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Supplementary material

TableS1 Volume fraction of various components of different biomass derived gas (N> free)

Biomass Catalysts H» CO CHs CO; C(C-Cs Reference
9NilFeAl 36.5 41.6 6.2 14.5 1.2 [S1]
Wood Sawdust
Sand 174 455 14.8 14.5 7.8 [S1]
Corn Stover - 16.20 20.88 12.19 48.85 5.72 [S2]
Wood Chips - 29.59 32.87 493 3258 - [S3]
Sawdust Fe/CaO 21.5 335 13.0 265 5.5 [S4]

Reference:

[S1] Dong L., Wu C., Ling H., Shi J., Williams, P. T., Huang, J. (2016). Development of Fe-promoted Ni-Al catalysts
for hydrogen production from gasification of wood sawdust. Energy & Fuels, 31(3), 2118-2127.
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625-632.

[S3] Yao Z., You S., Ge T., Wang, C. H. (2018). Biomass gasification for syngas and biochar co-production: Energy
application and economic evaluation. Applied Energy, 209, 43-55.

[S4] Yang S., Zhang X., Chen L., Sun L., Xie X., Zhao, B. (2017). Production of syngas from pyrolysis of biomass
using Fe/CaO catalysts: effect of operating conditions on the process. Journal of Analytical and Applied Pyrolysis,

125, 1-8.
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TableS2 Detailed distribution of components for raw gas (Catalyst dosage: 0.5g; Reaction temperature:

800°C; WHSV: 24000 mL*h!*gcat™)

Flow rate(mL/min)
Components
CH4 CO; CO H; N
20 50 0 0 130
40 50 0 0 110
Effect of CH4
60 50 0 0 90
80 50 0 0 70
50 20 0 0 130
50 40 0 0 110
Effect of CO»
50 60 0 0 90
50 80 0 0 70
50 50 20 0 80
50 50 40 0 60
Effect of CO
50 50 60 0 40
50 50 80 0 20
50 50 0 20 80
50 50 0 40 60
Effect of H»
50 50 0 60 40
50 50 0 80 20
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Figure S1 Flow chart of thermodynamic analysis
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FigureS2 Effect of CHs and CO> on the ratio of Hy/CO (Catalyst dosage: 0.5 g; Reaction temperature: 800 °C;

WHSV: 24000 mL*h'*gcat™!)



8.6 _
841 a b
8.4 ;
8.0/ 8.2
5 £8.01
=76
7.81
721 Inren = 073005 InXincn +9.19578 7.61  Inrew=0.68782 InXincor +9.23017
25 20 15 10 2.0 16 12 0.8
InXin.ch InXin.con
gs5] o° 8541 1
. 8.52
2 8.4 i .
g . E 8.50
8.31 . 8.484 -
Inren = -0.19126 Xinco + 8.12045 8461 Inrom =-0.04415 Xinsi: + 8.43279
8.2 : : : : ‘ ‘ : ‘ :
2.0 -1.6 1.2 0.8 24 20 -16 -12  -08
InXin.co InXin i

Figure S3 Calculation of different reaction orders (a: CHa; b: CO»; c: CO; d: Ha)
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Figure S4 Calculation of different apparent activation energy (a: 650 °C ~750 °C; b: 800 °C ~950 °C)
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Figure S5 Schematic of reaction activation



