

This is a repository copy of Optimized Reforming of Biomass Derived Gas Based on Thermodynamic and Kinetics Analysis with Activated Carbon Fibers Supported Ni-Al₂O₃.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/156820/

Version: Supplemental Material

Article:

Yu, L, Song, M, Williams, PT orcid.org/0000-0003-0401-9326 et al. (1 more author) (2020) Optimized Reforming of Biomass Derived Gas Based on Thermodynamic and Kinetics Analysis with Activated Carbon Fibers Supported Ni-Al₂O₃. BioEnergy Research, 13. pp. 581-590. ISSN 1939-1234

https://doi.org/10.1007/s12155-019-10087-6

© Springer Science+Business Media, LLC, part of Springer Nature 2020. This is an author produced version of a paper published in Bioenergy Research. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Optimized reforming of biomass derived gas based on thermodynamic and kinetics analysis

with activated carbon fibers supported Ni-Al₂O₃

Lei Yu¹, Min Song^{1,*}, Paul T. Williams², Yuexing Wei¹

1 Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast

University, Nanjing, 210096, China

2 School of Chemical & Process Engineering, University of Leeds, Leeds, LS2 9JT, UK

*Correspondence author: minsong@seu.edu.cn;

Supplementary material

TableS1 Volume fraction of various components of different biomass derived gas (N2 free)

Biomass	Catalysts	H_{2}	СО	CH_4	CO_2	C_2 - C_4	Reference
Wood Sawdust	9Ni1FeAl	36.5	41.6	6.2	14.5	1.2	[S1]
	Sand	17.4	45.5	14.8	14.5	7.8	[S1]
Corn Stover	-	16.20	20.88	12.19	48.85	5.72	[S2]
Wood Chips	-	29.59	32.87	4.93	32.58	-	[S3]
Sawdust	Fe/CaO	21.5	33.5	13.0	26.5	5.5	[S4]

Reference:

[S1] Dong L., Wu C., Ling H., Shi J., Williams, P. T., Huang, J. (2016). Development of Fe-promoted Ni-Al catalysts for hydrogen production from gasification of wood sawdust. Energy & Fuels, 31(3), 2118-2127.

[S2] Zhang Y., Ke C., Gao Y., Liu S., Pan Y., Zhou N., Wang Y., Fan L., Peng P., Li B., Ruan R. (2019). Syngas production from microwave-assisted air gasification of biomass: Part 2 model validation. Renewable energy, 140, 625-632.

[S3] Yao Z., You S., Ge T., Wang, C. H. (2018). Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Applied Energy, 209, 43-55.

[S4] Yang S., Zhang X., Chen L., Sun L., Xie X., Zhao, B. (2017). Production of syngas from pyrolysis of biomass using Fe/CaO catalysts: effect of operating conditions on the process. Journal of Analytical and Applied Pyrolysis, 125, 1-8. TableS2 Detailed distribution of components for raw gas (Catalyst dosage: 0.5g; Reaction temperature:

Commente	Flow rate(mL/min)							
Components	CH4	CO ₂	СО	H_{2}	N_2			
Effect of CH4	20	50	0	0	130			
	40	50	0	0	110			
	60	50	0	0	90			
	80	50	0	0	70			
Effect of CO ₂	50	20	0	0	130			
	50	40	0	0	110			
	50	60	0	0	90			
	50	80	0	0	70			
Effect of CO	50	50	20	0	80			
	50	50	40	0	60			
	50	50	60	0	40			
	50	50	80	0	20			
Effect of H ₂	50	50	0	20	80			
	50	50	0	40	60			
	50	50	0	60	40			
	50	50	0	80	20			

800°C; WHSV: 24000 mL•h⁻¹•gcat⁻¹)

Figure S1 Flow chart of thermodynamic analysis

FigureS2 Effect of CH_4 and CO_2 on the ratio of H_2/CO (Catalyst dosage: 0.5 g; Reaction temperature: 800 °C;

WHSV: 24000 mL \bullet h⁻¹•gcat⁻¹)

Figure S3 Calculation of different reaction orders (a: CH₄; b: CO₂; c: CO; d: H₂)

Figure S4 Calculation of different apparent activation energy (a: 650 °C ~750 °C; b: 800 °C ~950 °C)

Figure S5 Schematic of reaction activation