
This is a repository copy of Reasoning about uncertainty in empirical results.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156832/

Version: Accepted Version

Proceedings Paper:
Walkinshaw, N. and Shepperd, M. (2020) Reasoning about uncertainty in empirical results.
In: EASE '20: Proceedings of the Evaluation and Assessment in Software Engineering.
EASE '20: Evaluation and Assessment in Software Engineering, 15-17 Apr 2020,
Trondheim, Norway. Association for Computing Machinery (ACM) , pp. 140-149. ISBN
9781450377317

https://doi.org/10.1145/3383219.3383234

© 2020 Association for Computing Machinery. This is the author's version of the work. It is
posted here for your personal use. Not for redistribution. The definitive Version of Record
was published in EASE '20: Proceedings of the Evaluation and Assessment in Software
Engineering, http://dx.doi.org/10.1145/3383219.3383234.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reasoning about Uncertainty in Empirical Results

Neil Walkinshaw
n.walkinshaw@sheield.ac.uk
The University of Sheield

Sheield

Martin Shepperd
martin.shepperd@brunel.ac.uk
Brunel University London

Uxbridge

ABSTRACT

Conclusions that are drawn from experiments are subject to varying

degrees of uncertainty. For example, they might rely on small data

sets, employ statistical techniques that make assumptions that are

hard to verify, or theremay be unknown confounding factors. In this

paper we propose an alternative but complementary mechanism

to explicitly incorporate these various sources of uncertainty into

reasoning about empirical indings, by applying Subjective Logic.

To do this we show how typical traditional results can be encoded as

łsubjective opinionsž ś the building blocks of Subjective Logic. We

demonstrate the value of the approach by using Subjective Logic

to aggregate empirical results from two large published studies

that explore the relationship between programming languages and

defects or failures.

CCS CONCEPTS

· General and reference → Empirical studies; · Computing

methodologies→ Uncertainty quantiication.

ACM Reference Format:

Neil Walkinshaw and Martin Shepperd. 2020. Reasoning about Uncertainty

in Empirical Results. In Proceedings of EASE ’20: Evaluation and Assessment

in Software Engineering. ACM, New York, NY, USA, 10 pages. https:⁄⁄doi.

org⁄10.1145⁄nnnnnnn.nnnnnnn

1 INTRODUCTION

The task of analysing and communicating empirical data inevitably

requires the ability to reason about uncertainty. There may be

experimental factors that are beyond our control. Results might be

dispersed and not point to a speciic outcome. Data may be subject

to measurement errors or sampling biases.

This uncertainty is generally impossible to eradicate. Good prac-

tice dictates that indings should be accompanied by appropriate

caveats and metrics to support a fully informed interpretation.

These might include extensive threats to validity, power statistics,

signiicance statistics, conidence intervals, probabilistic models

and openly-available data and materials to enable replications.

Within the Software Engineering community there have been

several recent laudable initiatives that have sought to improve the

trustworthiness of empirical results. This has been spurred by nu-

merous negative indings, both from broader scientiic community

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and⁄or a
fee. Request permissions from permissions@acm.org.

EASE ’20, April 2020, Trondheim, Norway

© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x⁄YY⁄MM. . . $15.00
https:⁄⁄doi.org⁄10.1145⁄nnnnnnn.nnnnnnn

[17] as well as the Software Engineering community itself [12, 19],

that highlight major problems with the reliance on traditional ‘fre-

quentist' statistics. For example Jirgensen et al. [19] suggest that

up to 40% of results that are deemed to be łstatistically signiicantž

could be incorrect. To address this apparent crisis, Software Engi-

neering conferences are increasingly supporting replicability by

encouraging artefact submissions, the Open Data initiative is be-

ing increasingly promoted, as is the use of Bayesian techniques to

explicitly reason about uncertainty in empirical results [12, 14].

Despite this increasing armoury of statistical tools, current ap-

proaches can be diicult to apply, particularly whenmultiple studies

are involved. An overall łuncertaintyž, whether conveyed as a prob-

ability distribution, p-value, or conidence-interval, is inherently

tied to a speciic experimental setting. When there are multiple

experiments, each will invariably have its own sources of uncer-

tainty, which can be diicult to reconcile when the results of the

experiment are combined. This becomes especially problematic

when (for example):

• The data from the studies are measured using diferent tech-

niques and are associated with diferent measurement errors.

• The studies use diferent empirical paradigms (e.g., surveys

and quasi-experiments).

• The studies sample non-randomly from disjoint or partially-

overlapping populations.

The broader challenge of łfusingž together sources of uncertain

data is well-established. In the context of statistics, work on using

uncertainty as an explicit component to reason about epistemic

beliefs dates back to the work of Dempster and Shafer [33]. This

line of work has, over the years, given rise to Subjective Logic [21]

- a framework for reasoning about complex phenomena that are

subject to uncertainty. Such frameworks have been successfully ap-

plied to reason about a wide variety of decision problems, spanning

ields such as Sensor Fusion [23], Law [22], Argumentation Theory

[3], safety critical systems [8, 25], and vehicular communications

systems [7].

In this paper we show how Subjective Logic can provide a useful

framework within empirical software engineering to handle the

problems of uncertainty that arise in empirical studies. Most im-

portantly, it ofers a degree of lexibility, enabling the researcher

to combine indings from studies that might be diverse in nature,

whilst explicitly factoring-in their respective underlying uncertain-

ties. We do not suggest that Subjective Logic should replace other

reasoning mechanisms such as meta-analysis but we do believe it

is complementary.

The rest of this paper is structured as follows. In Section 2 we

provide an overview of existing approaches, and introduce a small

motivating example, where we present the results from a multi-

site study comparing test-driven development to iterative test-last

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EASE ’20, April 2020, Trondheim, Norway Neil Walkinshaw and Martin Shepperd

development [34]. In Section 3 we provide an introduction to Subjec-

tive Logic. In Section 4 we show how Subjective Logic can be used

to examine experimental outcomes, illustrating some of the key

steps with respect to the motivating example presented in Section

2. In Section 5 we use Subjective Logic to combine data from two

(loosely) related published studies on the fault ⁄ failure proneness

of programming languages [26, 30]. Finally, in Section 6 we close

with conclusions and avenues for future work.

2 BACKGROUND

We start with an overview of existing approaches to aggregate em-

pirical results. This is followed by an introduction to our motivating

example, which will also be used to illustrate our application of

Subjective Logic to software engineering.

2.1 The Challenge of Aggregating Empirical
Results

Software Engineering experiments commonly comprise the collec-

tion of response data (in a controlled setting) to evaluate diferent

treatments [36]. The analysis typically involves the application

of traditional statistical techniques, such as testing for statistical

signiicance or establishing efect-sizes with associated conidence

intervals [9, 12]. Using practitioners is challenging, because devel-

oper time is at a premium [10]. Moreover projects and settings

can vary signiicantly in terms of scale and complexity from one

domain to the other. As a consequence, indings are subject to a

considerable degree of intrinsic uncertainty and need to be treated

with some circumspection.

There are numerous approaches that can be used to analyse

or aggregate empirical results. The choice of approach critically

depends on the nature of the studies under analysis. In their review

of candidate approaches [31], Santos and Juristo refer to three

commonly used approaches: Narrative Synthesis, Aggregated Data,

and Individual Participant Data (they also discuss the aggregation

of p-values, which is problematic and not widely used in Software

Engineering, so we do not cover it here). We do however include a

further approach that is particularly relevant to Subjective Logic -

Bayesian Analysis. We briely review these four approaches here.

Narrative Synthesis [28] is used to provide a textual summary

of empirical results, with the aim of forming an overall conclusion.

It is widely used because it is straightforward to apply, but it does

not provide quantitative results (e.g., joint efect-sizes or p-values)

and can also lead to ambiguities [31]. In addition, results are not

easy to reproduce.

Aggregated Data (AD) or ‘meta-analysis of efect-sizes' is in-

creasingly used in Software Engineering [31] (we will be providing

an example in Figure 1). AD is popular because it can accommodate

experiments with diferent designs and response variable scales,

and can handle heterogeneity [31]. Moderating factors (e.g., pro-

grammer experience in developer studies) can be handled by per-

forming a meta-regression with each moderating factor [32] (i.e.,

to it a line between scores given for programmer experience and

the efect-size). This approach to handling moderating factors can

be problematic, in the sense that the core results of the AD (efect

sizes and conidence intervals) are presented separately from the

meta-regression results. If there are many moderating factors, this

can make the outcomes of the experiment as a whole diicult to

interpret.

Individual Participant Data mega-trial (IPD) refers to the

process of pooling the raw data from multiple experiments, and

re-analysing it as if the pooled data were obtained from a single,

large experiment. Santos and Juristo note that this can produce

biased results if there are diferences in the design of the studies Ð

even subtle ones Ð or diferent numbers of experimental units. One

further obvious obstacle is that it depends upon the availability of

the raw data, which is not the case for any of the other techniques

reviewed here. If the raw data is available, however, it can be very

helpful for deriving uncertainty values.

Bayesian analysis refers to a family of techniques that take

advantage of Bayes' Theorem, the statement that the posterior

probability is proportional to the likelihood times the prior. If any

two of these are known, it is possible to derive the third. This pro-

vides a powerful framework, within which it is possible to examine

the relationship between potential causes and efects, whilst in-

corporating assumptions about prior probabilities. Furia et al. [12]

have shown how Bayesian analysis can improve upon traditional

łfrequentistž counterparts (we shall be re-visiting the same data

they used for our own case study in this paper).

One weakness of Bayesian analyses is the requirement for prior

probabilities, which can be diicult to obtain [13]. In the absence

of a prior, Bayesian approaches are forced to resort to using łun-

informativež priors such as the uniform prior. In other words, the

probabilities of two propositions A and Amight be deemed to be

equal (0.5 each). The problem is that term ‘uninformative' is in fact a

misnomer; to indicate that two propositions are equally likely is not

equivalent to the statement that their respective probabilities are

in fact unknown. This apportioning of arbitrary prior probabilities

can end up leading to skewed results [24].

2.2 Running Example

As a running example we refer to a multi-site experiment carried

out by Tosun et al. [34] (Santos and Juristo subsequently used this

to motivate their review of meta-analysis ⁄ experiment aggrega-

tion techniques [32]). The experiment investigated the efect of

test-driven development (TDD) on software quality. For this, par-

ticipants were split into two groups, where one group applied TDD

and the other followed the Iterative-Test Last (ITL) process. The

response variable is the łfunctional correctnessž of the resulting

software, measured as the percentage of passing test cases. Some

key data-points and summary statistics1 are shown in Table 1. They

consist of three small-scale experiments at an industrial partner

(F-Secure), preixed with ‘FS' in the table, and one larger student-

based study at Universidad Politecnica de Madrid (denoted ‘UPV'

in the table).

The task of determining łthe outcomež for any of the individual

experiments is challenging. The usual approach is to undertake a

meta-analysis [2, 15]. Figure 1 shows the forest plot of a random

1The summary statistics we have computed here are slightly larger than those pub-
lished by Santos et al. [32] who use a diferent random efects model to ours, because
we were unable to trace the correlation-between-groups data that would have been
required to parameterise the Q-statistic estimator that they incorporated. Note, also
the power calculations are based upon the post hoc efect sizes which are very likely
upwardly biased [18].

Reasoning about Uncertainty in Empirical Results EASE ’20, April 2020, Trondheim, Norway

Table 1: Key statistics for the multi-site testing experiments of Tosun et al. [34]

Experiment
Experience Scores Results (per group) Summary Results

Programming Java Unit JUnit Treatment N Mean SD Hedge’s g CI(95%) Power

F-Secure H 3.67 2.33 2.17 2.17
ITL 6 30.71 36.58

0.25 [-0.89,1.39] 0.071
TDD 6 40.23 33.43

F-Secure K 2.91 1.82 1.64 1.27
ITL 11 22.17 20.44

0.44 [-0.40,1.29] 0.179
TDD 11 35.42 35.40

F-Secure O 3.29 2.71 2.71 2
ITL 7 16.05 20.81

1.85 [0.6,3.11] 0.93
TDD 7 68.97 31.53

UPV 2.36 1.88 1.04 1
ITL 31 33.38 39.79

1.34 [0.78,1.91] 0.999
TDD 29 77.16 21.04

RE Model

UPV

F−Secure O

F−Secure K

F−Secure H

1.34 [0.78, 1.91]

1.85 [0.60, 3.11]

0.44 [−0.40, 1.29]

0.25 [−0.89, 1.39]

1.11 [0.39, 1.82]

Figure 1: Forest plot of random-efects model for the multi-

site testing experiments of Tosun et al. [34]

efects model. Some of the studies (F-Secure H and K) have small

numbers of participants, and produce results with large standard

deviations, which explains their low power (this is conveyed by

the size of the centre point for each experiment. Note that that the

pooled result is shown by the diamond and denoted łRE [random

efects] model". Aside from this statistical uncertainty conveyed

by the conidence intervals in the forest plot, there is also the un-

certainty from potential moderators such that the appropriateness

of the experimental design and analyses, and the experience of

participants. When trying to aggregate the various results (e.g., via

meta-analysis), the analyst also has to accommodate the hetero-

geneity of the experiments. As highlighted by Santos and Juristo

[32], the results do not appear to be consistent, so the analyst has

to determine whether this is because of diferences in the experi-

mental setting Ð for instance, the numbers of participants and their

diference in experience Ð and has to adjust for this potential bias.

Ultimately, empirical results are diicult to interpret because

they are beset by diferent degrees and types of uncertainty that

can be diicult to capture. Currently, the task of interpreting and

fusing-together uncertainties from diferent statistics is largely left

to the intuition of the analyst. In this paper we try to make this

process more transparent and explicit with the help of Subjective

Logic.

3 BELIEF MODELLING, UNCERTAINTY, AND
SUBJECTIVE LOGIC

Over the past 50 years (spurred by the emergence of AI in the

60s and 70s) numerous probabilistic frameworks have been devel-

oped to reason about uncertain phenomena. These (in simplistic

terms) seek to ‘... combine the capacity of probability theory to handle

likelihood with the capacity of binary logic to make inference from

argument structures.’ [21]. These enable a modeller to link propo-

sitions (łbeliefsž) with probabilities. Popular approaches include

Fuzzy Logic [37], Dempster Shafer theory [33], and Bayesian anal-

ysis techniques such as Bayesian Networks [27]. To motivate our

choice of probabilistic logic, it is irst necessary to provide a more

detailed deinition of ‘uncertainty'.

Deinition 3.1. By ‘uncertainty', we refer to the situation where a

lack of information or knowledge inluences our ability to produce a

deinitive description or quantiication of some proposition or belief.

This lack of information can come in various forms [6], such as the

inability to derive a irm result because of the intrinsic randomness

or variability of some variable (aleatoric uncertainty), or because

of the absolute absence or lack of information or data (epistemic

uncertainty).

These sources of uncertainty (both types feature in our running

example) are diicult to characterise and measure. It is impossible,

for example, to be certain that we have considered all of the possible

confounding factors in the TDD experiment, especially since we

were not involved in designing or running the actual experiments).

This leads us to second-order uncertainty [13] - our trust (or lack

thereof) in our assessment of the various uncertainties.

Dempster Shafer theory [33] is particularly useful because it

provides us with a basis for accommodating these diferent lev-

els of uncertainty. In Dempster Shafer theory (as is the case in

most conventional probabilistic logics), a proposition about some

phenomenon (a łbeliefž) is characterised as a probability (e.g., the

belief that application of some testing methodology improves soft-

ware correctness). However, instead of forcing us to pick a ‘hard'

probability (which is not possible if we consider the evidence from

the above study), we can associate this with an explicit measure

of uncertainty (e.g., we might consider the heterogeneity between

studies, weighing up the expertise versus power, etc.).

In his work on Subjective Logic [21], which is derived from

Dempster Shafer theory, Jisang provides a helpful formalismwithin

which to model and reason about beliefs. The building-blocks to

EASE ’20, April 2020, Trondheim, Norway Neil Walkinshaw and Martin Shepperd

BeliefDisbelief

Uncertainty

0 0

0

11

1

b + d + u = 1, {b,d,u} ∈ [0,1]
Belief

Positive effect
Disbelief

negative effect

Uncertainty

Data are completely
uninformative

No effect

A
Measured by

effect-size,

correlation, …

B
Measured by

power, CI,

moderating

factors, …

(a) Basic dimensions. (b) Mapping from experiments.

Figure 2: Barycentric triangles.

model basic beliefs are referred to as subjective opinions. In this paper

we focus on binomial opinions, where the opinion revolves around

the truth or falsehood of some x (as opposed to a multinomial

opinion where a belief can have multiple dimensions ś though

these can also be readily represented in Subjective Logic [21]).

Deinition 3.2. For a (binomial) subjective opinion, letX = {x, x}

be a binary domain with binomial random variable X ∈ X. A sub-

jective opinion about the truth of x is represented as a quadruplet:

ωx = (bx ,dx ,ux ,ax):

• bx : Belief mass in support of x being true.

• dx : Disbelief mass in support of x being false.

• ux : Uncertainty mass representing the ‘vacuity of evidence'.

• ax : Prior probability of x without any evidence. For the sake

of simplicity, we will assume the convention that without

any prior evidence, the prior probability ax = 0.5.

For an opinion to be valid, bx + dx + ux = 1.

There are several special types of opinions:

• bx = 1 or dx = 1: absolute opinion - equivalent to Boolean

true or false,

• ux = 0: dogmatic opinion ś a traditional probability,

• ux = 1: a vacuous opinion with no belief or disbelief.

A subjective opinion can be visualised as an equilateral barycen-

tric triangle [20], where each of the vertices represents the maxi-

mum for belief, disbelief and uncertainty respectively. This coordi-

nate system is illustrated in Figure 2(a).

Deinition 3.3. Given an opinionωx , the projected probability P(x)

[21] can be deined as P(x) = bx + axux .

Deinition 3.4. The beta-distribution refers to a family of distri-

butions that are a continuous version of the binomial distribution,

which make them appropriate for modelling probabilities [8]. Its

probability density function is deined by two ‘shape' parameters

α and β , and is described by:

f (x ;α, β) =
1

B(α, β)
xα−1(1 − x)β−1, 0 < x < 1

where α > 0, β > 0 and B(α, β) is the beta function.

Jisang has shown how subjective opinions can be mapped to

the α and β parameters [21], making it possible to interpret a

single subjective opinion ‘coordinate' as continuous distribution,

where the ‘density' represents the probability. A distribution with

a well-deined peak indicates that the probability is highly con-

centrated around a particular point, whereas a latter distribu-

tion indicates a higher uncertainty. Given some subjective opinion

ωx = (bx ,dx ,ux ,ax) (whereW = 2 by default): α = bx ∗W
ux
+ax ∗W ,

and β =
dx ∗W
ux
+ (1 − ax) ∗W .

Subjective opinions can be combined (or separated) with various

operators [21]. In this work we will use łbelief fusion" operators.

Their purpose is to ‘fuse' evidence from diferent sources about a

particular phenomenon, in order to łproduce an opinion that better

relects the collection of diferent opinions, or that is closer to the

ground truth than each opinion in isolationž [21]. For a group of

subjective opinions, there are many diferent ways in which they

could be combined, and choosing the wrong operator can yield

counter-intuitive results (this was the basis for Zadeh's criticism of

Dempster Shafer theory [38] which, at the time, had only a single

Belief Fusion operator).

In this work we will be fusing opinions that represent multiple

experimental results. To accommodate this we apply a Weighted

Belief Fusion operator, originally proposed by Jisang [21]. This

operator produces a fused opinion that attributes weight to its

constituent opinions based on their conidence; opinions with less

uncertainty are given more weight. The version we use here is a

binomial version of the multi-source (i.e., associative) adaptation

of Jisang's original binary operator by van der Heijden et al. [35],

which allows us to accommodate more than two opinions.

Deinition 3.5. The Weighted Belief Fusion for multiple sources:

LetA be a inite set of actors and let ωA
X
= (bA

X
,dA

X
,uA

X
,aA

X
) denote

the opinion held by A ∈ A over X . The weighted belief fusion of

these opinions ω ⋄̂A
X
= (b ⋄̂A

X
,d ⋄̂A

X
,u ⋄̂A

X
,a⋄̂A

X
) is deined as below2:

b ⋄̂A
X
=

ΣA∈Ab
A

X
(x)(1−uA

X
)
∏

A′∈A,A′,A uA
′

X

(ΣA∈A
∏

A′,A uA
X
)−|A | ·

∏
A∈A uA

X

u ⋄̂A
X
=

(|A |−ΣA∈Au
A

X
)·
∏

A∈A uA
X

(ΣA∈A
∏

A′,A uA
X
)−|A | ·

∏
A∈A uA

X

d ⋄̂A
X
= 1 − (b ⋄̂A

X
+ u ⋄̂A

X
)

a⋄̂A
X
=

ΣA∈Aa
A

X
(x)(1−uA

X
)

|A |−ΣA∈Au
A

X

4 ANALYSING EXPERIMENTAL RESULTS
WITH SUBJECTIVE LOGIC

Let us recall our running example from Section 2.2. For every site

of the multi-site study, the results (Table 1) indicate some positive

efect of TDD versus ITL. However, each result is subject to various

sources of uncertainty - wide conidence intervals, low power, and

other moderating factors such as the experience of the candidates.

It is important that any communication of these results and con-

clusions captures this associated uncertainty. The challenge we

address in this paper is to develop a process by which to express

the magnitude and extent of this uncertainty in a precise manner.

We believe that Subjective Logic presents a helpful framework

within which to capture and reason about this uncertainty. In-

stead of interpreting data-points and their associated statistics at

2For space reasons we restrict ourselves to the situation where (∀A ∈ A : uA
X
,

0) ∧ (∃A ∈ A : uA
X
, 1) - the other cases are also deined by van der Heijden et al.

[35].

Reasoning about Uncertainty in Empirical Results EASE ’20, April 2020, Trondheim, Norway

face-value, casting them as Subjective Opinions enables us to as-

sociate them with a degree of uncertainty. The Subjective Logic

then enables us to aggregate and compare results in such a way

that uncertainty becomes a primary factor. This section presents

an approach to derive subjective opinions from an experiment.

In order to reason about experimental data in terms of Subjective

Logic it is necessary to (1) decide which experimental outcomes to

represent as subjective-opinions, and (2) to populate these opinions

with appropriate belief, disbelief and uncertainty values. Given the

diverse range of empirical settings and analyses, we endeavour to

present an approach that is lexible and non-prescriptive. To ofer a

more concrete impression of how this might be applied in practice,

we illustrate our approach with reference to TDD versus ITL study

from Section 2.2.

4.1 Decomposing Experiments into Subjective
Opinions

Every subjective opinion represents a belief in some proposition,

with an associated measure of uncertainty. There are two types of

subjective opinion; those that are computed as the result of some

operation (e.g., belief-fusion), and those that are obtained directly

from data (or human input). In order to apply Subjective Logic in an

experimental setting, we start by identifying a subjective opinion

for each research question.

It is important to highlight that this application of Subjective

Logic is currently restricted to research questions that can be

phrased or interpreted as ‘yes or no' questions. The subjective

opinions we refer to in this paper are binomial3. The point is that,

in an empirical context, the answer to such questions is often un-

certain, and subject to doubt (which is what motivates our use of

Subjective Logic).

Each high level subjective opinion (corresponding to a research

question) is obtained by combining (‘fusing') several low-level sub-

jective opinions, which represent the łinformation sourcesž from

which the answer is to be derived. The granularity of these low-

level subjective opinions is lexible. The experimenter might wish

to wrap several data-analyses into a single subjective opinion, or

might wish to create a more granular set of opinions where each

represents a separate information source. This lexibility means that

the approach is straightforward to extend to the scenario discussed

in Section 4.2.1, where we are seeking to aggregate the results from

multiple experiments. For such cases (as we shall demonstrate) the

subjective opinions that are computed for each individual exper-

iment can themselves be fused together to provide an aggregate

subjective opinion.

4.2 Forming Subjective Opinions from
Experimental Data

For each low-level source of information that feeds into an answer

to a research question (e.g., the outcome of a statistical analysis),

it is necessary to formulate a subjective opinion. In our setting,

the meaning of an individual subjective opinion is illustrated in

Figure 2(b): A high belief value should support a positive answer to

3Subjective Logic does ofer other types of opinions - Multinomial and Hyper opinions
[21], which could in principle ofer the basis for capturing results for more complex
research questions, and this is an avenue we intend to explore in future work.

the high-level research question. A high disbelief should support

a negative answer. A high degree of uncertainty should reduce

the extent to which the answer to the overall research question is

supported in either direction.

The question of how to deine the values of belief, disbelief, and

uncertainty is highly dependent on the nature of the sources of

information. They may be possible to derive entirely from statistical

data; efect-sizes can modulate belief and disbelief, and measures

such as Conidence Intervals or statistical power can modulate the

uncertainty. However in some settings, for example for qualitative

studies or for situations where the analyst is aware of threats to the

validity of the data that do not manifest themselves in the statistics,

it will be necessary to provide the subjective-opinion values by

hand, ideally by consensus with other researchers.

Regardless of whether the opinion values are derived automati-

cally or by hand, there is a speciic two-phase process that can be

adopted. For some source of information x we start by deriving a

measure of uncertainty ux about that source (between 0 and 1). For

example, if the source of information is a statistic, we could map the

conidence interval to a value between 0 (there is no interval at all)

and 1 (the conidence interval is too large for the statistic to convey

any useful information). The overriding constraint for subjective

opinions is that the bx +dx +ux = 1. Knowing ux provides us with

a ixed probability (or belief) mass (1−ux) that can be split between

bx and dx .

For this split, we start with some value e that represents the

source of information in question (as an example, let it be some

efect size statistic). A high value of e should correspond to a high

belief and a low disbelief, and a low value should correspond to a

low belief and a high disbelief. To map this to bx and dx we irst

scale e such that 0 ≤ e ≤ 1. From this, bx can be calculated as

bx = e ∗ (1 − u), and dx can be calculated as dx = (1 − e) ∗ (1 − u).

In other words, if e = 1, bx is at its highest possible value and dx at

its lowest, and vice versa if e = 0.

4.2.1 Illustration of Running Example. We illustrate the approach

by applying it to the running example for the TDD study. For

this the top-level subjective opinion represents our belief in the

hypothesis that TDD outperforms ITL. We wish to aggregate the

results for all of the experiments, so we capture the outcomes for

each experiment as a single subjective opinion.

We start by, for each low-level subjective opinion, computing an

uncertainty value. There are several possible approaches by which

to derive an uncertainty value. One could provide a value based on

intuition, e.g., by scaling a Likert-scale assessment to the interval

between 0 and 1. Alternatively, one could use the statistical data

in a more direct manner. For this example we have used a simple

formula, provided in Appendix A. For the F-Secure H example, this

gives us a value of 0.43 (leaving us with a remaining belief mass of

0.57 to divide between belief and disbelief.

To determine how this belief mass is divided up, we produce

our value e from the conidence interval around the efect size,

by computing its extent as a proportion of the maximum extent:

e = 1 − cimax−cimin

(2.7−−2.7)
. A positive efect (which we limit at 2.7 [11])

indicates a strong airmative answer to the research question. A

negative efect size (which we limit at -2.7) indicates a negative

answer. Given these limits, we calculate e =
efect−(−2.7)
(2.7−−2.7)

. For our

EASE ’20, April 2020, Trondheim, Norway Neil Walkinshaw and Martin Shepperd

Table 2: Subjective opinions for all experiments in running

example

Experiment Belief Disbelief Uncertainty

F-Secure H 0.31 0.26 0.43

F-Secure K 0.32 0.24 0.45

F-Secure O 0.24 0.05 0.71

UPV 0.20 0.07 0.71

Figure 3: Fusion of (subjective opinions of) results from four

experiments into a single fused subjective opinion.

F-Secure H study, the efect size is 0.25, which gives us an e value

of 0.55.

Having computed e , we obtain b and d :

• b = (0.55) ∗ (1 − 0.43) = 0.31

• d = (1 − 0.55) ∗ (1 − 0.43) = 0.26

This results in a subjective opinion of (b = 0.34,d = 0.28,u =

0.38). The full set of subjective opinions for all of the experiments

are shown in Table 2. The visualisations of the barycentric triangles

and the corresponding beta distributions are shown in the bottom

box (labelled ‘All') in Figure 3. NB the beta distribution [0,1] is

rescaled to [-2.7, 2.7] since this is our range of admissible efect

sizes. These show a clear diference between the F-Secure H and K

experiments, which have a moderate efect size but less uncertainty,

and the F-Secure O and UPV experiments, which have a higher

efect size but also more uncertainty. The higher uncertainty is

relected in the spread the distributions; higher certainty leads to a

more discernible peak.

4.3 Fusing Experimental Results

When there are multiple results, either within a single experimental

setting or from multiple replications of the same experiment, it is

often helpful to be able to aggregate them [32]. For this we use the

Weighted Belief Fusion operator [35] (see Deinition 3.5), which

attributes a greater weighting to opinions with less uncertainty:

for a set of experiments E on some phenomenon X , where each

experiment E ∈ E produces a subjective opinion ωE
X
, we compute

the fusion ω ⋄̂E
X

.

Although we choose this operator here, there are numerous al-

ternative operators that could be considered, depending on the an-

alyst's goals when it comes to combining or aggregating evidence.

For example, the Averaging Fusion operator combines opinions

without weighting them, or the Cumulative Fusion operator com-

bines opinions in such a way that every additional piece of evidence

will only ever increase the fused belief level [3, 21].

4.3.1 Illustration on Running Example. To illustrate the fusion, we

combine the subjective opinions for all four experiments shown in

Table 2. Here, the set of experimentsE = {ωf sH ,ωf sK ,ωf sO ,UPV },

andX represents the belief that TDDoutperforms ITL. TheWeighted

Belief Fusion ω ⋄̂E
X

gives the following results: b ⋄̂E
X
= 0.29,d ⋄̂E

X
=

0.20,u ⋄̂E
X
= 0.51.

This fused opinion and the corresponding beta distribution are

shown in the top of Figure 3. The projected probability (Deinition

3.3) for the fused opinion is 0.55, albeit with high level of uncertainty,

which leads to the broad arc of the beta distribution, without a

distinctive peak. It is worth highlighting that this subjective opinion

(and corresponding beta distribution) are all we need to interpret

the results. All of the data-points that convey information about the

various sources of uncertainty - moderators, conidence intervals,

etc., are incorporated into the uncertainty value.

5 CASE STUDY: A META ANALYSIS OF THE
RELATIONSHIP BETWEEN
PROGRAMMING LANGUAGES AND
DEFECTS

For our case-study we re-examine data from two studies on the

defect-proneness of diferent programming languages. We use data

from a study by Nanz and Furia, using the Rosetta Code archive

to compare failure rates (and other characteristics) of diferent

program languages [26]. We supplement this with the results of

a diferent study on programming language defects by Ray et al.

[29] that was referred to by Nanz and Furia. The study by Ray et al.

does not record execution failures, but instead records defects as

bug-ixes mined from GitHub repositories.

This presents an interesting aggregation challenge. The studies

use difering methodologies and collect diferent types of data from

diferent sources. Whereas we access the raw data in the Nanz and

Furia study, we only access the summary data in the Ray study. Both

sources of data are subject to very diferent types of uncertainty.

For our analysis, we have made the full code and dataset avail-

able4. This not only contains the code used to implement the fusion

operator and to visualise the results, but also provides a record of

the procedures used to extract the belief, disbelief, and uncertainty

values from the data.

5.1 Subjective Logic Analysis

For our analysis we start with the Nanz and Furia study, and create

a subjective opinion for failure-proneness for each language. For

4https:⁄⁄igshare.com⁄s⁄5b26abc456f34664f415

https://figshare.com/s/5b26abc456f34664f415

Reasoning about Uncertainty in Empirical Results EASE ’20, April 2020, Trondheim, Norway

Table 3: Table with summary data and computed subjective opinions for each language

Language Failures Executions Timeouts Implemented Efect CI lower CI upper Belief Disbelief Uncertainty

C 51 442 0.11 0.81 0.35 0.30 0.39 0.30 0.56 0.13

Python 215 751 0.10 0.92 0.56 0.53 0.60 0.52 0.40 0.08

Ruby 71 563 0.08 0.87 0.36 0.32 0.41 0.33 0.57 0.10

Fused weak 0.39 0.5 0.1

C sharp 18 307 0.20 0.58 0.25 0.19 0.30 0.19 0.57 0.24

F Sharp 24 236 0.09 0.46 0.33 0.26 0.39 0.24 0.50 0.25

Go 8 427 0.09 0.80 0.14 0.09 0.19 0.12 0.75 0.13

Haskell 25 426 0.12 0.68 0.25 0.20 0.29 0.20 0.62 0.18

Java 80 339 0.11 0.63 0.51 0.45 0.56 0.41 0.40 0.19

Fused strong 0.22 0.59 0.18

Figure 4: Visualisation of subjective opinions for failure data from study by Nanz and Furia, with fusion into strongly and

weakly-typed languages.

this we use the size of the conidence intervals, the numbers of

missing implementations (missing implementations correspond to

an absence of data), and the number of timeouts (a timeout may

not necessarily amount to a failure) to form an uncertainty score.

The function that computes this from the data is in the data and

code-pack for this paper. The results are shown in Table 3, and

the corresponding barycentric triangles and Beta distributions are

visualised in the bottom half of Figure 4. From this we note that, for

all of the weakly-typed languages, the uncertainty scores are quite

low, whereas for all of the strongly-typed languages apart from

Go, there is a much higher degree of uncertainty (mainly because

of lower availability of implementations and a higher number of

time-outs).

We now repeat this process for an earlier study by Ray et al.

[29]. This analysis spanned a selection of 728 GitHub projects,

used commit messages to identify bug-ixes, and used these to

derive statistics about the prevalence of defects, diferentiated by

the language in which they were written. For this analysis, the

authors itted a Negative Binomial Regression (NBR) model [16] to

the data, such that each language was associated with a coeicient

(in the range [-1,1]) and a p-value. Since the original study was

carried out, Ray et al. followed-it up with a re-analysis of the data

[30]. The study has since also been replicated in a more in-depth

manner by Berger et al. [1].

Clearly there are fundamental diferences between Nanz and

Furia's, and the study by Ray et al.. The former counts defects in

terms of observed execution failures, whereas the latter counts

EASE ’20, April 2020, Trondheim, Norway Neil Walkinshaw and Martin Shepperd

Table 4: Summary results from NBR produced by Rayet al.

Label Coef. Std.err. Proj. Bel. Dis. Unc.

C 0.11 0.04 220 0.36 0.23 0.40

C++ 0.18 0.04 149 0.45 0.21 0.34

Clojure -0.30 0.05 60 0.14 0.54 0.32

CofeeScript 0.06 0.05 92 0.29 0.23 0.48

Erlang -0.03 0.05 51 0.24 0.27 0.49

JavaScript 0.03 0.03 432 0.28 0.25 0.47

Objective-C 0.15 0.05 93 0.37 0.20 0.42

Perl -0.12 0.08 106 0.21 0.34 0.45

PHP 0.10 0.05 109 0.33 0.22 0.46

Python 0.08 0.04 286 0.33 0.24 0.43

Ruby -0.13 0.05 188 0.23 0.38 0.39

TypeScript 0.15 0.10 14 0.33 0.18 0.49

Fused weak 0.30 0.27 0.42

C sharp -0.02 0.05 77 0.25 0.27 0.49

Go -0.11 0.06 54 0.21 0.32 0.47

Haskell -0.26 0.06 55 0.15 0.47 0.38

Java -0.06 0.04 141 0.23 0.30 0.47

Scala -0.24 0.05 55 0.16 0.45 0.39

Fused strong 0.25 0.35 0.40

defects in terms of recorded source-code ixes. The former concen-

trated on reasonably small, atomic programming tasks, whereas

the latter concentrated on a wide range of systems of varying sizes.

Nevertheless, their aims are broadly the same; to determine the

łdefect-pronenessž of projects, and to diferentiate between these in

terms of the choice (or type) of language.

For the study by Ray et al. we only access their published statis-

tics, not the raw data. This includes, for each language, a coeicient

from the regression model indicating the relative prevalence of

defects, a standard error, a statistical signiicance5, and the number

of projects examined for each language. The results are shown in

Table 46.

Figure 5 provides an overview of the resulting opinions, fused in

to strongly ⁄ weakly typed groups. One thing to note is that, since

we only have access to summary statistics, the uncertainty is higher

than for the Nanz and Furia study. The fused opinions at the top do

however agree with Nanz and Furia (the projected probability for

the fused strongly-typed opinions is 0.51 whereas the probability

for weakly-typed opinions is 0.45). The diference is however even

more marginal than with Nanz and Furia (0.06).

In both studies defects are represented diferently (execution

failures in Nanz and Furia's study versus code repairs in Ray et

al.'s). In one we derive our values from raw data (proportions of

executions that fail for each language) and in the other we obtain

our efect sizes from the published summary statistic. Both studies

are subject to diferent sources of uncertainty. By encoding both

5Note that Subjective Logic is agnostic about the value and problems associated with
null hypothesis signiicance testing [5]. In this example we simply reason that a
‘signiicant' p value has some evidential value against the null hypothesis.
6In their replication, Berger et al. [1] produced results that difered, in many cases
lowering the efect and signiicance of the indings. We include the original results
here because Berger's results have not yet (to our knowledge) been peer-reviewed,
and Ray's results were what Nanz et al. were referring to. Of course, Berger's newer
results could be incorporated in a similar fashion.

sets of results as subjective opinions, it becomes possible to analyse

them alongside each other (accepting that the diferent efect-size

scales are mapped to a single generic ‘probability scale' [0, 1].

There two apparent options for fusing the results: (1) To fuse the

individual subjective opinions from both experiments into fused

opinions for strong and weak languages respectively, or (2) to fuse

the fused opinions for strong languages from both experiments with

each other, and to do the same for weak languages. We choose the

latter because it enforces an equal weighting for each experiment

(but diferent settings might suit alternative fusion arrangements).

The results of the fusion are shown in Figure 6.

As would be expected, the fused opinions corroborate the ind-

ings from both studies that strongly typed languages tend to lead

to fewer defects (i.e., execution failures or code ixes) than weakly-

typed languages. However, the fused results also indicate that there

is a slightly higher degree of uncertainty surrounding the results

for strongly typed languages.

5.2 Discussion

The main strength of Subjective Logic is the lexibility ofered by

the use of subjective opinions. Once encoded as subjective opinions,

the origin or type of the underlying data no longer matters, and

they can be fused or compared against each other as required,

whilst explicitly factoring in the associated (un-)certainties. In our

analysis of the two fault studies, for example, we base our indings

on completely diferent sources of information, subject to very

diferent sources of uncertainty, yet still the results are summarised

in a manner that makes them easy to interpret and compare.

A caveat is that the process of deining the uncertainty, belief,

and disbelief values is inherently subjective. Diferent analysts

might identify diferent sources of uncertainty, or interpret the

underlying statistical analyses diferently. As a consequence, it

is important that the use of subjective logic to analyse empirical

results is accompanied by a transparent description (or even source

code) that is used to encode the subjective beliefs. For our case study,

the results from both experiments were encoded into subjective

opinions using ixed formulae (written in R), which are available as

part of the data and source code accompanying the paper.

Throughout this paper, we have only used van der Heijden's

Weighted Belief Fusion operator [35] (Deinition 3.5). This is in-

tended for situations where we wish to ‘average' the underlying

beliefs (whilst weighting them in terms of their conidence so

that opinions with lower uncertainty are given more weight). This

makes sense for our case study. From Figure 6, it is clear that the

Nanz results ofer (according to our interpretation) greater certainty

than the Ray results, and should therefore be weighted accordingly

during fusion.

It is important to emphasise that we are not restricted to this

form of fusion in Subjective Logic. There are many alternative

fusion operators [3, 21], which are better suited to diferent sce-

narios. It is also possible to use Addition or Subtraction operators

[21] if a particular information source can only have a positive or

respectively negative efect on the overall assessment.

Reasoning about Uncertainty in Empirical Results EASE ’20, April 2020, Trondheim, Norway

Figure 5: Visualisation of subjective opinions for study by Ray et al.

Figure 6: Fusion of all results from defect studies by Nanz

and Furia and Ray et al.

6 CONCLUSIONS AND FUTUREWORK

As is the case with most disciplines, the task of deriving valid in-

sights and inferences from empirical data (or groups of studies)

can be challenging. Conclusions are invariably subject to caveats

and threats to validity. Data can be missing, noisy, or misleading.

Ultimately, any results from an empirical study are inherently un-

certain, and any conclusions to be drawn from these results need

to explicitly take this uncertainty into account.

We have shown how Subjective Logic can be used to explicitly

incorporate this uncertainty into the process of reasoning about

empirical data. This has been demonstrated with respect to a small

running-example and a larger study of the relationship between

programming languages and run-time failures. We believe this

transparency in reasoning contributes to research progress. Addi-

tionally, we have shown how Subjective Logic can also be used at a

Meta-analysis level to fuse together diferent results from multiple

studies and multiple types of study.

Of course Subjective Logic is not a panacea to all research ills.

Skill, judgement and insight are required. Researcher bias could

creep in. However, these problems can be mitigated by the explicit

nature of the reasoning. Other researchers are free to adopt diferent

stances and reach diferent conclusions. We make progress through

meaningful dialogue.

So far, our use of Subjective Logic has focused on the expression

of results as subjective opinions and the use of fusion operators to

combine empirical results. However, the extension of approaches

such as Bayesian Networks to incorporate subjective opinions [21]

makes it possible to apply other forms of reasoning ś for example,

working backwards from łaggregatež probabilities to identify the

individual roles of diferent potential causes. Our future work will

investigate how these more advanced Subjective Logic techniques

can be used to reason about the various uncertainties that arise

within Software Engineering empirical studies.

EASE ’20, April 2020, Trondheim, Norway Neil Walkinshaw and Martin Shepperd

REFERENCES
[1] Emery Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019.

On the Impact of Programming Languages on Code Quality. arXiv preprint
arXiv:1901.10220 (2019).

[2] Michael Borenstein, Larry V Hedges, Julian PT Higgins, and Hannah R Rothstein.
2011. Introduction to meta-analysis. John Wiley & Sons.

[3] Federico Cerutti, Lance M Kaplan, Timothy J Norman, Nir Oren, and Alice
Toniolo. 2015. Subjective logic operators in trust assessment: an empirical study.
Information Systems Frontiers 17, 4 (2015), 743ś762.

[4] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences 2nd
edn.

[5] David Colquhoun. 2014. An investigation of the false discovery rate and the
misinterpretation of p-values. Royal Society open science 1, 3 (2014), 140216.

[6] Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or epistemic? Does it
matter? Structural Safety 31, 2 (2009), 105ś112.

[7] Stefan Dietzel, Rens van der Heijden, Hendrik Decke, and Frank Kargl. 2014.
A lexible, subjective logic-based framework for misbehavior detection in V2V
networks. In Proceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014. IEEE, 1ś6.

[8] Lian Duan, Sanjai Rayadurgam, Mats Heimdahl, Oleg Sokolsky, and Insup Lee.
2016. Representation of conidence in assurance cases using the beta distribution.
In 2016 IEEE 17th International Symposium on High Assurance Systems Engineering
(HASE). IEEE, 86ś93.

[9] Paul D Ellis. 2010. The essential guide to efect sizes: Statistical power, meta-analysis,
and the interpretation of research results. Cambridge University Press.

[10] Robert Feldt, Thomas Zimmermann, Gunnar R Bergersen, Davide Falessi, Andreas
Jedlitschka, Natalia Juristo, Jürgen Münch, Markku Oivo, Per Runeson, Martin
Shepperd, et al. 2018. Four commentaries on the use of students and professionals
in empirical software engineering experiments. Empirical Software Engineering
23, 6 (2018), 3801ś3820.

[11] Christopher J Ferguson. 2009. An efect size primer: A guide for clinicians and
researchers. Professional Psychology: Research and Practice 40, 5 (2009), 532.

[12] Carlo A Furia, Robert Feldt, and Richard Torkar. 2018. Bayesian Data Analysis
in Empirical Software Engineering Research. arXiv preprint arXiv:1811.05422
(2018).

[13] Peter Gärdenfors and Nils-Eric Sahlin. 1982. Unreliable probabilities, risk taking,
and decision making. Synthese 53 (1982), 361ś386.

[14] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and
Donald B Rubin. 2013. Bayesian data analysis. Chapman and Hall⁄CRC.

[15] Larry Hedges and Ingram Olkin. 1985. Statistical Methods for Meta-Analysis.
Academic Press.

[16] Joseph M Hilbe. 2011. Negative binomial regression. Cambridge University Press.
[17] John PA Ioannidis. 2005. Why most published research indings are false. PLoS

medicine 2, 8 (2005), e124.
[18] John PA Ioannidis. 2008. Why most discovered true associations are inlated.

Epidemiology (2008), 640ś648.
[19] Magne Jirgensen, Tore Dybå, Knut Liestil, and Dag IK Sjiberg. 2016. Incorrect

results in software engineering experiments: How to improve research practices.
Journal of Systems and Software 116 (2016), 133ś145.

[20] Audun Jisang. 2001. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 9, 03 (2001), 279ś311.

[21] Audun Jisang. 2016. Subjective logic. Springer.
[22] Audun Jisang and Viggo A Bondi. 2000. Legal reasoning with subjective logic.

Artiicial Intelligence and Law 8, 4 (2000), 289ś315.
[23] Audun Jisang and Robin Hankin. 2012. Interpretation and fusion of hyper

opinions in subjective logic. In 2012 15th International Conference on Information
Fusion. IEEE, 1225ś1232.

[24] Paul C Lambert, Alex J Sutton, Paul R Burton, Keith R Abrams, and David R Jones.
2005. How vague is vague? A simulation study of the impact of the use of vague
prior distributions in MCMC using WinBUGS. Statistics in medicine 24, 15 (2005),
2401ś2428.

[25] Sunil Nair, Neil Walkinshaw, Tim Kelly, and Jose Luis de la Vara. 2015. An
evidential reasoning approach for assessing conidence in safety evidence. In
2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 541ś552.

[26] Sebastian Nanz and Carlo A Furia. 2015. A comparative study of programming
languages in rosetta code. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 778ś788.

[27] Judea Pearl. 2014. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. Elsevier.

[28] Jennie Popay, Helen Roberts, Amanda Sowden, Mark Petticrew, Lisa Arai, Mark
Rodgers, Nicky Britten, Katrina Roen, and Steven Dufy. 2006. Guidance on the
conduct of narrative synthesis in systematic reviews. A product from the ESRC
methods programme Version 1 (2006), b92.

[29] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 155ś165.
[30] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2017. A

large scale study of programming languages and code quality in github. Commun.
ACM 60 (2017). Issue 10.

[31] Adrian Santos, Omar S Gómez, and Natalia Juristo. 2018. Analyzing Families of
Experiments in SE: a Systematic Mapping Study. IEEE Transactions on Software
Engineering (2018).

[32] Adrian Santos and Natalia Juristo. 2018. Comparing techniques for aggregat-
ing interrelated replications in software engineering. In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement. ACM, 8.

[33] Glenn Shafer. 1976. A mathematical theory of evidence. Vol. 42. Princeton univer-
sity press.

[34] Ayse Tosun, Oscar Dieste, Davide Fucci, Sira Vegas, Burak Turhan, Hakan Er-
dogmus, Adrian Santos, Markku Oivo, Kimmo Toro, Janne Jarvinen, et al. 2017.
An industry experiment on the efects of test-driven development on external
quality and productivity. Empirical Software Engineering 22, 6 (2017), 2763ś2805.

[35] Rens W Van Der Heijden, Henning Kopp, and Frank Kargl. 2018. Multi-source
fusion operations in subjective logic. In 2018 21st International Conference on
Information Fusion (FUSION). IEEE.

[36] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[37] Loti A Zadeh. 1965. Fuzzy sets. Information and control 8, 3 (1965), 338ś353.
[38] Loti A Zadeh. 1984. Review of a mathematical theory of evidence. AI magazine

5, 3 (1984), 81.

A UNCERTAINTY FORMULA FOR THE
RUNNING EXAMPLE

For this the summary data from the experiments (Table 1) provides

us with the following factors:

• A set of expertise-ratings where each value is in the range

[0, 4] and is the average ordinal score submitted by partici-

pants to rate their ability to program, their experience with

Java, their experience with unit testing, and their experience

with JUnit.

• A conidence interval for the efect-size.

• The statistical power of the result [4].

We would consider the results to be at its maximum if the pro-

grammer's expertise is uniformly high (4), the CI is zero, and there

is a statistical power of 1. To compute the uncertainty we irst map

each of these measures to a score between 0 and 1. expertise =
prog+java+unit+junit

(4+4+4+4)
is calculated as the sum of actual expertise

scores divided by themaximumpossible scores. ci = 1−
ciupper−cilower

5.4
measures the CI as a proportion of 5.4 - this limit is based on Fer-

guson's heuristic [11] that a Hedges' g (which the CI is pertaining

to) of 2.7 amounts to a łstrong efectž, so a conidence interval that

spans this in both directions (+2.7 and -2.7) would amount to 5.4.

We take pow to just be the unadulterated power value. If we apply

this to the irst experiment (F-Secure H) in Table 1, the result would

be computed as follows:

• expertise = 3.67+2.33+2.17+2.17
4+4+4+4 =

10.34
16 = 0.646

• ci =
1.39−(−0.89)
2.7−(−2.7)

= 0.42

• pow = 0.071

Averaging these results in an uncertainty value of 0.38.

	Abstract
	1 Introduction
	2 Background
	2.1 The Challenge of Aggregating Empirical Results
	2.2 Running Example

	3 Belief Modelling, Uncertainty, and Subjective Logic
	4 Analysing Experimental Results with Subjective Logic
	4.1 Decomposing Experiments into Subjective Opinions
	4.2 Forming Subjective Opinions from Experimental Data
	4.3 Fusing Experimental Results

	5 Case Study: A Meta Analysis of the Relationship between Programming Languages and Defects
	5.1 Subjective Logic Analysis
	5.2 Discussion

	6 Conclusions and Future Work
	References
	A Uncertainty Formula for the Running Example

