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TableS1 Volume fraction of various components of different biomass derived gas (N2 free) 

Biomass Catalysts H2 CO CH4 CO2 C2-C4 Reference 

Wood Sawdust 
9Ni1FeAl 36.5 41.6 6.2 14.5 1.2 [S1] 

Sand 17.4 45.5 14.8 14.5 7.8 [S1] 
Corn Stover - 16.20 20.88 12.19 48.85 5.72 [S2] 
Wood Chips - 29.59 32.87 4.93 32.58 - [S3] 

Sawdust Fe/CaO 21.5 33.5 13.0 26.5 5.5 [S4] 

Reference: 

[S1] Dong L., Wu C., Ling H., Shi J., Williams, P. T., Huang, J. (2016). Development of Fe-promoted Ni-Al catalysts 

for hydrogen production from gasification of wood sawdust. Energy & Fuels, 31(3), 2118-2127. 

[S2] Zhang Y., Ke C., Gao Y., Liu S., Pan Y., Zhou N., Wang Y., Fan L., Peng P., Li B., Ruan R. (2019). Syngas 

production from microwave-assisted air gasification of biomass: Part 2 model validation. Renewable energy, 140, 

625-632. 

[S3] Yao Z., You S., Ge T., Wang, C. H. (2018). Biomass gasification for syngas and biochar co-production: Energy 

application and economic evaluation. Applied Energy, 209, 43-55. 

[S4] Yang S., Zhang X., Chen L., Sun L., Xie X., Zhao, B. (2017). Production of syngas from pyrolysis of biomass 

using Fe/CaO catalysts: effect of operating conditions on the process. Journal of Analytical and Applied Pyrolysis, 

125, 1-8. 
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TableS2 Detailed distribution of components for raw gas (Catalyst dosage: 0.5g; Reaction temperature:  

800℃; WHSV: 24000 mL•h-1•gcat-1) 

Components 

Flow rate(mL/min) 

CH4 CO2 CO H2 N2 

Effect of CH4  

20 50 0 0 130 

40 50 0 0 110 

60 50 0 0 90 

80 50 0 0 70 

Effect of CO2 

50 20 0 0 130 

50 40 0 0 110 

50 60 0 0 90 

50 80 0 0 70 

Effect of CO 

50 50 20 0 80 

50 50 40 0 60 

50 50 60 0 40 

50 50 80 0 20 

Effect of H2 

50 50 0 20 80 

50 50 0 40 60 

50 50 0 60 40 

50 50 0 80 20 



 

 

Figure S1 Flow chart of thermodynamic analysis 

 

10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

H
2
/C

O

CH4 Concentration/%
10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H
2
/C

O

CO2 Concentration/%  

FigureS2 Effect of CH4 and CO2 on the ratio of H2/CO（Catalyst dosage: 0.5 g; Reaction temperature: 800 C; 

WHSV: 24000 mL•h-1•gcat-1） 
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Figure S3 Calculation of different reaction orders (a: CH4; b: CO2; c: CO; d: H2) 
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Figure S4 Calculation of different apparent activation energy (a: 650 C ~750 C; b: 800 C ~950 C) 

 

Figure S5 Schematic of reaction activation 

 


