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Electrical  control  boxes  are  common  on high  vapour  cloud  hazard  sites,  and  in the  case  of  the  Buncefield
explosion  the  ignition  source  was  inside  such  a box,  that was  sited  in an  emergency  pump  house  building.
There  has,  however,  been  relatively  little  previous  research  into  this  type  of  ignition  mechanism  and  its
effect  on  the  explosion  severity.  Commercially  available  electrical  control  boxes  measuring  600  mm  high,
400 mm  wide  and  250 mm  deep  were  used  to  explore  the  pressure  development,  venting  processes  and
flame  characteristics  of  stoichiometric  propane/air  explosions  using  aluminium  foil and  the  supplied
doors  as  vent  coverings.  In  some  tests,  the  boxes  were  empty  in order to  establish  a  baseline  for  the
CE
apour cloud explosion
ented explosion
ang-box ignition
ested ignition
onfined ignition sources

effect  of the  internal  congestion  of the  boxes.  In  other  tests  a  congestion  array  was  added.  It was  found
that,  in  both  the  empty  and  congested  box  tests,  the  door  produced  a  flat  petal  shaped  flame,  which
differed  drastically  from  the  mushroom  flame  shape  and associated  rolling  vortex  bubble  venting  that  is
traditionally  observed  with  large  orifice  vented  explosions.

Crown  Copyright  ©  2020  Published  by Elsevier  B.V.  on  behalf of  Institution  of  Chemical  Engineers.
This  is an  open  access  article  under  the  Open  Government  License  (OGL)  (http://www.nationalarchives.
uncefield

. Introduction

The most recent severe Vapour Cloud Explosion (VCE) in the
nited Kingdom was the Buncefield incident in 2005 (Major

ncident Investigation Board, 2007). The vapour cloud was caused
y a release of winter grade gasoline at a rate of around 120 kg/s
hat continued for 1380 s, in zero wind conditions. This resulted in

 large unconfined, gravity driven pancake cloud and the resulting
xplosion was severe.

A recent review (Atkinson et al., 2017a) into the cloud forma-
ion at VCE events at large fuel storage sites has shown that many of
hese events are similar to Buncefield in that they were relatively
low releases, i.e. not catastrophic failures, that have occurred at
imes when weather conditions allow the formation and persis-
ence of a pancake type cloud. The clouds accumulated for several

ens of minutes and in some cases over an hour before ignition
ccurred.

∗ Corresponding author at: Health and Safety Executive, Harpur Hill, Buxton, SK17
JN, UK.

E-mail address: jason.gill@hse.gov.uk (J. Gill).
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957-5820/Crown Copyright © 2020 Published by Elsevier B.V. on behalf of Institution o
icense (OGL) (http://www.nationalarchives.gov.uk/doc/open-government-licence/versio
gov.uk/doc/open-government-licence/version/3/).

The idea of very large homogenous cloud development
(Atkinson and Coldrick, 2012; Atkinson et al., 2015; Coldrick et al.,
2011) is relatively new and not widely understood. Away from
the immediate vicinity of the leak the movement of hydrocarbons
from a leak in very low wind speed conditions is driven by gravity.
This form of vapour transport is very different from wind dispersed
plumes. The vapours spread in all directions from source in a flow
that laminarises in the contact layer with overlying fresh (lighter)
air Briggs et al. (1990). This means that the flow can travel for many
hundreds of metres without dilution, potentially leading to near
stoichiometric concentrations over almost the entire footprint of
the cloud.

Atkinson et al. (2017b) concluded that eventual ignition of this
type vapour cloud is a much more likely outcome than for disper-
sion occurring in windy conditions; primarily because the cloud
size for a given source is typically hundreds of times larger. The
cloud is also present for sufficient time to ingress into confined
spaces containing ignition sources (that may be well away from the
source) before it is dispersed by a change of weather conditions.
The ignition source for the Buncefield explosion was within an
electrical control box, situated inside an emergency pump house
(Atkinson, 2006) where it was  submerged in the vapour cloud for
a high proportion of the total release time. This control box held a

f Chemical Engineers. This is an open access article under the Open Government
n/3/).
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Nomenclature

t Time after ignition
M Mass of unburned gas in the box
V Volume occupied by unburned gas in the box
H Height of the box
W Width of the box
� Density (of the unburned gas)
�0 Initial density (of the unburned gas)
P Pressure (of the unburned gas)
P0 Initial pressure
Adoor Area of door opening
Avent Effective area of vent (at the vena contracta)
Cd Discharge coefficient
I Moment of inertia of door and catch about hinges
� Angle of the door to the closed position
E Expansion ratio
Vb Burning velocity
R Flame radius
C Speed of sound
a Linear acceleration of a detached panel
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Fig. 1. Test rig with electrical control box in place.
�v  change in speed of a detached panel
L Height of a building

tar-delta starter, designed to supply a large three-phase motor, the
re pump, with a reduced voltage of 230 v in star configeration dur-

ng start up. Once the motor has reach a set speed, contactors in the
tarter engage to change the supply configuration to the the motor
o delta, supplying 415 v. It is likely that a spark caused during the
ontactors opening or closing was the ignition source.

In the event of large persistent homogenous clouds on other
ites there is a fairly high probability that the final ignition source
ill be of this sort i.e. within a cabinet or box which is in itself

ocated in a larger structure engulfed by the cloud. Some control
oxes are supplied as gas tight, but entry points need to be made to
llow for cabling and connections etc. The boxes are generally mild
teel and may  also suffer degradation and seals may  perish over
ime affecting the gas tightness. It is possible to mitigate against
he production of sparks in the design and manufacture of con-
rol boxes, making them intrinsically safe, but this is an expensive
rocess and is usually reserved for zoned areas. As highlighted by
tkinson et al. (2017a) in most of these events the clouds have
xtended over large areas beyond zoned areas.

There has been a lot of discussion regarding the mechanisms
hat contributed to the severity of the explosion. Much of this has
een focused on the effects of congestion; recent tests have shown
hat it is possible to have a high-order explosion in an unconfined
loud if there is significant congestion (Pekalski et al., 2015). But
here is a potential that this multi-compartment confined ignition
ource, in essence a ‘nested bang-box’, may  have been a contribut-
ng factor (Gill et al., 2019). There has, however, been little in the

ay of research into the effects of such bang-box ignition sources on
he severity of VCEs, despite the need for such work being identified
ome years ago (Bradley et al., 2012).

Buncefield is not an isolated historical case in terms of ignitions
ccurring within nested confined enclosures. The severe explosion
t Port Hudson (Burgess and Zabetakis, 1973) is believed to have
tarted within a freezer located within a concrete building that was
ubmerged in an LPG cloud.

The primary ignition at the San Juan VCE in 2009 was  also within

n electrical control cabinet. However this was not nested in a larger
uilding and the gasoline vapour cloud around the point of igni-
ion was shallow. Ignition in this case resulted in a slow flash fire;
ransition to severe explosion occurred later in the event.
Fig. 2. Control box door showing three point locking mechanism.

There has been considerable useful research available on vented
explosions from vessels and much is known on this subject. Dur-
ing the internal explosion in a vessel the pressure builds until the
point of vent failure. Once there is a vent, unburnt gas will be pushed
out by the internal flame; this can be as much as 80 % of the total
vessel volume. Once the flame exits the vessel this will ignite any
vented flammable gas not diluted by the atmosphere in its wake.
The external explosion is often more severe than the internal explo-

sion and there are many factors that can contribute to the severity,
such as vent size (Bauwens et al., 2010) and vent burst pressure
(Fakandu et al., 2015). The internal gas concentration before igni-
tion can have an effect; rich mixtures often result in more severe
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Fig. 3. Chassis plate used to add congestion.

Table 1
Results of overpressure measurements for tests.1–5.

Test Vent covering Congestion PT1 (mbar) PT2 (mbar) PT3 (mbar)

1 Foil No 97 5 5
2  Foil No 68 3 3
3  Door No 86 Failed 8
4  Door No 90 4 7
5  Foil Yes 109 17 9
6  Foil Yes 131 20 17
7  Door Yes 312 Failed 56

e
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e
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c
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Fig. 4. Congestion array fitted inside box.
8  Door Yes 289 16 41
9  Door Yes 351 24 59

xplosions as there is more fuel available for combustion (Gill et al.,
016) and the opposite is true of lean mixtures. Vessel length and

nternal congestion can have a significant escalating effect (Tomlin
t al., 2015). Both of these allow flame acceleration within the vessel
hich increases the outflow speed of the unburnt gas generating
ore turbulence within this unburnt gas cloud. Although if the tur-

ulence is high there is a possibility that much of the unburnt gas
ould have been diluted below the flammable limit by the shear
ixing with the atmosphere caused by the turbulent outflow.

When an explosion propagates from a vessel into a flammable
loud the external explosion becomes the ignition source for the
xternal cloud and a large ignition source can increase the severity
f an explosion. This effect has been used many times to give a

head start’ to unconfined vapour cloud explosion experiments. If

he vessel is sufficiently large and the venting is into significant
ongestion, transition to detonation can occur (Harris and Wickens,
989).

Fig. 5. Plan view of location of pressure transducers (PT) and thermocouples (TC).
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Fig. 6. Pressure trace for Test 1.

Fig. 7. Pressure tra

Table 2
Maximum rate of pressure rise within the boxes.

Test Vent covering Congestion Max  pressure
at PT1 (mbar)

Max  pressure
rise rate at PT1
(mbar/ms)

1 Foil No 97 5.8
4  Door No 90 4.6

a
a
4
fl
0
t
t
w

of a larger programme of work, which will investigate the
6  Foil Yes 131 20
9  Door Yes 351 44.8

Recent research into the propagation of a confined explosion to
n external cloud by Daubech et al. (2017) was conducted to look
t the effects of the Buncefield type ignition process. They used a

 m3 vessel to propagate an explosion into a 54 m3 ‘unconfined’
ammable volume. Two vent sizes were compared, 0.5 m2 and

2
.04 m . They concluded that there was little interaction between
he venting flame and external volume with the large vent because
he discharging gases assumed the shape of a rolling vortex bubble
hich did not break down before it was ignited by the exiting flame.
ce for Test 2.

With the smaller vent area the venting gases from the confined
space formed a jet before it was  ignited by the exiting flame, which
then travelled rapidly through the jet. In this instance the sever-
ity of the explosion in the external cloud was increased compared
to the larger vent. Modelling conducted during the study showed
that the jet generated high levels of turbulence and entrained the
external volume and there was little entrainment with the rolling
vortices generated with the larger vent. This research, however,
did not take into account the hinged-door confinement of typical
equipment cabinets and the effect this has on venting and flame
propagation.

This paper describes experimental results comparing the
effect on flame shape of venting from a hinged door with
that from a bursting membrane vent cover, often used in
vented explosion experiments. This work forms the initial stages
propagation of a congested and confined explosion from a
hinged door electrical control box into an external flammable
volume.



J. Gill et al. / Process Safety and Environmental Protection 135 (2020) 187–206 191

Fig. 8. Pressure trace for Test 3.
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Fig. 9. Pressu

. Methodology

Commercially available electrical control boxes 600 mm high,
00 mm wide and 250 mm deep, volume 0.06 m3, were fitted to
he back wall of a 8 m3 frame rig as shown in Fig. 1. The boxes
ave a full steel door with a mass of 3.29 kg, as shown in Fig. 2.
he door is attached by two 50 mm long hinges. The door has a soft
oam rubber gasket that fits around the lipped flange of the box.
he closing mechanism is a 15 mm wide plastic catch that engages
ith the inside of the flange on the longest wall when the remov-

ble external handle is rotated. Protruding from the catch are two
 mm diameter steel bars that engage with the inside of the flange at
he top and bottom; these are stabilised near the door with weak
lastic supports. The shape of the flange leaves an actual open-
ng of 365 × 560 mm.  The entire closing mechanism is designed
o be easily removed by the user to allow for the replacement of
he handle with an aftermarket key locking handle. The door and
inges are designed to be easily removed and inverted by user.
ce for Test 4.

During these tests, the door and hinge pin were replaced with new
ones after each test. For four of the tests the door was  removed
completely and the opening was covered with an aluminium foil
membrane: this foil produces comparable bursting pressures to the
door (Gill et al., 2019). Due to the shape of the orifice, designed to
seal on the door, the foil had to be taped to the flat surfaces of
the box with duct tape. The left side wall of one of these boxes
was cut away and replaced with 5 mm polycarbonate sheet for
viewing purposes.

Control boxes are usually full of equipment which will act as
congestion elements. The contents of these boxes are highly varied
depending on their use. There may  be large and small electrical
components, cabling and pneumatic tubing. The boxes are also
available in a wide range of sizes and styles. Generally the economic

driver will be to utilise the space within the smallest possible box
for the required task.

To limit variables only one style and size of box was  used for
testing. For tests in which congestion was added the aim was not
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Fig. 10. Pressure trace for Test 5.

Fig. 11. Pressure trace for Test 6.

Table 3
Measured flame arrival times and average flame speeds between thermocouples.

Test Vent covering Congestion TC2 (ms) Average flame
speed (m/s)

TC3 (ms) Average flame
Speed (m/s)

TC4(ms) Average flame
Speed (m/s)

1 foil No 51 4.41 65 17.86 81 15.65
2  Foil No 44 5.11 69 10 88 13.15
4  door No 53 4.25 – – – –

t
t
C
d
F
o
m
w
fi

6  Foil Yes 28 8.26 

8  Door Yes 30 7.5 

9  Door Yes 30 7.5 

o recreate a specific installation but to produce a configuration
hat was robust, easily reproducible and consistent between tests.
ommercially available chassis plates were used, shown in Fig. 3,
esigned to fit inside the box and be used to attach equipment.
our of these chassis plates were bolted together with a spacing

f 50 mm and attached to the inside of the box with the intended
ounting bolts. The grid has a blockage ratio of 21.5 % in the centre
ith a solid border around the edges and mounting points. When
tted there is a 25 mm gap around the plate as shown in Fig. 4.
36 31.25 42 20.833
– – – –
– – – –

The mounting points of the forward three grids were cut away to
facilitate fitting of array as a single piece. In testing the flame trav-
els through the central gridded section before vent failure and this
changes the combustion mechanics.

Tests were conducted using stoichiometric propane/air mix-

tures (4.2 %) ignited by a TalonTM tungsten hot wire ignitor at the
centre of the back wall of the box. The ignitor is non-pyrotechnical,
it provides a hot surface for ignition without adding significant
energy or turbulence to the ignition event. The gas concentration
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Fig. 12. Pressure trace for Test 7.
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Fig. 13. Press

as controlled with mass flow controllers. The box was  filled by
urging the box with pre-mixed gas at the desired concentration
nd monitoring the exhaust with a gas analyser to ensure purging
as complete.

Overpressure measurements were made using fast response
ressure transducers, which were located both inside and outside
he box, as shown in Fig. 5. Fast response thermocouples were place
nternally and externally at set distances to record flame arrival
imes. All the tests were filmed at 240 frames per second (fps), with
he exception of Tests 7 and 9 where the recording failed. Tests 6
nd 8 were filmed at 1000 fps from the side and 240 fps from the
ront.

. Results and discussion
Nine tests were conducted, five with a door and four with foil
overing the opening. Three tests with doors and two tests with foil
ad the congestion elements added. The overpressures and flame
haracteristics were recorded.
ce for Test 8.

3.1. Pressure development

Examples of the pressure development are shown in Figs. 6–14.
The overpressures recorded during each the tests are detailed in
Table 1. The results, on face value, show similarities in the maxi-
mum pressures between the uncongested foil tests (Fig. 6) and door
vent coverings tests (Fig. 9). The bursting pressure was  dominant
in these tests and any external explosion was inconsequential.

With the addition of congestion there is a drastic increase in
the speed of the pressure rise compared to the uncongested tests
in the case of both foil (Fig. 11) and door (Fig. 14) vent coverings
(Table 2). The maximum pressure was  reached in one third of the
time with the addition of the congestion. The congested tests show
an increase in maximum internal overpressures. There was  a sub-
stantial difference in these overpressures between the congested
door and congested foil tests.
With the addition of congestion the external overpressures
recorded were also higher, both in absolute values and as a frac-
tion of the peak internal pressure compared to the uncongested
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Fig. 14. Press

ests. Even with congestion, the external pressures were still very
ow.

It is evident from the pressure traces (Fig. 9) and analysis of
ideo that in the uncongested tests using the door (Tests 3 and 4)
here was a momentary pause in pressure rise due to the effect of
enting. This is due to the pressure rise causing deflection in the
oor, which breaches the gas tight seal made by the door. The pres-
ure then continues to rise until the door catches are overcome and
he door is pushed open. In the foil tests the foil remains gas tight
ntil it bursts or tears. This effect is still evident with the addition of
ongestion (Fig. 14), but is less pronounced. This may  be due to the
ncrease speed of the pressure rise overcoming the catches before
ubstantial elastic deformation of the door can occur.

It proved difficult to provide a reproducible foil seal for these
ommercially available boxes. Of the two uncongested foil tests
est 1 gave higher maximum pressure as the foil was  pushed very
ight and tore around the centre of the orifice. In Test 2 the foil
tarted to breach near the taped seals at the edge of the orifice.
n this case the results may  not be representative of the bursting
ressure of the foil as venting may  will have occurred as the tape
etached (Fig. 7). Similar variability was observed in congested
ests with foil: Test 6 gave higher maximum pressure as the foil
ore close to the centre of the orifice, whilst in Test 5 initial failure
round the taped edge, again, led to lower pressures.

Venting by the door generally appeared more reproducible. The
ncrease in pressure in Test 9 compared with Tests 7 and 8 is because
n the later experiment a new, solid box, with no viewing window
ut out was used. This makes the box stiffer on the side where the
oor catches engage and delays venting.

.2. Venting

Given the large vent area relative to the volume of the box, it
ould be expected that if the vent closure was fairly weak then the
eak pressure would be dominated by the external part of explo-
ion (Proust and Leprette, 2010). In this case, however, the burst
ressure is dominant, an effect also observed by Fakandu et al.

2015).

In the case of the foil, the burst pressure is relatively high, but
nce a crack is initiated it propagates rapidly and a large vent area

s created within a few milliseconds. Internal pressure and outflow
ce for Test 9.

velocities decline immediately, and there is no extended period of
high speed jetting through a small opening. There is relatively little
difference in the maximum pressure in congested and uncongested
tests because the rapidly widening vent allows efficient venting
immediately.

The resulting outflow of gas has a broad central core in which
the flow is irrotational and largely unaffected by the vorticity in the
shear layers at the edge. This type of flow has been described as a
“rolling vortex bubble” Maxworthy (1972); Daubech et al. (2017).
As these layers roll up, the potential core of the resulting vortex is
eroded slowly by relatively low levels of shear, resulting in slow
combustion and low external overpressures.

In the uncongested door tests, venting commenced at lower
pressures (40 mbar) as the door begins to deflect, and this venting
initially offsets the rate of pressure rise. There is then an extended
period (∼20 ms)  in which gas is forced out of the resulting crack at
a speed of around 80 m/s. Eventually, increasing levels of volume
production associated with the developing flame cannot be offset
by venting through the crack associated with flexure of the door
and the pressure begins to rise again. The internal pressure and
outflow velocity increase to 90 mbar and 120 m/s  respectively. The
final pressure at which the catch fails is comparable with the foil,
but even when the catch has failed the inertia of the door restricts
the rate of opening. The rate of depressurisation is, therefore, rel-
atively slow, and there is a significant period (of order 10 ms)  in
which the jet outflow continues. By the time the flame exits the
door is open by no more than 30 mm  and the pressure and vent
flow speed have declined.

In the case of the congested door test the pressure rise occurs
more quickly. The inertia of the door means that even after the
catch fails there is a substantial increase in pressure before the open
area has grown sufficiently to control the pressure rise. The final
pressure of 350 mbar corresponds to an outflow speed of around
230 m/s  (Fig. 15). The maximum pressure rise rates within the
boxes for the four test types that achieved the highest over pressure
are detailed in Table 3.

The ejected gas in the door tests formed a narrow, high-speed jet.
Only a very small proportion of the gas remains in the irrotational
potential core of the jet and most of the ejected gas is immedi-

ately entrained into the turbulent shear layer where high flame
speeds could develop. In these initial experiments, the box is sur-
rounded by air, so entrainment also leads to rapid dilution of the
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Fig. 15. Video stills showing the opening position of the door during the final stages of venting and flame exit, the frame intervals are 4.17 ms  for uncongested (top) and 1 ms
for  congested (note slight angle of view difference).
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Fig. 16. Modelling of the early stages of pressurization.
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before venting. Fig. 18 shows the effect of increasing burning veloc-
ig. 17. Modelling of pressurisation and venting with a fixed burning velocity.

re-mixed gas below the initial (stoichiometric) concentration; this
imits the rate of burning and overpressure when the flame arrives.
his would not be the case if the atmosphere outside the box was
lso flammable.

.3. Modelling of pressurisation and venting

Video images after ignition show a growing hemispherical flame
hape and it is possible to predict the rate of pressure rise for a given
ame speed using the Bernoulli (Energy) Equation in the incom-
ressible limit. The flame speeds are so low that the pressure will
ise uniformly throughout the box. The venting pressures are so low
hat the box is sufficiently rigid that changes in its volume prior to
enting are negligible.

The later pressurisation and venting can also be modelled.
ssumptions have to be made about the pressure at which the rub-
er seal is breached and the effective size of the resulting vent Avent .

he pressure at which the door catches fail also has to be taken from
xperiment but the opening of the door can be calculated given the
oment of inertia about the hinge and internal pressure.
Fig. 18. Pressurisation in box with congestion.

The equation for the expanding radius of the flame R is

dR

dt
= VbE

Where Vb is the burning velocity and E is the expansion ratio
Generally the burning rate was  assumed to be constant but in

some cases the effect of a small change in the burning velocity after
venting were investigated.

The equation for the mass of unburned gas within the box is as
follows.

dM

dt
= −�Vb2�R2 − �Avent

√
2P
�

− �CdAdoor

√
2P
�

Avent the effective area of the vent at the vena contracta, has to
be taken from the experiment. The discharge coefficient, Cd, for the
door is assumed to be 0.6.

The equation for the volume of unburned gas within the box is
as follows

dV

dt
= −EVb2�R2 + HW2

2
d�

dt

The change in pressure of the unburned gas is calculated from
the change in density

P = P0
M

V�0

The area of the door vent is

Adoor = HW�  + W2�

The equation of motion of the door is

d2�

dt2
= PHW

2I

Fig. 16 shows the predicted rates of early pressure rise for a range
of burning velocities. In all cases it is assumed that the expansion
ratio is 7. The results show that the effective burning velocity is
very close to 0.40 m/s  and the flame speed (where the burned gas
is stationary) is 0.4 × 7 = 2.8 m/s.

Results for the later stages of a typical uncongested test are
shown in Fig. 17.

A small increase in flame speed occurred in the latter stages
ity by 10 % after the point when the seal failed and the resulting
internal flow began. This change in flame speed appears to roughly
account for the observed increase in pressurisation.
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Fig. 19. Flame development

When there was congestion the rate of pressurisation was

igher. Again the videos show that, until the door fails, the flame

s roughly hemispherical, so a simple model of combustion rate is
ossible. In this case the initial average burning velocity was around
.2 m/s  (flame speed 8.4 m/s). There was a marked increase in the
t 1; frame intervals 4.17 ms.

burning rate after the door started to open at around 80 mbar. This

was presumably traceable to the onset of flow towards the vent
which drove unburned gas through the congestion array, increasing
turbulence levels and consequently flame speeds. The hemispheri-
cal symmetry of the flame would have been broken down after this
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Fig. 20. Test 1 – initial mushroom flame, typical of rolling vortex bubble venting.

F

p
b

e
f

3

c
d
f
fl
i
v
fl
r
i
o
t
f
i

a
t
t
e
o
b
p

ig. 21. Test 1 - secondary mushroom flame, typical of rolling vortex bubble venting.

oint and the burning velocity could not adequately be represented
y a single value.

As with these calculations the vent are has been assumed further
xperimental work is required to measure the true vent area as a
unction of time during these event.

.4. Flame characteristics and measured flame speeds

In the foil tests (Fig. 19), the flame develops near hemispheri-
ally towards the front of the box from the initial kernel, with some
istortion and elongation caused by the back wall of the box. The

oil is pushed forward and taut before tearing vertically, and as the
ame exits it burns through the vented gas and establishes a typ-

cal mushroom shape (Fig. 20). This shape is characteristic of the
ented gases forming a rolling Maxworthy vortex bubble. As the
ame extends, it forms a second mushroom shape (Fig 21), which
einforces the theory that the rolling vortex bubble method of vent-
ng applies in this case (Fig. 16). The flame extends to near the edge
f the 2 m long rig. In Test 2 the measured average flame speed
o TC2 is higher; this is likely a factor of the early failure of the
oil at the taped edge causing venting and therefore disrupting the
nternal flame development.

In the door tests (Fig. 22), the flame inside the box develops in
 similar manner to that in the foil tests. However, the door starts
o deflect before the flame has reached a diameter of 200 mm,  due
o yielding of the locking bar mechanism. As the pressure builds,

ither one or both of the locking bars fail, which facilitates door
pening. The door is open by no more than 30 mm when the flame
egins to exit, and combustion is complete before the door is com-
letely open. The pattern of the event is the same with the addition
ntal Protection 135 (2020) 187–206

of congestion; it is just a faster event (Fig. 23). The external flame
does not develop into a mushroom shape, but is initially a flat petal
shape which expands sideward and in the direction of the door for
approximately 1 m (Fig. 24). Flame arrival times (relative to arrival
at TC1) derived from the thermocouple measurements are shown in
Table 3. Failure of door catch occurs slightly before the flame arrival
at TC2 and the induced flow of unburned gas means that even
within the box the observed flame speeds are not simply related to
the underlying burning velocity – although they are similar. Like-
wise in the foil tests without congestion the vent burst before the
arrival of the flame at TC2 distorting the measured average flame
speed.

For the foil tests the flame impinged on TC3 and TC4, well outside
the box. Movement of unburned gas in the jet forced out of the
developing split in the foil accounts for most of the of the observed
flame movement and the arrival times give an indication of the
velocity of unburned gas.

Due to the venting location with the door on, the flame does not
reach the external thermocouples; further work to measure the
external flame speeds by this method is planned for the future.

The video records of tests with the door allow an alternative
method of assessment of the rate of progress of the flame outside
the box. The video from the front of Test 8 (Fig. 24) was captured at a
rate of 240 frames per second giving an interval of 4.17 ms  between
frames. In the first frame that flame is seen external to the box it
has travelled 250 mm.  Using the side view (Fig. 25) with a higher
frame rate to estimate the time of emergence prior to this image,
gives a flame speed of approximately 200 m/s. Most of this speed
is movement of unburned gas in the jet from the door. The mea-
sured pressure at the time of emergence of the flame was  around
290 mbar which also corresponds to an expanded gas velocity of
around 200 m/s.

The flame travels a further 300 mm in the next 4.17 ms  frame
interval (an average of 72 m/s) and a further 100 mm in the next
frame (24 m/s). These result confirm the expected increase in the
velocity of the unburned gas flow where venting is through a door
rather than foil.

As previously discussed, given the vent geometry and high vent-
ing velocities indicated by the flame speeds it would be expected
that the sheer turbulence would be very high, causing dilution
with the entrained air. Using the video the external flame before
it starts to dilute, in Test 6, the flame was  a rough mushroom shape
around 1000 mm in diameter (Figs. 26 and 27). In Test 8 the flame
is a rough petal shape, approximately 800 × 600 × 150 mm at its
extremes before the flame dilutes (Figs. 24 and 28). Although the
shapes are very different it is clear that the door produces a much
smaller flame than the foil.

If the flame shape for the foil test is simplified to a hemisphere
and the size calculated using the expanded gas volume, the theo-
retical maximum diameter of the flame is around 1200 mm.  This
is very close to the observed flame size. This suggests that most of
the gas burned and only a small proportion was  diluted below the
LFL.

Conversely if the door flame shape is simplified to a disk of
width 150 mm,  the expected flame diameter would be around
1900 mm which is much larger that the reach of the flame observed
(800 mm):  this suggests that a high proportion of the ejected gas
was diluted to the point where it did not burn.

4. Conclusions
Within the box the flame develops hemispherically in a pre-
dictable manner at a laminar burning velocity of approximately
0.4 m/s, leading to a predictable rate of pressure increases. The addi-
tion of an internal congestion array increases the burning velocity
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Fig. 22. Flame development in Test 4; frame intervals 4.17 ms.
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Fig. 23. Flame development in Test 8: frame interval 1 ms.
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Fig. 24. Front view of venting flam

hreefold but the flame still develops as a hemisphere and pressure

evelopment is still predictable. The flame becomes more turbu-

ent and asymmetric once the vent fails and unburned gas starts to
ow towards the opening. The resulting increase in flame speed is
ifficult to predict.
e in Test 8; frame interval 4.17 ms.

Without congestion there is approximate correspondence

between the door and foil in terms of internal flame speeds and
burst pressure. The highest pressures occur just before the start
of venting. The addition of congestion removes this correlation
between the internal peak pressure and the vent opening and
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Test 8
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Fig. 25. Side view of 

here are substantial differences in internal pressure measure-
ent between the two types of closure. In the foil and congestion

ests the maximum achieved overpressure was 131 mbar; in the
oor test the maximum overpressure achieved with congestion
as 351 mbar. These differences arise because of differences in

he effective inertia of the foil and door. The foil is very light and
emoved quickly from the vent area once torn. The door has sub-
tantial inertia, so moves relatively slowly and continues to restrict
enting well after the catch fails. If the pressure is rising rapidly
ecause of congestion then the relatively slow opening of the vent

eads to higher pressures.
The foil tears rapidly, so the venting process happens almost

nstantaneously and the unburnt gas forms a rolling vortex bub-
le. This bubble entrains little of the external atmosphere, which

n these tests is air. The flame propagates through the unburnt gas
ubble before it has chance to break down, producing the typical
ushroom cloud. This means that the size and shape of the flame is

redictable as little of the gas is lost due to dilution through entrain-
ent of air. Most of the released gas burns before it is diluted below

he flammable limit. However the limited mixing at the edge of the
ortex bubble implies that the rate of associate flame acceleration
s also low. The external flame still provides a large ignition source
or an external volume which is likely to have an escalating effect.

The door has a large surface area and has substantial mass in
omparison to the foil; the doors under test have a mass of 3.2 kg.
he door is fixed to the 1860 mm circumference of the door frame
t five points by two 50 mm long hinges, two 5 mm diameter bars
nd a 15 mm wide plastic catch. It appears that as the pressure rises
he door flexes allowing venting to start through the small gap cre-

ted by the movement. Even when the pressure overcomes the door
atch and locking bar, inertia means the door is still causing a con-
iderable blockage. The venting gas is forced out of the thin wedge
hape vent, caused by the slightly open door. In the empty box tests
; frame interval 1ms.

the venting gas stream reaches speed of 120 m/s  but with the addi-
tion of congestion this increases to a maximum of 230 m/s in these
tests. This venting gas stream has a high speed and large surface
area, maximising the potential for shear generated turbulence.

In these tests this rapid mixing with external air causes dilution
below the flammable limit for a high proportion of the unburned gas
driven out of the box. The door is open by no more than 30 mm at its
widest point when the flame exits. The flame accelerates axially to
close to the venting gas velocity as it ignites the vented gas, rapidly
slowing as it enters the cold atmosphere. The resultant fireball is
much smaller than that of the foil tests due to the mass loss of
available fuel via the dilution caused by entrainment of air into the
gas stream.

If these tests were conducted with a flammable external volume
the different venting mechanisms would have more significance.
The foil burst venting mechanism generates little turbulence and
there would be limited increases in the maximum burning rate in
the external volume; any escalation in explosion severity to the
external volume will likely be caused by the size of the fireball as
an ignition source.

On the other hand, for boxes closed by a door there would be
jets of high speed unburned gas driven out all around the edge of
the widening vent. These jets would generate high levels of turbu-
lence in the larger volume allowing the external flame to extend
very rapidly away from the ignited box when it emerges. Overall
burning rates in the external volume would be greatly increased
which would lead in turn to higher pressures and more energetic
outflow if there was  another level of nesting – for example a pump
house enclosure venting into an engulfing gas cloud.
This analysis suggests that the venting mechanism and flame
exit speeds as a result of the door are likely to result in a more
severe explosion in the an external volume, compared to a burst-
ing membrane vent. However, it is not currently possible to
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Fig. 26. Test 6 external flame from front - Frame interval 4.17 ms.

f
t
w
i

s
o
i
e
u
o
e
v
t
i

ully predict the extent to which these mechanisms will affect
he explosion severity in an external unconfined volume. Further
ork with a flammable atmosphere is planned to investigate this

ssue.
The work by Daubech et al. (2017) was conducted to explore the

ame problem as this study and gives a valuable base for the the-
ry. Although the volumes are larger and vents were different than

n the experiments described in this paper, the results are of inter-
st. When using an explosion propagating from a 0.7 × 0.7 m vent is
sed to ignite a larger external volume, a mushroom flame, typical
f the vortex bubble is observed. The event does have an escalating

ffect on the combustion of the unconfined volume. But when the
ent was restricted to 0.2 m x 0.2 m the flame was observed as a jet
hat propagated much further into the unconfined cloud, entrain-
ng gas from that volume into the stream and caused a more severe
explosion. Note, however, both vents in this study were closed with
lightweight membrane and the dynamics of venting were very dif-
ferent to those in this study.

The control box at Buncefield was  nested within a steel clad
building. In the second stage of the explosion, all the steel cladding
panels were simultaneously driven at high speed into the sur-
rounding gas cloud. Previous work (Gill et al., 2016) has shown
that panel detachment can also have an escalating effect on the
severity of a venting explosion. The process of venting in the early
part of the second stage explosion is via the lightweight panels
distorting under the rising pressure. Many of these will detach

along one side and hinge open before the flame exits. There-
fore the flame will be propagating into a cloud that has many
areas of turbulence caused by the numerous streams of jetting
vented gas.
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Fig. 27. Test 6 external flame from side - frame interval 4 ms.
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