increase of the NEO transcript observed in the 311630::

NEOΔ1722 transfectants (Fig 2) is a consequence of increased transcript stability in these con-

ditions (Fig 3). When SLRNA methylation and initiation of transcription are inhibited by

these drugs, the NEO transcript is present at significantly higher levels in the 311630::

NEOΔ1722 transfectant than in the 311630::NEO1722 transfectant. The relative mRNA abun-

dance is 4- to 6-fold higher in 311630::NEOΔ1722 promastigotes and amastigotes than in con-

trol cells (311630::NEO1722) (Fig 3A and 3C). In promastigotes and amastigotes, the NEO

transcript level seems to be increasing over time in 311630::NEOΔ1722 transfectants, but this

apparent accumulation of transcript over time is a consequence of the decrease in the 18S

rRNA used for normalization. In the metacyclic-enriched culture, the differences between

NEO transcript levels in 311630::NEO1722 and 311630::NEOΔ1722 transfectants are smaller

(Fig 3B). After three experiments, these differences and a higher dispersion of values were

maintained. We speculate that the variability of the mRNA reporter levels in the metacyclic

stage was due to other stage-specific regulatory elements. Nevertheless, we cannot exclude the

heterogeneity of cell types present in stationary cultures (the abundance of metacyclic cells,

intermediate procyclic-metacyclic cells and old/sick cells are variable) as the source of the

observed dispersion and the minor difference in the metacyclic-enriched culture. These results

indicate that CICS1722 is a cis-element that acts negatively on the stability of the transcript,

and in its absence the transcript gains stability.

3.4 Interaction of CICS with proteins

Regulatory cis-elements are binding sites for trans-acting factors (e.g., translational machinery,

RBPs and ncRNAs), and the combination of these elements with different trans-acting factors

composes the machinery responsible for one of the post-transcriptional mechanisms of gene

expression control. Identification of RBPs interacting with the CICS is an important step

toward elucidating the regulatory machinery. To retrieve the putative protein partners of the

investigated CICS, RNA sequences of CICS1722, 4405, 1861 and 3967 were used in pull-down

experiments. Nuclear extracts of mid-log-phase promastigotes and the associated binding pro-

teins were resolved using SDS-PAGE (S4 Fig). Protein bands were detected in all pull-down

experiments done with each CICS, and no bands were observed in the negative controls (S4

Fig). Twenty-four bands extracted from the gel were submitted to mass spectrometry analysis,

and 33% of them were identified (Table 3). The low percentage of identified proteins may be

due to low amounts of proteins in gel bands or to problems associated with sample processing.

The LiAlba3 protein (LinJ.34.2410) [22] was co-purified with CICS1722 and 1861, while the

RBP LinJ.35.2240 was co-purified with CICS1722, 1861 and 3967.
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To determine if different proteins would interact with the same CICS throughout the life

cycle, CICS/protein co-purifications were also assessed in metacyclic promastigote-enriched

and amastigote cultures. Proteins extracted from the nucleus and cytoplasm were used in the

pull-down assays. To identify the CICS binding proteins responsible for opposite expression

profiles during differentiation, only CICS1722 and CICS4405 were selected for these pull-

down experiments (Table 2 and Fig 1). To prevent loss of individual bands due to the low sen-

sitivity of protein gel staining, proteins co-purified in pull-down experiments were not sepa-

rated on SDS-PAGE but were recovered from a single band at the top of the running gel and

Fig 3. Effects of CICS on NEO mRNA stability. The transcript levels of the reporter gene were measured by RT-qPCR in the

transfectants after RNA transcription inhibition by Sinefungin/Actinomycin D treatment. The levels of the NEO transcript, accompanied or

not by the CICS, were compared between the transfectants. NEO inserted with CICS (white bars) and without CICS (black bars) at time

points 0, 30, 60 and 120 min after treatment with transcriptional inhibitors. P-values (p) were calculated using a two-way ANOVA F-test

(***, p < 0.001 and **, p < 0.01).

https://doi.org/10.1371/journal.pone.0183401.g003
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sequenced by liquid chromatography-mass spectrometry (LC-MS). The proteins bound to the

beads during the protein extract cleaning process were also sequenced and used as negative

control. A total of 234 unique proteins co-purified with CICS1722 (Fig 4A, 4C and 4E—S1

Table) and 300 unique proteins co-purified with CICS4405 (Fig 4B, 4D and 4E—S2 Table)

were retrieved from the nucleus and cytoplasm over the three stages of the parasite’s life cycle.

For each analyzed CICS, we identified a group of stage-specific binding proteins (proteins that

were bound to the CICS in different life cycle stages). Five proteins co-purified with CICS1722

were identified in all the life stages tested, three of which were nucleic acid binding proteins:

LiAlba1 (LinJ.13.0270), LiAlba3 (LinJ.34.2410) and LinJ.35.2240 (RBP DRBD, putative). The

co-purification of both CICS1722 and 4405 with the proteins LiAlba3 and RBP DRBD suggests

that these proteins may be hub proteins, participating in the cores of different regulatory

complexes.

A total of 140 proteins co-purified with CICS1722 only in the promastigote stage, 55 pro-

teins only in the metacyclic stage, and 4 proteins only in the amastigote stage (Fig 4A). In con-

trast, only one protein was identified as co-purifying with CICS4405 in all the parasite stages:

the RBP LinJ.35.2240. The same protein co-purified with CICS1722 in all stages. A total of 272

proteins from procyclic promastigotes and 3 proteins from the metacyclic stage were uniquely

identified as co-purifying with CICS4405 (Fig 4B). Grouping of these proteins according to

their subcellular localization shows a preference of CICS1722 for binding to nuclear proteins

(Fig 4C), in contrast with CICS4405, which tends to bind cytoplasmic proteins (Fig 4D). Most

proteins that co-purified with both CICS are binding proteins (ATP binding, RNA binding

and nucleic acid binding—Fig 4E), reinforcing the hypothesis of CICS as protein-binding sites

in mRNA.

Identification of RBP motifs using Prosite / ExPASy [23] revealed a predominance of pro-

teins containing the eukaryotic RNA recognition motif (RRM) (Fig 5 and S4 Table); nine pro-

teins containing the RRM motif co-purified with CICS4405, and six of those also co-purified

with CICS1722. A total of thirty proteins were classified according to the presence of 23 differ-

ent motifs. From these only three (Lin.19.1010, a putative phenylalanyl-tRNA synthetase;

LinJ.21.0600, a putative RBP; and LinJ.27.1220, a hypothetical conserved protein) were found

solely co-purified with CICS1722 (Fig 5 and S4 Table).

In addition to those proteins found in both pull-down experiments with CICS1722 and

4405, ~46% of the proteins bound selectively to one or the other CICS. Because most known

RBP domains have multiple functions, as shown in diverse model organisms, it is difficult to

go beyond the identification of putative domains without functional correlations.

Table 3. Proteins retrieved in the pull-down experiments with indicated CICS.

Gel

Fragment

Gene ID Product Description Gene Ontology / Molecular Function

1722a LinJ.35.2240 RNA-binding protein, putative nucleic acid binding

1722b LinJ.34.2410 hypothetical protein, conserved nucleic acid binding

1722c LinJ.04.0750 60S ribosomal protein L10, putative structural constituent of ribosome

1722d LinJ.34.2410 hypothetical protein, conserved nucleic acid binding

1861a LinJ.32.0410 ATP-dependent RNA helicase,

putative

ATP binding, ATP-dependent helicase activity, helicase activity, nucleic acid

binding

1861c LinJ.35.2240 RNA-binding protein, putative nucleic acid binding

1861d LinJ.34.2410 hypothetical protein, conserved nucleic acid binding

3967c LinJ.34.2410 hypothetical protein, conserved nucleic acid binding

https://doi.org/10.1371/journal.pone.0183401.t003
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Fig 4. Proteins interacting with CICS during differentiation. The pull-down experiment was conducted using

nuclear or cytoplasmic protein extracts of L. donovani in procyclic promastigotes (mid-log-phase), metacyclic

promastigote cells (three days after the stationary phase) and axenic amastigotes. The resulting pull-downs

were subjected to SDS-PAGE, and the band at the top of the gel, containing all of the proteins, was excised and

submitted to mass spectrometry. The identified proteins were compared, and the common proteins were

grouped in the Venn diagram according to differentiation stage for (A) CICS1722 and (B) CICS4405, or

according to protein extract for (C) CICS1722 and (D) CICS4405. The proteins identified in each phase of
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4 Discussion

The main purpose of this study was to elucidate part of the machinery involved in Leishmania
gene expression control by revealing cis-acting elements and candidate trans-acting partner

proteins. A computational investigation was conducted, searching for conserved sequences in

the intercoding sequences of the known genomes of three different species: L. braziliensis, L.

infantum and L. major. We assumed that sequence conservation in divergent regions could

indicate selective pressure [11, 24]. It was hypothesized that the CICS might be involved in

differentiation are listed in the S3 Table according to identification letter. (E) Molecular function of the proteins

associated with CICS1722 and CICS4405. Unclassified proteins are those without classification in Gene

Ontology; those grouped as “Others” represent all Gene Ontology categories with less than three identified

proteins in the analysis.

https://doi.org/10.1371/journal.pone.0183401.g004

Fig 5. Domain distribution of L. infantum RBPs found to interact with CICS. The search was performed using Prosite (ExPASy).

The interacting CICS is indicated by a plus (+) symbol on the right side of the protein. Different domains are represented by specific

colors as shown in the key. Gene descriptions and categories are listed in S4 Table.

https://doi.org/10.1371/journal.pone.0183401.g005
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gene expression regulation, and a search was done for CICS that were part of the predicted 3’

UTRs of groups of genes sharing similar patterns of expression. Similar expression profiles

and a shared conserved cis-element in the 3’ UTR could suggest that such groups of genes rep-

resent post-transcriptional regulons.

Among the examined CICS, the study verified CICS1722 as a cis-element acting in the regu-

lation of gene expression. We demonstrated that CICS1722 had a negative effect on the modu-

lation of mRNA stability and identified putative CICS1772-binding trans-regulatory proteins.

The removal of CICS1722 from the 3’ UTR affected the control of NEO transcript levels in

all life cycle stages of the parasite (Fig 2). There was a twofold increase in reporter transcript

levels when CICS1722 was absent from the UTR. The observed variations in transcript levels

could be due to increased mRNA stability. In fact, blocking both transcription and SLRNA

methylation (via treatment with Sinefungin and Actinomycin D) led to increased levels of

reporter transcript lacking CICS1722 in both procyclic promastigotes and amastigotes com-

pared to reporter transcript bearing the intact 3’ UTR, consistent with more stable transcripts

in the absence of CICS1722 (Fig 3). Thus, CICS1722 may play a role in mRNA degradation,

since the absence of the CICS resulted in an accumulation of reporter mRNA in the cell.

Changes in reporter transcript levels were not observed in the absence of CICS4405, indicating

that this effect is not common to all CICS and is not related to random changes in the 3’ UTR.

The increased transcript stability in transcripts without CICS1722 may be due to changes in

the secondary structure of the 3’ UTR. RNA molecules tend to form highly stable secondary

and tertiary structures in vitro and in vivo [25, 26]. These structures may be important for

trans-acting factors to bind to mRNA, modify its stability, and participate in regulation of

RNA-related cellular processes [27]. In fact, computational analysis of the secondary structure

of the transcripts using the Vienna RNA website [28] revealed that CICS1722 removal led only

to the loss of the loop containing CICS1722 (S5A and S5B Fig), with no changes to the rest of

the structure. This suggests that the loop containing CICS1722 may play a central role in inter-

action with RBPs, resulting in destabilization of mRNA containing CICS1722. A similar analy-

sis of CICS4405 indicates that its removal causes several changes in the region containing the

CICS, including decreased size of the loop containing the CICS and the formation of internal

loops. However, these changes do not seem to interfere with the role of the 3’ UTR in this case

(S5C and S5D Fig).

Herein it was demonstrated that CICS1722 in the 3’ UTR environment enables binding to

RBPs and negatively controls mRNA stability. Conversely, while CICS4405 also presents a

binding site for RBPs, some of which also bind CICS1722, its removal did not affect mRNA

stability. While it is reasonable to speculate that CICS4405 might be a cis-element involved in

downstream events controlling gene expression, such as initiation of translation, at this point

we have no data to support or refute this hypothesis, which inspires further investigation.

Since regulatory cis-elements provide binding sites for proteins involved in the control of

gene expression, a search for CICS-associated RBPs was conducted using RNA pull-down

experiments (Table 3 and Fig 4). Most of the peptides identified using this approach are

nucleic acid binding proteins (Table 3 and Fig 4E). Interactions between proteins and nucleic

acids (DNA or RNA) are vital for recognizing, maintaining and accessing genetic information

[29, 30]. This interaction can regulate the transcription of nearby genes, not only for rapid

response during stress but also for long-term adaptation in cell physiology [31, 32]. Both

LiAlba3 and the RBP LinJ.35.2240 might act as hub proteins within these RNA-protein com-

plexes involving the tested CICS, since these proteins were found to co-purify with all the

CICS tested in different conditions (Table 3, Fig 4 and S3 Table). The RBP LinJ.35.2240 has

two RRM domains. These domains constitute the most abundant RNA-binding domains in

higher vertebrates. They are involved in post-transcriptional events of gene expression
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regulation, ranging from mRNA and rRNA processing to RNA transport, localization and sta-

bility [33, 34]. LiAlba3 contains an ALBA domain previously shown to interact with the trans-

lation machinery in Trypanosoma brucei [35] and with cis-elements involved in the control of

stability of amastin transcripts in Leishmania [36]. Similar to the RBP LinJ.35.2240, LiAlba3

co-purified with all the tested CICS across different life cycle stages. Identification of these pro-

teins as candidate partners of RNA cis-elements supports the hypothesis that CICS may regu-

late gene expression and represents a first step in the characterization of ribonucleoprotein

complexes (RNPs) that participate in the control of gene expression.

Although pull-down experiments were conducted with the relevant negative controls, we

cannot exclude possible promiscuity of binding between RBPs and short RNA sequences in an

in vitro assay that would not occur in vivo in the parasites. Therefore, to confirm the interac-

tion of these Alba and DRBD proteins in vivo with the studied CICS, in vivo crosslinking

experiments followed by pull-down and MS analysis must be conducted.

In addition, stage- and CICS-specific binding proteins were also identified. The hypotheti-

cal protein LinJ.32.1000 was found to interact only with CICS1722 in procyclic promastigotes

of the parasite. This protein has a thermonuclease domain, which is related to the hydrolysis of

DNA and RNA at the 5’ position of the phosphodiester bond, yielding 3’-mononucleotides

and dinucleotides [37]. Interaction with a thermonuclease could explain the rapid degradation

of mRNA containing CICS1722, a feature that was lost if the same 3’ UTR was tested in the

absence of CICS1722. It is worth noting that one of the proteins binding exclusively to CICS

4405 (encoded by LinJ.32.1830) was found to bear a PUM domain; this sequence motif is

known to interact with the 3’ untranslated region (3’ UTR) of specific target mRNAs and

repress their translation [38].

Interestingly, a common feature of pull-down experiments was a decrease in the number of

proteins identified as interacting with tested RNAs as the life cycle progressed from procyclics

to metacyclics to amastigotes. Whether this is due to a technical issue or represents a novel bio-

logical phenomenon must be further investigated. The interaction mechanism between CICS

and proteins seems to be life-stage-specific. In the promastigote stage, 171 and 297 proteins

were co-purified with CICS1722 and 4405, respectively. In the metacyclic stage, these numbers

decreased to 90 and 28, and in the amastigote stage, only 13 proteins and 1 protein were found

to be interacting with CICS1722 and 4405, respectively. Interestingly, the interactions with the

Alba protein LiAlba3 and the RBP LinJ.35.2240 seem to be independent of both life cycle stage

and CICS sequence.

When separately evaluating nuclear and cytoplasmic extracts for specific RNA-binding

activity, it was worthy of note that most of the proteins binding CICS1722 came from different

subcellular origins than those binding CICS4405. The number of nuclear proteins interacting

with 1722 was 197, compared to 7 cytoplasmic proteins. This balance was inverted for CICS

4405: 27 nuclear and 130 cytoplasmic. Because we used the same extracts for both pull-down

experiments, it is unlikely that the difference observed occurred due to a technical problem.

An in vivo crosslinking experiment followed by subcellular fractionation and pull-down must

be conducted to confirm this in vitro assay result and examine the potential biological signifi-

cance of this finding.

Interestingly, the observed difference might be related to distinct mechanisms of gene

expression control involving each of these cis-elements. Consistent with this, we found more

nuclear proteins associated with cis-element 1722, which is part of a complex with a role in

RNA stability. In contrast, the CICS4405-protein complex, rich in cytoplasmic proteins, may

be involved in downstream processes controlling gene expression.

Here, we present results that suggest that CICS1722 is a site for protein binding and that it

may be a cis-element within an RNP complex involved in the regulation of gene expression in
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Leishmania donovani. The current work indicates that the CICS databank may be a good

resource for unraveling the machinery involved in gene expression regulation in Leishmania.

Supporting information

S1 Fig. Cell culture and in vitro differentiation conditions. Schematic representation of in
vitro differentiation of L. donovani BOB promastigotes into axenic amastigotes and sample

uptake. The axenic promastigote cultures were maintained at 26˚C in M199, supplemented

with 10% FCS. The green ellipse represents the promastigote stage (between the 4th and 5th

day of culture); the purple ellipse represents the culture phase known as metacyclic (three days

after the beginning of the stationary phase). The enriched metacyclic cultures (purple ellipse)

were maintained in intermediary medium for 24 hours and then transferred to differentiation

medium (time 0 h in the differentiation procedure).

(TIF)

S2 Fig. Replacement of one allele of the endogenous gene by NEO, with or without

CICS. (A) Scheme of the genomic region of the gene LinJ.31.1630, one of the genes bearing

CICS1722 (purple bar) in the 3’ UTR. The schematic represents: the original locus; the

locus replaced by the reporter gene NEO, retaining the CICS (311630::NEO-1722); and the

locus replaced by the reporter gene NEO lacking the CICS (311630::NEO-Δ1722). (B) Sche-

matic representation of the genomic region of the gene LinJ.07.0150, one of the genes bear-

ing CICS4405 (blue bar) in the 3’ UTR. The scheme represents: the original locus; the locus

replaced by the reporter gene NEO, retaining the CICS (070150::NEO-4405); and the locus

replaced by the reporter gene NEO lacking the CICS (070150::NEO-Δ4405). The small

black arrows in panels A and B indicate the annealing positions for the primers used in the

PCR to confirm the correct integration of DHFR-NEO and NEO-DHFR, which anneal in

the NEO gene and upstream within the recombined region. The N and S in panels A and B

represent the restriction sites for NdeI and SmaI, respectively. The NdeI site was used to

remove the CICS of the 3’ UTR in the synthetic constructs. Open arrows represent the

genes up- and downstream of the genes we used in our study. Confirmation of correct

genomic integration was performed by PCR (C and E) and Southern blotting (D and F).

A fragment of ~300 bp of the NEO gene was used as a probe in the Southern blotting

experiment with SmaI-digested genomic DNA of each transfectant. (G and H) Genomic

DNA from transfectants was extracted and the region containing or not the CICS was

amplified in the transfectants using primers annealing in the NEO and 3’ UTR sequences

(green triangles). The PCRs were sequenced and the lack of CICS (pink triangle) is repre-

sented by a gap in the consensus sequence (consisting of 4 sequencing replicates for each

primer).

(TIF)

S3 Fig. Localization and conservation of CICS in the 3’ UTR of each gene bearing them.

The position of the CICS (Query) within the 3’ UTR of each gene (Subject) is depicted by a

nucleotide number counting from the first nucleotide after the stop codon of the gene. Align-

ments were produced with BlastN1 using the CICS sequences listed in Table 2 and the

L. infantum genome.

(TIF)

S4 Fig. Proteins interacting with CICS. Pull-down was carried out using biotinylated RNA

corresponding to each CICS and promastigote nuclear extract of L. donovani. The CICS used

in the pull-down experiment are indicated at the top of the gel. The control (CTR) was a bioti-

nylated RNA fragment of 28 nt not present in the Leishmania transcriptome. The gels were
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stained with Coomassie Blue and the excised bands (indicated in lowercase) were submitted to

mass spectrometry (MS).

(TIF)

S5 Fig. 3’ UTR secondary structure in the presence and absence of CICS. Schematic repre-

sentation of the predicted centroid secondary structure for the annotated 3’ UTR of the gene

LinJ.31.1630 with (A) or without (B) CICS1722 and the annotated 3’ UTR of the gene

LinJ.07.0150 with (C) or without (D) CICS4405. Predictions were performed by The Vienna

RNA Website [28]. The colors show positional entropy according to the scale below each

structure. The black arrow indicates the first base of the CICS in panels A and C. CICS are

shown as white bases.

(TIF)

S1 Table. Identified proteins interacting with CICS1722. Proteins from the promastigote

(pro), metacyclic (met) and amastigote (ama) stages were divided into nuclear (nuc) and cyto-

plasmic extracts (cyto). For detailed legend, see sheet 0.

(XLSX)

S2 Table. Identified proteins interacting with CICS4405. Proteins from the promastigote

(pro), metacyclic (met) and amastigote (ama) stages were divided into nuclear (nuc) and cyto-

plasmic extracts (cyto). For detailed legend, see sheet 0.

(XLSX)

S3 Table. Proteins interacting with both CICS1722 and CICS4405 in the nucleus and cyto-

plasm in each life stage of L. donovani.
(XLSX)

S4 Table. Motif identification for RBPs retrieved in RNA pull-downs.

(XLSX)
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