
This is a repository copy of Reactive synthesis with maximum realizability of linear
temporal logic specifications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/156772/

Version: Accepted Version

Article:

Dimitrova, R., Ghasemi, M. and Topcu, U. (2020) Reactive synthesis with maximum
realizability of linear temporal logic specifications. Acta Informatica, 57 (1-2). pp. 107-135.
ISSN 0001-5903

https://doi.org/10.1007/s00236-019-00348-4

This is a post-peer-review, pre-copyedit version of an article published in Acta Informatica.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s00236-019-
00348-4.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Acta Informatica manuscript No.

(will be inserted by the editor)

Reactive Synthesis with Maximum Realizability of

Linear Temporal Logic Specifications

Rayna Dimitrova∗ · Mahsa Ghasemi∗ ·

Ufuk Topcu

Abstract A challenging problem for autonomous systems is to synthesize a reactive con-

troller that conforms to a set of given correctness properties. Linear temporal logic (LTL)

provides a formal language to specify the desired behavioral properties of systems. In ap-

plications in which the specifications originate from various aspects of the system design,

or consist of a large set of formulas, the overall system specification may be unrealizable.

Driven by this fact, we develop an optimization variant of synthesis from LTL formulas,

where the goal is to design a controller that satisfies a set of hard specifications and mini-

mally violates a set of soft specifications. To that end, we introduce a value function that,

by exploiting the LTL semantics, quantifies the level of violation of properties. Inspired by

the idea of bounded synthesis, we fix a bound on the implementation size and search for an

implementation that is optimal with respect to the said value function. We propose a novel

maximum satisfiability encoding of the search for an optimal implementation (within the

given bound on the implementation size). We iteratively increase the bound on the imple-

mentation size until a termination criterion, such as a threshold over the value function, is

met.

Keywords Maximum realizability · Linear temporal logic · Bounded synthesis · Maximum

satisfiability

Part of the results in this paper were presented at the Sixteenth International Symposium on Automated

Technology for Verification and Analysis, Los Angeles, California, USA, October 2018 [1].

∗These authors contributed equally to the manuscript.

Rayna Dimitrova

University of Leicester, Leicester, UK

E-mail: rd307@leicester.ac.uk

Mahsa Ghasemi

University of Texas at Austin, Austin, Texas, USA

E-mail: mahsa.ghasemi@utexas.edu

Ufuk Topcu

University of Texas at Austin, Austin, Texas, USA

E-mail: utopcu@utexas.edu

2 Rayna Dimitrova∗ et al.

1 Introduction

In an ideal world, a user may specify a set of high-level behavioral characteristics for an au-

tonomous system, and a controller (i.e., implementation) can be synthesized to comply with

these specifications. Such automatic synthesis has been a topic for various studies in the

domain of formal methods where the goal is to design a hardware or a software system that

satisfies a set of formally defined properties. These properties can be formulated in an ap-

propriate language, such as linear temporal logic (LTL) [2]. In conventional synthesis, either

an implementation is constructed for a given specification, or the specification is identified

as unrealizable. Nevertheless, especially in large systems, specifications may arise from dif-

ferent design perspectives, and if they consist of a large number of individual requirements,

it is easy to encounter specifications that are unrealizable. In other scenarios, the user may

have several alternative requirements in mind, potentially with some preferences, and want

to know the best realizable combination of them with respect to some metric. Such cases

usually lead to alternating between specification modification and synthesis procedure and

hence, defeating the purpose of facilitating the design process.

The possibility of conflict amongst the provided requirements calls for a more compre-

hensive synthesis procedure that, in the case of unrealizability, can generate an implemen-

tation that minimally violates the specifications. In order to define the notion of minimality,

one requires a quantitative metric on the satisfaction of LTL formulas. The approach we

pursue relies on multiple levels of relaxations of an LTL formula. We associate each level

with a binary variable and form a value function that indicates the levels of relaxations of

the formula that the implementation satisfies. The value function respects a lexicographic

ordering according to preferences over relaxations. Having defined a value function, one

can interpret maximum realizability of a set of LTL formulas as seeking an implementation

that maximizes the corresponding value.

In this paper, we consider settings in which the goal is to design a system that satisfies a

given hard specification and maximizes the defined value function over a set of (potentially

prioritized) soft specifications. We first focus on soft specifications that are safety formulas

and later discuss the extension to general formulas. We quantify the compliance with a safety

property according to the LTL semantics in a straightforward manner. The highest value is

associated with satisfying the formula at all times, and it monotonically decreases if the

formula is satisfied from some point on, then satisfied infinitely often, and lastly satisfied

only for a finite number of times. Based on this ordering, we define the cumulative value of

a conjunction of safety properties according to given priorities or design criteria.

The backbone of our approach toward maximum realizability is bounded synthesis, orig-

inally introduced by Schewe and Finkbeiner [3]. Bounded synthesis tackles the computa-

tional complexity of reactive synthesis from LTL properties by restricting the size of the

search space. More specifically, it searches for a realizable implementation of the size up to

a prespecified bound. If no such implementation exists, it increments the bound and repeats

the search process. Each instance of bounded search for an implementation can be encoded

as a SAT (or QBF, or SMT) problem [4]. The algorithm is complete as a theoretical bound

on the maximum size of the implementation exists.

We formulate maximum realizability as iterative MaxSAT solving [5]. In each iteration,

we construct a MaxSAT instance that characterizes the existence of an implementation of

size within the given bound that not only realizes the hard specification but is also optimal

with respect to defined value function for soft specifications. We prove that, for any given

finite set of soft specifications, there exists an optimal implementation with a bounded size.

Consequently, the proposed algorithm that gradually increases the bound on the implemen-

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 3

tation size is complete. On the other hand, the theoretical upper bound on the minimal im-

plementation size is generally impractically large. Therefore, in practice, we also settle for

termination criteria such as a problem-specific bound on controller size, a limit on running

time, or a desired threshold on the value function.

The proposed encoding of maximum realizability generates partial weighted MaxSAT

instances. A partial weighted MaxSAT problem is composed of a set of hard clauses and a set

of weighted soft clauses. The hard clauses capture the encodings imposed by bounded syn-

thesis procedure for both hard and soft specifications. The soft clauses determine the level of

relaxation of a soft specification that can be satisfied. We design the weights of soft clauses

in a way that they correspond to the quantitative semantics of soft specifications. Therefore,

adjusting the weights allows our approach to easily adapt to different design criteria.

Recent advances in SAT solving along with the development of novel algorithms such as

structural partitioning and search heuristics have made MaxSAT solviers a promising tool.

MaxSAT formulations have been effective in solving many real-world problems including

most probable explanation in Bayesian networks [6], package management [7], and corre-

lation clustering and causal structure learning [8]. While SAT solving has been an essential

part of numerous formulations proposed for reactive synthesis problems, the applicability of

MaxSAT solving has not yet been explored in this field. In this paper, we develop the first

maximum realizability algorithm that utilizes the power of MaxSAT solvers to deal with the

underlying combinatorial nature of the optimization task.

We evaluated the proposed maximum realizability procedure experimentally on reactive

synthesis instances from two domains where considering combinations of hard and soft

specifications is natural and often unavoidable. The first domain is robotic navigation, where

due to the adversarial nature of the environment in which robots operate, safety requirements

might prevent a system from achieving its goal, or a large number of tasks of different types

might not necessarily be consistent when posed together. The second domain relates to load

distribution tasks in power networks. There, generators have limited capacity to power a set

of vital and non-vital loads, whose total demand may exceed the capacity of the generators,

thus leading to a combination of hard and soft specifications.

The rest of the manuscript is organized as follows. Section 2 discusses related work. Sec-

tion 3 recalls the necessary background on LTL synthesis, the bounded synthesis approach,

and maximum satisfiability. In Section 4, we describe the proposed quantitative semantics

for soft specifications and using this semantics, formally state the maximum realizability

problem. In Section 5, we detail the proposed bounded maximum realizability algorithm

along its encoding into MaxSAT instances. Section 6 presents the experimental settings and

the obtained results. Lastly, Section 7 states the concluding remarks and future directions.

This paper is an extension of the conference publication [1]. It contains the complete

proofs and presents (Section 5.4) a generalization of the maximum realizability problem to

soft specifications in the full class of LTL formulas and to prioritized specifications.

2 Related Work

Maximum realizability and several closely related problems have attracted significant atten-

tion in recent years. Tumova et al. [9] studied the problem of planning over a finite horizon

with prioritized safety requirements, where the goal is to synthesize a least-violating control

strategy. Kim et al. [10] studied a similar problem for the case of infinite-horizon temporal

logic planning, which seeks to revise an inconsistent specification, minimizing the cost of

revision with respect to costs for atomic propositions provided by the specifier. Lahijanian et

4 Rayna Dimitrova∗ et al.

al. [11] describe a method for computing optimal plans for co-safe LTL specifications, where

optimality is again with respect to the cost of violating each atomic proposition, which is

provided by the user. All of these approaches are developed for the planning setting, where

there is no adversarial environment, and thus they are able to reduce the problem to the

computation of an optimal path in a graph. Lahijanian and Kwiatkowska [12] considered

the case of probabilistic environments. In contrast, the proposed method seeks to maximize

the satisfaction of the given specification against the worst-case behavior of the environ-

ment. Lahijanian et al. [13] studied the problem of partial satisfaction of guarantees in an

unknown environment, where, unlike in our work, no relaxations of the soft specifications

are considered, but simply the number of those that are satisfied is maximized.

The problem setting that is the closest to ours is that of Tomita et al. [14]. There, the

authors study a maximum realizability problem in which the specification is a conjunction

of a must (or hard, in our terms) LTL specification, and a number of weighted desirable

(or soft, in our terms) specifications of the form ϕ, where ϕ is an arbitrary LTL formula.

When ϕ is not a safety property it is first strengthened to a safety formula before applying

the synthesis procedure, which then weakens the result to a mean-payoff term. Thus, while

Tomita et al. consider a broader class of soft specifications compared to those in this paper,

when ϕ is not a safety property there is no clear relationship between ϕ and the resulting

mean-payoff term. When applied to multiple soft specifications, the method by Tomita et

al. combines the corresponding mean-payoff terms in a weighted sum, and synthesizes an

implementation optimizing the value of this sum. Thus, without inspecting the synthesized

implementation it is not possible to determine to what extent the individual desirable spec-

ifications are satisfied. In contrast, in the proposed maximum realizability procedure each

satisfaction value is characterized as an LTL formula, which is useful for explainability and

providing feedback to the designer.

To the best of our knowledge, our work is the first to employ MaxSAT in the context of

reactive synthesis. MaxSAT has been used for preference-based planning [15] and for com-

puting optimal plans in propositional planning problems with action costs [16]. However,

since maximum realizability is concerned with reactive systems, it requires a fundamentally

different approach from planning.

Two other main research directions related to maximum realizability are quantitative

synthesis and specification debugging. There are two predominant flavours of quantitative

synthesis problems studied in the literature. In the first one (cf. [17]), the goal is to gener-

ate an implementation that maximizes the value of a mean-payoff objective, while possibly

satisfying some ω-regular specification. In the second setting (cf. [18,19]), the system re-

quirements are formalized in a multi-valued temporal logic. These synthesis methods [19,

17,18], however, do not directly solve the corresponding optimization problem, but instead

check for the existence of an implementation whose value is in a given set. The optimization

problem can then be reduced to a sequence of such queries.

Alur et al. [20] studied an optimal synthesis problem for an ordered sequence of pri-

oritized ω-regular properties, where the classical fixpoint-based game-solving algorithms

are extended to a quantitative setting. The main difference in our work is that we allow for

incomparable soft specifications each with a number of prioritized relaxations, for which

the equivalent set of preference-ordered combinations would be of size exponential in the

number of soft specifications. Our MaxSAT formulation avoids explicitly considering these

combinations.

In specification debugging there is a lot of research dedicated to finding good explana-

tions for the unsatisfiability or unrealizability of temporal logic specifications [21–23], and

more generally to the analysis of specifications [24,25]. Our approach to maximum real-

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 5

izability can prove useful for specification analysis, since instead of simply providing an

optimal value, it computes an optimal relaxation of the given specification in the form of

another LTL formula.

3 Background

We start by an overview of syntax and semantics of linear temporal logic (LTL) and language-

equivalent automata representation. Next, we define finite-state transition systems, and for-

mally state the synthesis problem. Then, we proceed to go over definitions of run graph and

annotations to describe the bounded synthesis method and its SAT encoding. Lastly, we pro-

vide a brief description of maximum satisfiability (MaxSAT) problem, particularly a class

of that called partial weighted MaxSAT.

3.1 Synthesis from LTL Specifications

Linear temporal logic (LTL) is a formal language for specifying behavioral characteristics

of reactive systems. Formulas in LTL are constructed according to the following grammar:

ϕ := p | true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ | ϕ1 U ϕ2 | ϕ1 Rϕ2,

where p ∈ P is an atomic proposition. next (), until (U), and release (R) are temporal

operators. The finally operator () is defined as ϕ ≡ true U ϕ and the globally operator

() is defined as ϕ ≡ falseRϕ. We denote the size of an LTL formula (that is, the

number of operators in the formula) with |ϕ|, and the set of all its subformulas with subf(ϕ).
A negation normal form (NNF) of an LTL formula is a semantically-equivalent LTL formula

in which negations appear only in front of atomic propositions. Without loss of generality,

we consider LTL formulas in NNF.

LetΣ = 2P denote the finite alphabet composed of all possible valuations of the propo-

sitions. A letter σ ∈ Σ is interpreted as the valuation that assigns value true to all p ∈ σ

and false to all p ∈ P \ σ. An infinite word w ∈ Σω is an infinite sequence of letters. An

LTL formula ϕ defines a language over infinite words. A word is included in the language if

it satisfies the formula, denoted by w |= ϕ. The full semantics of LTL can be found in [26].

A safety LTL formula is an LTL formula such that every word not in its language has a

bad prefix. Formally, ϕ is a safety LTL formula if for each w 6|= ϕ,w ∈ Σω , there exists a

bad prefix u ∈ Σ∗ such that u · v 6|= ϕ, ∀v ∈ Σω . Syntactically safe LTL formulas are a

subclass of safety LTL formulas which do not contain any occurrences of U when written in

NNF.

The language accepted by an LTL formula can equivalently be represented by a nonde-

terministic (or universal) Büchi (or co-Büchi) automaton. A Büchi automaton over a finite

alphabet Σ is a tuple A = (Q, q0, δ, F), where Q is a finite set of states, q0 is the initial

state, δ ⊆ Q×Σ×Q is the transition relation, and F ⊆ Q is a subset of states. A run of A
on an infinite word w = σ0σ1 . . . ∈ Σω is an infinite sequence q0, q1, . . . of states, where

q0 is the initial state and for every i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ.

A run of a Büchi automaton is accepting if it contains infinitely many occurrences of

states in F . A co-Büchi automaton A = (Q, q0, δ, F) differs from a Büchi automaton in the

accepting condition: a run of a co-Büchi automaton is accepting if it contains only finitely

many occurrences of states in F . For a Büchi automaton the states in F are called accepting

states, while for a co-Büchi automaton they are called rejecting states. A nondeterministic

6 Rayna Dimitrova∗ et al.

automaton A accepts a word w ∈ Σω if some run of A on w is accepting. A universal

automaton A accepts a word w ∈ Σω if every run of A on w is accepting.

For a reactive system, the set of atomic propositions is P = I ∪ O, where I and

O are disjoint sets, denoting input propositions controlled by the environment and output

propositions controlled by the system, respectively. A transition system over a set of input

propositions I and a set of output propositions O is a tuple T = (S, s0, τ), where S is a set

of states, s0 is the initial state, and the transition function τ : S×2I → S×2O maps a state

s and a valuation σI ∈ 2I of the input propositions to a successor state s′ and a valuation

σO ∈ 2O of the output propositions. For any letter σ, we consider the projection to input

propositions by σI
def
= σ∩I and to output propositions by σO

def
= σ∩O. If the set S is finite,

T is a finite-state transition system and its size is defined by |T | def
= |S|.

An execution of T is an infinite sequence s0, (σI0∪σO0), s1, (σI1∪σO1), s2 . . . such

that s0 is the initial state, and (si+1, σOi) = τ(si, σI i) for every i ≥ 0. The corresponding

sequence (σI0∪σO0), (σI1∪σO1), . . . ∈ Σω is called a trace. We denote with Traces(T)
the set of all traces of a transition system T . A transition system T satisfies an LTL formula

ϕ over atomic propositions P = I ∪O, denoted by T |= ϕ, if for every w ∈ Traces(T), it

holds that w |= ϕ.

The decision problem of determining whether there exists a transition system that sat-

isfies an LTL formula is called the realizability problem for LTL. If an LTL formula ϕ is

realizable, the goal of LTL synthesis problem is to construct a transition system T such that

T |= ϕ.

3.2 Bounded Synthesis Approach

The run graph of a universal automaton A = (Q, q0, δ, F) on a transition system T =
(S, s0, τ) is the unique graph G = (V,E) with a set of nodes V = S × Q and a set of

labeled edges E ⊆ V × Σ × V such that ((s, q), σ, (s′, q′)) ∈ E iff (q, σ, q′) ∈ δ and

τ(s, σ ∩ I) = (s′, σ ∩ O). That is, G is the product of A and T .

A run graph of a universal Büchi (resp. co-Büchi) automaton is accepting if every infinite

path (s0, q0), (s1, q1), . . . contains infinitely (resp. finitely) many occurrences of states qi
in F . A transition system T is accepted by a universal automaton A if the unique run graph

of A on T is accepting. We denote with L(A) the set of transition systems accepted by A.

The bounded synthesis approach is based on the fact that for every LTL formula ϕ one

can construct a universal co-Büchi automaton Aϕ with at most 2O(|ϕ|) states such that

T ∈ L(Aϕ) iff T |= ϕ, for every transition system T [27].

An annotation of a transition system T = (S, s0, τ) with respect to a universal co-Büchi

automaton A = (Q, q0, δ, F) is a function λ : S × Q → N ∪ {⊥} that maps nodes of the

run graph of A on T to the set N∪{⊥}. Intuitively, such an annotation is valid if every node

(s, q) that is reachable from the node (s0, q0) is annotated with a natural number, which is

an upper bound on the number of rejecting states visited on any path from (s0, q0) to (s, q).
Formally, an annotation λ : S ×Q→ N ∪ {⊥} is valid if

– λ(s0, q0) 6= ⊥, i.e., the pair of initial states is labeled with a number, and

– whenever λ(s, q) 6= ⊥, then for every edge ((s, q), σ, (s′, q′)) in the run graph of A
on T we have that (s′, q′) is annotated with a number (i.e., λ(s′, q′) 6= ⊥), such that

λ(s′, q′) ≥ λ(s, q), and if q′ ∈ F , then λ(s′, q′) > λ(s, q).

Valid annotations of finite-state transition systems correspond to accepting run graphs. An

annotation λ is c-bounded if λ(s, q) ∈ {0, . . . , c} ∪ {⊥} for all s ∈ S and q ∈ Q.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 7

The synthesis method proposed in [3,28] employs the following result in order to reduce

the bounded synthesis problem to checking the satisfiability of propositional formulas: a

transition system T is accepted by a universal co-Büchi automaton A = (Q, q0, δ, F) iff

there exists a (|T | · |F |)-bounded valid annotation for T and A. One can estimate a bound

on the size of the transition system, which allows to reduce the synthesis problem to its

bounded version. Namely, if there exists a transition system that satisfies an LTL formula ϕ,

then there exists a transition system satisfying ϕ with at most
(
2(|subf(ϕ)|+log |ϕ|)

)
!2 states.

Let A = (Q, q0, δ, F) be a universal co-Büchi automaton for the LTL formula ϕ. Given

a bound b on the size of the desired transition system T , the bounded synthesis problem can

be encoded as a satisfiability problem with the following sets of propositional variables and

constraints.

Variables: The variables represent the desired transition system T , and the desired valid

annotation λ of the run graph of A on T . A transition system with b states S = {1, . . . , b}
is represented by Boolean variables τs,σI ,s′ and os,σI

for every s, s′ ∈ S, σI ∈ 2I , and

o ∈ O. The variable τs,σI ,s′ encodes the existence of transition from s to s′ on input σI ,

and the variable os,σI
encodes o being true in the output from state s on input σI .

The annotation λ is represented by the following variables. For each s ∈ S and q ∈
Q, there is a Boolean variable λBs,q and a vector λNs,q of log(b · |F |) Boolean variables:

the variable λBs,q encodes the reachability of (s, q) from the initial node (s0, q0) in the

corresponding run graph, and the vector of variables λNs,q represents the bound for the node

(s, q). The constraints are as follows [28].

Constraints for input-enabled T : Cτ
def
=
∧
s∈S

∧
σI∈2I

∨
s′∈S τs,σI ,s′ .

Constraints for valid annotation:

Cλ
def
= λ

B

s0,q0 ∧
∧

q,q′∈Q

∧

s,s′∈S

∧

σI∈2I

((
λ
B

s,q ∧ δs,q,σI ,q′ ∧ τs,σI ,s′
)
→ succλ(s, q, s

′
, q

′)
)
,

where δs,q,σI ,q′ is a formula over the variables os,σI
that characterizes the transitions in A

between q and q′ on labels consistent with σI , and succλ(s, q, s
′, q′) is a formula over the

annotation variables such that

succλ(s, q, s
′
, q

′) def
=

{
λBs′,q′ ∧ (λNs′,q′ > λNs,q) if q′ ∈ F,

λBs′,q′ ∧ (λNs′,q′ ≥ λNs,q) if q′ 6∈ F.

3.3 Maximum Satisfiability

The procedure proposed by Finkbeiner and Schewe [28] and recalled in the previous sec-

tion provides a SAT encoding of synthesis when the size of the implementation is bounded.

Maximum realizability is an optimization variant of synthesis while MaxSAT is an optimiza-

tion variant of SAT. We show that, for a proposed value function, the maximum realizability

problem under a bounded implementation size can be reduced to a partial weighted MaxSAT

instance.

Consider a propositional logic formula in conjunctive normal form (CNF), i.e., a formula

that is a conjunction of disjunction of literals, where a literal is a Boolean variable or its

negation and a disjunction of literals is called a clause. MaxSAT is the problem of assigning

truth values to a set of Boolean variables such that the number of clauses of a propositional

logic formula in CNF that are made true, is maximized [5]. A partial MaxSAT is a variant of

MaxSAT problem where the clauses are categorized as hard and soft clauses. In this case, the

8 Rayna Dimitrova∗ et al.

goal is to find a truth assignment to the variables such that all the hard clauses are made true

and the number of soft clauses that become true is maximized. A more general problem is

that of partial weighted MaxSAT where each of the soft clauses is associated with a positive

numerical weight. There, the objective is to find a truth assignment to the variables that not

only makes all the hard clauses true but also maximizes the sum of the weights of the soft

clauses that become true.

We exploit the separation of the hard and soft clauses in partial weighted MaxSAT to

capture the hard and soft constraints that arise in the encoding of the maximum realizability

problem. Furthermore, we design the weights of the soft clauses in a way to promote the

quantitative objective associated with the conjunction of the given soft specifications.

4 Maximum Realizability

Often, the specifications required from a system are a combination of multiple requirements,

which might not be realizable in conjunction. In such a case, in addition to reporting the

unrealizability to the system designer, we would like the synthesis procedure to construct an

implementation that satisfies the specifications “as much as possible”. Such implementation

is particularly useful in the case where some of the requirements describe desirable but not

necessarily essential properties of the system. To determine what “as much as possible”

formally means, a quantitative semantics of the specification language is necessary. In the

following, we provide such semantics for a fragment of LTL. The quantitative interpretation

is based on the standard semantics of LTL formulas of the form ϕ.

4.1 Quantitative Semantics of Soft Safety Specifications

Let ϕ1, . . . , ϕn be a set of LTL specifications, where eachϕi is a safety LTL formula. In

order to formalize the maximal satisfaction of ϕ1∧ . . .∧ ϕn, we first give a quantitative

semantics of formulas of the form ϕ.

Quantitative semantics of safety specifications. For an LTL formula of the form ϕ and a

transition system T , we define the value val(T , ϕ) of ϕ in T as

val(T , ϕ) def
=





(1, 1, 1) if T |= ϕ,

(1, 1, 0) if T 6|= ϕ and T |= ϕ,

(1, 0, 0) if T 6|= ϕ and T 6|= ϕ and T |= ϕ,

(0, 0, 0) if T 6|= ϕ and T 6|= ϕ and T 6|= ϕ.

Thus, the value of ϕ in a transition system T is a vector (v1, v2, v3) ∈ {0, 1}3, where

the value (1, 1, 1) corresponds to the true value in the classical semantics of LTL. When

T 6|= ϕ, the values (1, 1, 0), (1, 0, 0) and (0, 0, 0) capture the extent to which ϕ holds or

not along the traces of T . For example, if val(T , ϕ) = (1, 0, 0), then ϕ holds infinitely

often on each trace of T , but there exists a trace of T on which ϕ is violated infinitely often.

When val(T , ϕ) = (0, 0, 0), then on some trace of T , ϕ holds for at most finitely many

positions. Note that by the definition of val , if val(T , ϕ) = (v1, v2, v3), then

– v1 = 1 if and only if T |= ϕ,

– v2 = 1 if and only if T |= ϕ,

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 9

– v3 = 1 if and only if T |= ϕ.

Thus, the lexicographic ordering on {0, 1}3 captures the preference of one transition system

over another with respect to the quantitative satisfaction of ϕ.

Example 1 Suppose that we want to synthesize a transition system representing a navigation

strategy for a robot working at a restaurant. We require that the robot serves the VIP area

infinitely often, formalized in LTL as vip area . We also desire that the robot never

enters the staff’s office, formalized as ¬office . Now, suppose that initially the key to the

VIP area is in the office. Thus, in order to satisfy vip area , the robot must violate

¬office . A strategy in which the office is entered only once, and satisfies ¬office , is

preferable to one which enters the office over and over again, and only satisfies ¬office .

Thus, we want to synthesize a strategy T maximizing val(T , ¬office).

In order to compare implementations with respect to their satisfaction of a conjunction

of several safety specifications ϕ1 ∧ . . . ∧ ϕn, we will extend the above definition. We

first consider the case where the specifier has not expressed any preference for the individual

conjuncts and later on, extend that to the case with a given priority ordering. Consider the

following example.

Example 2 We consider again the restaurant robot, now with two soft specifications. The

soft specification (req1 → table1) requires that each request by table 1 is served imme-

diately at the next time instance. Similarly, (req2 → table2), requires the same for table

number 2. Since the robot cannot be at both tables simultaneously, formalized as the hard

specification (¬table1 ∨¬table2), the conjunction of these requirements is unrealizable.

Unless the two tables have priorities, it is preferable to satisfy each of req1 → table1

and req2 → table2 infinitely often, rather than serve one and the same table all the time.

Quantitative semantics of conjunctions. To capture the idea illustrated in Example 2, we

define a value function, which intuitively gives higher values to transition systems in which

a fewer number of soft specifications have low values. Formally, let the value of ϕ1∧ . . .∧
ϕn in T be

val(T , ϕ1 ∧ . . . ∧ ϕn)
def
=
(n∑

i=1

vi,1,

n∑

i=1

vi,2,

n∑

i=1

vi,3
)
,

where val(T , ϕi) = (vi,1, vi,2, vi,3) for i ∈ {1, . . . , n}. To compare transition systems

according to these values, we use lexicographic ordering on {0, . . . , n}3.

Example 3 For the specifications in Example 2, the defined value function assigns value

(2, 0, 0) to a system satisfying (req1 → table1) and (req2 → table2), but

neither of (req1 → table1) and (req2 → table2). It assigns the smaller

value (1, 1, 1) to an implementation that gives priority to table 1 and satisfies (req1 →
table1) but not (req2 → table2).

According to the definition above, a transition system that satisfies all soft requirements

to some extent is considered better in the lexicographic ordering than a transition system that

satisfies one of them exactly and violates all the others. We could instead inverse the order

of the sums in the triple, thus giving preference to satisfying some soft specification exactly,

over having some lower level of satisfaction over all of them. The next example illustrates

the differences between the two variations.

10 Rayna Dimitrova∗ et al.

Convert ϕ to UCBA A

Construct UBA

Relax (ϕi) for

each ϕi and ϕi

Construct UCBA Ai
for each ϕi

Set implementation size

Encode in

MaxSAT

Exceeded value threshold/

time limit/implementation bound?

Extract implementation

Increase the implementation bound

set of soft

specifications

ϕ1, . . . , ϕn

hard specification

ϕ

initial imple-

mentation bound

yes

no

Figure 1: Outline of the maximum realizability procedure.

Example 4 For the two soft specifications from Example 2, reversing the order of the sums

in the definition of val(T , ϕ1 ∧ . . . ∧ ϕn) results in giving the higher value (1, 1, 1)
to a transition system that satisfies (req1 → table1) but not (req2 → table2),
and the lower value (0, 0, 2) to the one that only guarantees (req1 → table1) and

(req2 → table2). The most suitable ordering usually depends on the specific appli-

cation.

4.2 Problem Formulation

Using the definition of quantitative satisfaction of soft safety specifications, we now define

the maximum realizability problem, which asks to synthesize a transition system that sat-

isfies a given hard LTL specification, and is optimal with respect to the satisfaction of a

conjunction of soft safety specifications.

Maximum realizability problem: Given an LTL formulaϕ and formulas ϕ1, . . . , ϕn,

where each ϕi is a safety LTL formula, the maximum realizability problem asks to deter-

mine if there exists a transition system T such that T |= ϕ, and if the answer is positive, to

synthesize a transition system T such that T |= ϕ, and for every transition system T ′ with

T ′ |= ϕ it holds that val(T , ϕ1 ∧ . . . ∧ ϕn) ≥ val(T ′, ϕ1 ∧ . . . ∧ ϕn).

Bounded maximum realizability problem: Given an LTL formula ϕ and formulas

ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, and a bound b ∈ N>0, the bounded

maximum realizability problem asks to determine if there exists a transition system T with

|T | ≤ b such that T |= ϕ, and if the answer is positive, to synthesize a transition system T
such that T |= ϕ, |T | ≤ b and for every transition system T ′ with T ′ |= ϕ and |T ′| ≤ b, it

holds that val(T , ϕ1 ∧ . . . ∧ ϕn) ≥ val(T ′, ϕ1 ∧ . . . ∧ ϕn).

5 Maximum Realizability as Iterative MaxSAT Solving

We now describe the proposed MaxSAT-based approach to maximum realizability. First,

we establish an upper bound on the minimal size of an implementation that satisfies a given

LTL specificationϕ and maximizes the satisfaction of a conjunction of the soft specifications

ϕ1, . . . , ϕn, according to the value function defined in Section 4.1. This bound can be

used to reduce the maximum realizability problem to its bounded version, which we encode

as a MaxSAT problem.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 11

5.1 Bounded Maximum Realizability

To establish an upper bound on the minimal (in terms of size) optimal implementation, we

make use of an important property of the function val defined in Section 4.1. Namely, the

property that for each of the possible values of ϕ1 ∧ . . . ∧ ϕn there is a corresponding

LTL formula that encodes this value in the classical LTL semantics, as we formally state in

the next lemma.

Lemma 1 For every transition system T and soft safety specifications ϕ1, . . . , ϕn, if

val(T , ϕ1 ∧ . . . ∧ ϕn) = v, then there exists an LTL formula ψv where

(1) ψv = ϕ′
1 ∧ . . . ∧ ϕ

′
n, such that ϕ′

i ∈ { ϕi, ϕi, ϕi, true} for i = 1, . . . , n,

(2) T |= ψv , and for every T ′, if T ′ |= ψv , then val(T ′, ϕ1 ∧ . . . ∧ ϕn) ≥ v.

Proof For each i ∈ {1, . . . , n}, let (vi,1, vi,2, vi,3) = val(T , ϕi), and let

ψ
i
v

def
=





ϕi if vi,3 = 1,

ϕi if vi,3 = 0 and vi,2 = 1,

ϕi if vi,2 = 0 and vi,1 = 1,

true if vi,1 = 0.

We define ψv =
∧n
i=1 ψ

i
v . By the definition of val(T , ϕi) and ψiv , we have that

T |= ψiv for all i ∈ {1, . . . , n}. Thus, we conclude that T |= ψv . Clearly, ψv also satisfies

condition (1). Now, consider a transition system T ′ with T ′ |= ψv .

Let (v′1, v
′
2, v

′
3) = val(T ′, ϕ1 ∧ . . . ∧ ϕn). We will show that v′1 ≥ v1, v′2 ≥ v2

and v′3 ≥ v3, where (v1, v2, v3) = v. Fix some i ∈ {1, . . . , n}.

Let (v′i,1, v
′
i,2, v

′
i,3) = val(T ′, ϕi). Since T ′ |= ψv we have that T ′ |= ψiv . Thus by

the definition of ψiv , we have that if vi,3 = 1, then T ′ |= ϕi, and thus v′i,3 = 1. Similarly,

if vi,2 = 1 we can conclude that v′i,2 = 1, and if vi,1 = 1, then we have v′i,1 = 1. Since

i ∈ {1, . . . , n} was arbitrary, and since

(v1, v2, v3) =
(∑n

i=1 vi,1,
∑n
i=1 vi,2,

∑n
i=1 vi,3

)
and

(v′1, v
′
2, v

′
3) =

(∑n
i=1 v

′
i,1,
∑n
i=1 v

′
i,2,
∑n
i=1 v

′
i,3

)
,

we can conclude that v′1 ≥ v1, v′2 ≥ v2 and v′3 ≥ v3. This implies that (v′1, v
′
2, v

′
3) ≥

(v1, v2, v3) also according to the lexicographic ordering, which proves (2). ⊓⊔

The following theorem is a consequence of Lemma 1.

Theorem 1 Given an LTL specification ϕ and soft safety specifications ϕ1, . . . , ϕn, if

there exists a transition system T |= ϕ, then there exists T ∗ such that

(1) val(T ∗, ϕ1 ∧ . . . ∧ ϕn) ≥ val(T , ϕ1 ∧ . . . ∧ ϕn) for all T with T |= ϕ,

(2) T ∗ |= ϕ and |T ∗| ≤
(
(2(b+log b))!

)2
,

where b = max{|subf(ϕ ∧ ϕ′
1 ∧ . . . ∧ ϕ

′
n)| | ∀i : ϕ

′
i ∈ { ϕi, ϕi, ϕi}}.

Proof Let v∗ = max
{
v ∈ {0, . . . , n}3 | ∃T : T |= ϕ and val(T , ϕ1 ∧ . . . ∧ ϕn) =

v
}
. Let T be a transition system such that T |= ϕ and val(T , ϕ1 ∧ . . . ∧ ϕn) = v∗.

According to Lemma 1, there exists an LTL formula ψv∗ that satisfies the conditions of the

lemma. Thus, T |= ϕ ∧ ψv∗ . According to [3], there exists a transition system T ∗ such

that T ∗ |= ϕ ∧ ψv∗ and |T ∗| ≤
((

2|subf(ϕ∧ψv∗)|+log |ϕ∧ψv∗ |
)
!
)2

. Combining this with

12 Rayna Dimitrova∗ et al.

the guarantees of Lemma 1, we get that val(T ∗, ϕ1 ∧ . . . ∧ ϕn) ≥ v∗, T ∗ |= ϕ and

|T ∗| ≤
(
(2b+log b)!

)2
. Thus, T ∗ satisfies condition (2), and since the value v∗ is optimal,

we have that condition (1) holds as well. ⊓⊔

The bound above is estimated based on the size of the specifications, using a worst-case

bound on the size of the corresponding automata. Given the automata for all the specifica-

tions ϕi, ϕi and ϕi, a potentially better bound can be estimated based on the

sizes of these automata.

Lemma 1 immediately provides a naive synthesis procedure, which searches for an op-

timal implementation by enumerating possible ψv formulas and solving the corresponding

realizability questions. The total number of these formulas is 4n, where n is the number

of soft specifications. The approach that we propose avoids this rapid growth, by reducing

the optimization problem to a single MaxSAT instance, making use of the power of the

state-of-the-art MaxSAT solvers.

Figure 1 gives an overview of our maximum realizability procedure and the automata

constructions it involves. As in the bounded synthesis approach, we construct a universal

co-Büchi automaton A for the hard specification ϕ. For each soft specification ϕj , we

construct a pair of automata corresponding to the relaxations of ϕj . The relaxation ϕj
is treated as in bounded synthesis. For ϕi and ϕi, we construct a single universal

Büchi automaton and define a corresponding annotation function as described next.

5.2 Automata and Annotations for Soft Safety Specifications

We present here the reduction to MaxSAT for the case when each soft specification is of

the form ψ where ψ is a syntactically safe LTL formula. In this case, we construct a

single automaton for both ψ and its relaxation ψ, and encode the existence of a

single annotation function in the MaxSAT problem. The size of this automaton is at most

exponential in the size of ψ. In the general case, we can treat ψ and ψ separately,

in the same way that we treat the relaxation ψ of ψ in the presented encoding. That

would require in total three instead of two annotation functions per soft specification.

We now describe the construction of a universal Büchi automaton B ψ for a syntac-

tically safe soft specification ψ and show how we can modify it to obtain an automaton

Relax (ψ) that incorporates the relaxation of ψ to ψ.

Proposition 1 Given an LTL formula ψ where ψ is syntactically safe, we can construct

a universal Büchi automaton B ψ = (Q ψ, q
ψ

0 , δ ψ, F ψ) such that L(B ψ) = {T |
T |= ψ}, and B ψ has a unique non-accepting sink state, that is, there exists a unique

state rejψ ∈ Q ψ such that F ψ = Q ψ \ {rejψ}, and for every σ ∈ Σ it holds that

{q ∈ Q ψ | (rejψ, σ, q) ∈ δ ψ} = {rejψ}.

Proof We first describe the construction of the automaton B ψ of the desired form, and

then proceed to prove its correctness.

Construction. First we construct a universal Büchi automaton Bψ for the formula ψ

such that, for every word w ∈ Σω , it holds that w is accepted by Bψ if and only if w |= ψ.

To this end, we use the following result from [29]. Given a syntactically safe LTL formula

ψ, we can construct a nondeterministic finite automaton N = (QN , q
N
0 , δN , FN) with at

most 2O(|ψ|) states, and such that:

– if v ∈ Σ∗ is accepted by N , then for all w′ ∈ Σω we have vw′ 6|= ψ, and

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 13

– for every w ∈ Σω , if w 6|= ψ, then there exists a prefix v of w accepted by N . Thus, N
accepts at least one bad prefix of each word w ∈ Σω that violates ψ.

The automaton Bψ = (Qψ, q
ψ
0 , δψ, Fψ) is obtained from N as follows. The set of

states of Bψ consists of those states of N that are not accepting, together with a new state

rejψ 6∈ QN , that is, Qψ = (QN \FN)∪{rejψ}. We let q
ψ
0 = qN0 and Fψ = Qψ \ {rejψ}.

The transition relation of Bψ is obtained from δN by redirecting all transitions leading to

states in FN to the new state rejψ . Formally,

δψ = (δN ∩ (Qψ ×Σ ×Qψ)) ∪ {(q, σ, rejψ) | σ ∈ Σ and ∃q′ ∈ FN . (q, σ, q
′) ∈ δN }

∪ {(rejψ, σ, rejψ) | σ ∈ Σ}.

We now construct a universal Büchi automaton B ψ = (Q ψ, q
ψ

0 , δ ψ, F ψ) such that

w is accepted by B ψ iff w |= ψ. We let Q ψ = Qψ , q
ψ

0 = q
ψ
0 , and F ψ = Fψ .

The transition relation δ ψ extends δψ by adding a self-loop at the initial state q
ψ

0 for all

transitions from q
ψ
0 in δψ that do not lead to rejψ:

δ ψ = δψ ∪ {(qψ0 , σ, q
ψ
0) | σ ∈ Σ and ∃q′ ∈ (Qψ \ {rejψ}). (q

ψ
0 , σ, q

′) ∈ δψ}.

Correctness. Let T ∈ L(B ψ). Since B ψ is a universal Büchi automaton, this means

that the unique run graph of B ψ on T is accepting, which in turn means that each infinite

path contains infinitely many occurrences of states in F ψ . Since F ψ contains all states

except rejψ , and rejψ is a sink state, it follows that every infinite path in the run graph

contains only states in F ψ .

Suppose, for the sake of contradiction, that T 6|= ψ. Thus, there existsω = σ0, σ1, . . . ∈
Traces(T) such that ω 6|= ψ. Let i ≥ 0 be an index such that σi, σi+1, . . . 6|= ψ. By the

choice of the automaton N , there exists a prefix of σi, σi+1, . . . accepted by N . Since

ω ∈ Traces(T) and T ∈ L(B ψ), every path in the run graph corresponding to ω never

visits rejψ . Thus, since δ ψ contains a self-loop at state q
ψ

0 with letters not leading to rejψ ,

there exists a path in the run graph corresponding to σ0, . . . , σi−1 that ends in q
ψ

0 . By the

definition of δψ and the existence of an accepting run of N on a prefix of σi, σi+1, . . . we

can conclude that there exists a path in the run graph of B ψ corresponding to ω that reaches

rejψ , which is a contradiction.

For the other direction, consider a transition system T such that T |= ψ, and suppose

that T 6∈ L(B ψ). This means that there exists an infinite path in the run graph of B ψ on

T that visits states in F ψ only finitely many times, which means that this path eventually

reaches rejψ . Let ω = σ0, σ1, . . . ∈ Traces(T) be the word corresponding to this path, and

i ≥ 0 be the last occurrence of q
ψ

0 on this path and j > i be the index of the first occurrence

of rejψ . Due to the definition of δψ , this implies that there exists an accepting run of N on

the word σi, . . . , σj−1. Thus, σi, σi+1, . . . 6|= ψ, which in turn means that ω 6|= ψ. This

is a contradiction with T |= ψ, and thus we can conclude that T ∈ L(B ψ). ⊓⊔

From B ψ , which has at most 2O(|ψ|) states, we obtain a universal Büchi automaton

Relax (ψ) constructed by redirecting all the transitions leading to rejψ to the initial state

q
ψ

0 . Formally, Relax (ψ) = (Q, q0, δ, F), whereQ = Q ψ\{rejψ}, q0 = q
ψ

0 , F =

F ψ and δ =
(
δ ψ \ {(q, σ, q′) ∈ δ ψ | q′ = rejψ}

)
∪ {(q, σ, q0) | (q, σ, rejψ) ∈ δ ψ}.

Let Rej (Relax (ψ)) = {(q, σ, q0) ∈ δ | (q, σ, rejψ) ∈ δψ} be the set of transitions

in Relax (ψ) that correspond to transitions in B ψ leading to rejψ . The automaton

Relax (ψ) has the property that its run graph on a transition system T does not contain

14 Rayna Dimitrova∗ et al.

a reachable edge corresponding to a transition in Rej (Relax (ψ)) iff T is accepted by

the automaton B ψ , (i.e., T |= ψ). Otherwise, if the run graph of Relax (ψ) on T
contains a reachable edge that belongs to Rej (Relax (ψ)), then T 6|= ψ. However,

if each infinite path in the run graph contains only a finite number of occurrences of such

edges, then T |= ψ. Based on these observations, we define an annotation function

that annotates each node in the run graph with an upper bound on the number of edges in

Rej (Relax (ψ)) visited on any path reaching the node.

The next proposition formalizes the property that a transition system T is accepted by

B ψ if and only if the run graph of Relax (ψ) on T does not contain a reachable edge

corresponding to a transition in Rej (Relax (ψ)).

Proposition 2 Let T be a transition system and let G = (V,E) be the run graph of

Relax (ψ) on T . Then, T ∈ L(B ψ) iff for every ((s, q), σ, (s′, q′)) ∈ E with

(q, σ, q′) ∈ Rej (Relax (ψ)), (s, q) is not reachable from (s0, q0) in G.

Proof Suppose, for the sake of contradiction, that T ∈ L(B ψ) and let G′ = (V ′, E′) be

the run graph of B ψ on T . Suppose that there exists a path (s0, q0), σ0, . . . (sl, ql) in G

such that there exists an edge ((sl, ql), σ, (s
′, q′)) ∈ E with (ql, σ, q

′) ∈ Rej (Relax (ψ)).
Without loss of generality, we assume that (qi, σi, qi+1) 6∈ Rej (Relax (ψ)) for all

i = 0, . . . , l − 1. Then, the sequence (s0, q0), σ0, . . . (sl, ql), σ, (s
′, q′) corresponds to a

path in the run graph G′ of B ψ on T which enters the state rejψ . Since rejψ is a non-

accepting sink state, we conclude that G′ is not accepting. This implies T 6∈ L(B ψ),
which is a contradiction.

Suppose now that for every node (s, q) reachable in G from (s0, q0) and every edge

((s, q), σ, (s′, q′)) ∈ E we have that (q, σ, q′) 6∈ Rej (Relax (ψ)). Assume that T 6∈
L(B ψ), which means that there exists an infinite path from (s0, q0) in the run graph of

B ψ on T that reaches the state rejψ . This path corresponds to a path in G from (s0, q0)
to some state (s, q) for which there is an edge ((s, q), σ, (s′, q′)) ∈ E with (q, σ, q′) ∈
Rej (Relax (ψ)), which is a contradiction. ⊓⊔

A function π : S × Q → N ∪ {⊥} is –valid annotation for the run graph of the

automaton Relax (ψ) = (Q, q0, δ, F) on the transition system T = (S, s0, τ) if

(1) π(s0, q0) 6= ⊥, i.e., the pair of initial states is labeled with a number, and

(2) if π(s, q) 6= ⊥, then for every edge ((s, q), σ, (s′, q′)) in the run graph, we have that

π(s′, q′) 6= ⊥, and

– if (q, σ, q′) ∈ Rej (Relax (ψ)), then π(s′, q′) > π(s, q), and

– if (q, σ, q′) 6∈ Rej (Relax (ψ)), then π(s′, q′) ≥ π(s, q).
This guarantees that T |= ψ iff there exists a –valid |T |-bounded annotation π for

T and Relax (ψ). Moreover, if π is |T |-bounded and π(s0, q0) = |T |, then T |= ψ,

as this means that no edge in Rej (Relax (ψ)) is ever reached.

Proposition 3 Let T = (S, s0, τ) be a finite-state transition system, andG = (V,E) be the

run graph of Relax (ψ) on T . Then, T |= ψ if and only if there exists a –valid

|T |-bounded annotation for G.

Proof Suppose that T |= ψ. We will fist show that in every infinite path from

(s0, q0) in G there are at most |S| occurrences of edges whose corresponding transitions

are in Rej (Relax (ψ)), and then we will use this fact to define a –valid |S|-
bounded annotation. Assume, for the sake of contradiction, that there exists an infinite

path (s0, q0), σ0, (s1, q1), σ1, . . . such that for infinitely many positions i ≥ 0 it holds that

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 15

(qi, σi, qi+1) ∈ Rej (Relax (ψ)). Let i1 < i2 < . . . be a sequence of such positions.

By the construction of Relax (ψ), we have qij+1 = q0 for each ij . Thus, using rea-

soning similar to that in Proposition 2, we can show that the trace σ0, σ1, contains infinitely

many positions k such that σk, σk+1, . . . 6|= ψ. This means that σ0, σ1, . . . 6|= ψ. Since

σ0, σ1, . . . ∈ Traces(T), we can conclude that T 6|= ψ, which is a contradiction.

Thus, each infinite path in G contains only finitely many occurrences of edges in

Rej (Relax (ψ)). Since the number of distinct nodes in G of the form (s, q0) is |S|,
we obtain an upper bound of |S| occurrences of transitions from Rej (Relax (ψ)) on

every path inG. Thus, we can construct a –valid |S|-bounded annotation π by mapping

each reachable node (s, q) to the maximal number of transitions from Rej (Relax (ψ))
on a path from (s0, q0) to (s, q), and mapping each unreachable node to ⊥.

For the other direction, suppose that π is a –valid |S|-bounded annotation for

T and Relax (ψ). Assume that T 6|= ψ. This means that there exists a trace

w = σ0, σ1, . . . ∈ Traces(T) such that for every position i it holds that σi, σi +
1, . . . 6|= ψ. Let s0, σ0, s1, σ1 . . . be the execution of T corresponding to w. Since

σi, σi + 1, . . . 6|= ψ, with reasoning similar to Proposition 2 we can establish that

there exists a path in G starting from (si, q0) that eventually takes an edge correspond-

ing to a transition in Rej (Relax (ψ)), and by the construction of Relax (ψ), this

transition leads to the node (sj , q0) for some j > i. Thus, by induction, we can es-

tablish the existence of an infinite path (s0, q0), (s1, q1), . . . in G that contains infinitely

many occurrences of edges whose transitions are in Rej (Relax (ψ)). Since the an-

notation π is –valid, we can show by induction that for each i ≥ 0 it holds that

π(si, qi) ∈ N and π(si+1, qi+1) ≥ π(si, qi). Since G is finite, this path contains an edge

((si, qi), σi, (si+1, qi+1)) for which (qi, σi, qi+1) ∈ Rej (Relax (ψ)), and which is

such that there exists j ≤ i such that (si+1, qi+1) = (sj , qj). Since the annotation π is

–valid, we have that π(sj , qj) ≤ π(si, qi) and π(si, qi) < π(si+1, qi+1), which con-

tradicts (si+1, qi+1) = (sj , qj). Thus, by contradiction, we conclude that T |= ψ. ⊓⊔

In particular, we have that if π(s0, q0) ∈ N, then T |= ψ, and if π is c-bounded and

π(s0, q0) = c, then T |= ψ. This property allows us to capture the satisfaction of ψ

and ψ with soft clauses for the same annotation function in the MaxSAT formulation.

5.3 MaxSAT Encoding of Bounded Maximum Realizability

Let A = (Q, q0, δ, F) be a universal co-Büchi automaton for the LTL formula ϕ. For each

syntactically safe formula ϕj , j ∈ {1, . . . , n}, we consider two universal automata: the

universal automaton Bj = Relax (ϕj) = (Qj , q
j
0, δj , Fj), constructed as described

in Section 5.2, and a universal co-Büchi automaton Aj = (Q̂j , q̂
j
0, δ̂j , F̂j) for the formula

ϕj . Given a bound b on the size of the desired transition system, we encode the bounded

maximum realizability problem as a MaxSAT problem with the following sets of variables

and constraints.

Variables: The MaxSAT formulation includes the variables from the SAT formulation

of the bounded synthesis problem, which represent the desired transition system T and the

desired valid annotation of the run graph of A on T . Additionally, it includes variables for

representing the annotations πj and λj for Bj and Aj , respectively, similarly to λ in the

SAT encoding. More precisely, the variables for πj and λj are respectively represented by

variables πB,j
s,q and πN,j

s,q where s ∈ S and q ∈ Qj , and variables λB,js,q and λN,js,q where s ∈ S

and q ∈ Q̂j .

16 Rayna Dimitrova∗ et al.

The set of constraints includesCτ andCλ from the SAT formulation as hard constraints,

as well as the following constraints for the new annotations.

Hard constraints for valid annotations: For each j = 1, . . . , n, let

C
j
π

def
=

∧

q,q′∈Qj

∧

s,s′∈S

∧

σI∈2I

((
π
B,j
s,q ∧ δjs,q,σI ,q′

∧ τs,σI ,s′
)
→ succ

j
π(s, q, s

′
, q

′
, σI)

)
,

C
j
λ

def
=

∧

q,q′∈Q̂j

∧

s,s′∈S

∧

σI∈2I

((
λ
B,j
s,q ∧ δ̂

j
s,q,σI ,q′

∧ τs,σI ,s′
)
→ succ

j
λ(s, q, s

′
, q

′
, σI)

)
,

where succ
j
π(s, q, s

′
, q

′
, σI)

def
= π

B,j
s′,q′∧

(
rej
j(s, q, q′, σI) → π

N,j
s′,q′ > π

N,j
s,q

)
∧

(
¬rejj(s, q, q′, σI) → π

N,j
s′,q′ ≥ π

N,j
s,q

)
,

and rejj(s, q, q′, σI) is a formula over os,σI
obtained from Rej (Bj).The formula

succ
j
λ(s, q̂, s

′, q̂′, σI) is analogous to succλ(s, q, s
′, q′, σI) defined in Section 3.2.

Soft constraints for valid annotations: Let b ∈ N>0 be the bound on the size of the

transition system. For each j = 1, . . . , n, we define

Softj def
= πB,j

s0,q0 ∧ (πN,j
s0,q0 = b) with weight 1,

Softj def
= πB,j

s0,q0 with weight n, and

Softj def
= πB,j

s0,q0 ∨ λ
B,j
s0,q̂0

with weight n2.

The definition of the soft constraints guarantees that T |= ϕj if and only if there exist

corresponding annotations that satisfy all three of the soft constraints for ϕj . Similarly,

if T |= ϕj , then Softj and Softj can be satisfied. The weights of the soft clauses

reflect the ordering of transition systems with respect to their satisfaction of ϕ1 ∧ . . . ∧
ϕn, as stated below.

Lemma 2 Let T ′ and T ′′ be two transition systems such that T ′ |= ϕ and T ′′ |= ϕ. Let

a′ and a′′ be the variable assignments satisfying the constraint system, such that a′ is an

optimal assignment consistent with T ′, and a′′ is an optimal assignment consistent with

T ′′. Furthermore, let w′ and w′′ be the sums of the weights of the soft clauses satisfied by

a′ and a′′, respectively. Then, it holds that val(T ′, ϕ1 ∧ . . . ∧ ϕn) < val(T ′′, ϕ1 ∧
. . . ∧ ϕn) iff w′ < w′′.

Proof Let (v′1, v
′
2, v

′
3) = val(T ′, ϕ1 ∧ . . .∧ ϕn) and (v′′1 , v

′′
2 , v

′′
3) = val(T ′′, ϕ1 ∧

. . . ∧ ϕn). This means that there are exactly v′3 distinct indices i ∈ {1, . . . , n} such

that T ′ |= ϕi, v
′
2 distinct indices i ∈ {1, . . . , n} such that T ′ |= ϕi and v′1 distinct

indices i ∈ {1, . . . , n} such that T ′ |= ϕi. Since a′ is an optimal satisfying assignment

corresponding to T ′, we have that a′ satisfies exactly v′3 of the soft clauses Softj , exactly

v′2 of the soft clauses Softj and exactly v′1 of the soft clauses Softj . This means that

w′ = v′3+v
′
2 ·n+v

′
1 ·n

2. In a similar way we can conclude thatw′′ = v′′3 +v
′′
2 ·n+v

′′
1 ·n

2

holds for T ′′.

First, suppose that (v′1, v
′
2, v

′
3) < (v′′1 , v

′′
2 , v

′′
3). There are three possible cases:

Case 1: v′1 = v′′1 , v′2 = v′′2 and v′3 < v′′3 . Then, w′′ − w′ = (v′′3 − v′3) > 0.

Case 2: v′1 = v′′1 and v′2 < v′′2 . Then, w′′ − w′ = (v′′2 − v′2) · n + (v′′3 − v′3). Since

T ′ |= ϕi implies T ′ |= ϕi, we have that v′3 − v′′3 ≤ n − 1, due to the fact that

v′′2 − v′2 ≥ 1. Thus, we conclude w′′ − w′ ≥ n− (n− 1) = 1 > 0.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 17

Case 3: v′1 < v′′1 . Now, w′′ − w′ = (v′′1 − v′1) · n
2 + (v′′2 − v′2) · n + (v′′3 − v′3). Again,

since T ′ |= ϕi implies T ′ |= ϕi and T ′ |= ϕi implies T ′ |= ϕi, we have

that v′3 − v′′3 ≤ n − 1 and v′2 − v′′2 ≤ n − 1, both due to the fact that v′′1 − v′1 ≥ 1. Thus,

we conclude w′′ − w′ ≥ n2 − (n− 1) · n− (n− 1) = 1 > 0.

In all three cases we showed that w′ < w′′.

For the other direction, suppose that w′ < w′′. If we assume that (v′1, v
′
2, v

′
3) ≥

(v′′1 , v
′′
2 , v

′′
3), then we can show as above that w′′ ≥ w′, which is a contradiction. Hence,

we have that (v′1, v
′
2, v

′
3) < (v′′1 , v

′′
2 , v

′′
3), which concludes the proof. ⊓⊔

This in turn guarantees that a transition system extracted from an optimal satisfying

assignment for the MaxSAT problem is optimal with respect to the value of ϕ1 ∧ . . . ∧
ϕn, as stated in the following theorem that establishes the correctness of the encoding.

Theorem 2 Let A be a given co-Büchi automaton for ϕ, and for each j ∈ {1, . . . , n}, let

Bj = Relax (ϕj) be the universal automaton for ϕj constructed as in Section 5.2,

and let Aj be a universal co-Büchi automaton for ϕj . The constraint system for bound

b ∈ N>0 is satisfiable if and only if there exists an implementation T with |T | ≤ b such that

T |= ϕ. Furthermore, from the optimal satisfying assignment to the variables τs,σI ,s′ and

os,σI
, one can extract a transition system T ∗ such that for every transition system T with

|T | ≤ b and T |= ϕ it holds that val(T ∗, ϕ1∧ . . .∧ ϕn) ≥ val(T , ϕ1∧ . . .∧ ϕn).

Proof The first part of the claim follows from the correctness of the classical bounded syn-

thesis approach. More precisely, if the constraint system is satisfiable, then there exists a

satisfying assignment, which in particular, satisfies the constraints asserting the existence of

a transition system T of size less than or equal to b, and the existence of a valid annotation

for the run graph of A on T . If, on the other hand, there exists a transition system T such

that |T | ≤ b and T |= ϕ, then there exists a variable assignment a consistent with T that

satisfies the constraints asserting the existence of a valid annotation for the run graph of A
on T . It remains to show that a can be chosen in a way that satisfies the remaining hard

constraints as well. To see that, notice that all the constraints for the annotations πj and λj
can be satisfied (not necessarily in an optimal way) by setting all the variables πB,j

s,q and λB,js,q
to false. This completes the proof of the first statement.

Now, let a∗ be an optimal solution to the MaxSAT problem, and T ∗ be the transition

system extracted from a∗. Consider a transition system T such that |T | ≤ b and T |= ϕ.

Then, as we showed above, there exists a satisfying assignment a consistent with T . Let

w∗ be the sum of the weights of the soft clauses satisfied by a∗, and w be the sum of the

weighs of the soft clauses satisfied by a. Since a∗ is an optimal satisfying assignment, we

have that w ≤ w∗. Thus, by applying Lemma 2 we obtain val(T ∗, ϕ1 ∧ . . . ∧ ϕn) ≥
val(T , ϕ1 ∧ . . . ∧ ϕn), which concludes the proof of the second claim of the theorem.

⊓⊔

s0

s1 s2

¬r1 ∧ ¬r2

r1
∧
¬
r2

r2

¬
r1

∧
¬
r2

r1 ∧ ¬r2

r2

¬r1

r1

Figure 2: An optimal

implementation for Exam-

ple 2.

Figure 2 shows a transition system extracted from an

optimal satisfying assignment for Example 2 with bound 3
on the implementation size. The transitions depicted in the

figure are defined by the values of the variables τs,σI ,s′ .

The outputs of the implementation (omitted from the fig-

ure) are defined by the values of os,σI
. The output in state

s1 when r1 is true is table1∧¬table2 , and the output in s2
when r2 is true is ¬table1 ∧ table2 . For all other combi-

nations of state and input, the output is ¬table1 ∧¬table2 .

18 Rayna Dimitrova∗ et al.

The next proposition establishes the size of the MaxSAT encoding.

Proposition 4 Let A be a given co-Büchi automaton for ϕ, and for each j ∈ {1, . . . , n},

let Bj = Relax (ϕj) be the universal Büchi automaton for ϕj constructed as in

Section 5.2, and let Aj be a universal co-Büchi automaton for ϕ. The constraint system

for bound b ∈ N has weights in O(n2). It has

O
(
(b2 + b · |O|) · 2|I| + b · |Q| · (1 + log(b · |Q|))+
∑n
j=1

(
b · |Qj |(1 + log(b · |Qj |))

)
+
∑n
j=1

(
b · |Q̂j |(1 + log(b · |Q̂j |))

))

variables, and its size (before conversion to CNF) is

O
(
|Q|2 · b2 · 2|I| · (d+ log(b · |Q|))+
∑n
j=1

(
|Qj |

2 · b2 · 2|I| · (dj + rj + log(b · |Qj |))
)
+

∑n
j=1

(
|Q̂j |

2 · b2 · 2|I| · (d̂j + log(b · |Q̂j |))
))
,

where d = maxs,q,σI ,q′ |δs,q,σI ,q′ |, dj = maxs,q,σI ,q′ |δ
j
s,q,σI ,q′

|,

d̂j = maxs,q,σI ,q′ |δ̂
j
s,q,σI ,q′

|, and rj = maxs,q,σI ,q′ |rej
j(s, q, q′, σI)|.

Proof The constraint system is defined in terms of the following variables:

– Boolean variables τs,σI ,s′ and os,σI
representing the transition system. The total num-

ber of these variables is b2 · 2|I| + b · |O| · 2|I|.

– Boolean variables λBs,q and vectors of Boolean variables λNs,q representing the annota-

tion λ. The total number of bits is b · |Q|+ b · |Q| · log(b · |Q|).
– Boolean variables πB,j

s,q and vectors of Boolean variables πN,j
s,q representing the annota-

tions πj . The total number of bits is
∑n
j=1

(
b · |Qj |(1 + log(b · |Qj |))

)
.

– Boolean variables λB,js,q and vectors of Boolean variables λN,js,q representing the annota-

tion λj . The total number of bits is
∑n
j=1

(
b · |Q̂j |(1 + log(b · |Q̂j |))

)
.

The sum of the above quantities yields the total number of Boolean variables.

The constraint system consists of the following constraints:

– Constraints Cτ encoding input-enabledness, of size b2 · 2|I|.

– Constraints Cλ for valid annotation λ of size O
(
|Q|2 · b2 · 2|I| · (d+ log(b · |Q|))

)
.

– Hard constraints Cjπ for valid annotations πj , of size

O
(n∑

j=1

(
|Qj |

2 · b2 · 2|I| · (dj + rj + log(b · |Qj |))
))
.

– Hard constraints C
j
λ for valid annotations λj , of size

O
(n∑

j=1

(
|Q̂j |

2 · b2 · 2|I| · (d̂j + log(b · |Qj |))
))
.

– Soft constraints Softj , Softj and Softj for valid annotations, of size

O
(n∑

j=1

(
| log(b · |Qj |)

))
.

Summing up, we obtain the total size of the constraint system. ⊓⊔

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 19

5.4 Generalizations of the Maximum Realizability Problem

5.4.1 Maximum Realizability with Soft LTL Specifications

The first generalization of the maximum realizability problem that we consider is the setting

where the soft specifications can be arbitrary LTL formulas, and not just safety properties

of specific form. More precisely, each soft specification ϕ is an LTL formula for which we

are also given a vector Relax (ϕ) of LTL formulas that defines the possible relaxations of

ϕ. Formally, Relax (ϕ) = (ψ1, . . . , ψm), where ψ1 = ϕ, and for every 1 ≤ k < m, it

holds that T |= ψk implies T |= ψk+1 for every transition system T . That is, ψ1, . . . , ψm
are ordered according to strength. In particular, if T |= ϕ, then T |= ψk for each ψk in

Relax (ϕ). For example, ifϕ = p for some atomic proposition p, we can take Relax (ϕ) =
(p, p, p).

As in Section 4.1, we define the value of ϕ for given Relax (ϕ) = (ψ1, . . . , ψm) to

be val(T , ϕ) = (v1, . . . , vm), where vk = 1 if T |= ψ(m+1)−k, and vk = 0 other-

wise. For a conjunction ϕ1 ∧ . . . ∧ ϕn of soft specifications with given Relax (ϕj) =
(ψj,1, . . . , ψj,m) for each j ∈ {1, . . . , n}, we define the value val(T , ϕ1 ∧ . . . ∧ ϕn) =(∑n

i=1 vi,1, . . . ,
∑n
i=1 vi,m

)
, where val(T , ϕi) = (vi,1, . . . , vi,m) for i ∈ {1, . . . , n}.

The maximum realizability problem asks for a given LTL specification ϕ and soft LTL

specificationsϕ1, . . . , ϕn with given Relax (ϕj) = (ψj,1, . . . , ψj,m), to determine whether

there exists a transition system T such that T |= ϕ, and if the answer is positive, to construct

a transition system T ∗ such that T ∗ |= ϕ, and for every T with T |= ϕ, it holds that

val(T , ϕ1 ∧ . . . ∧ ϕn) ≤ val(T ∗, ϕ1 ∧ . . . ∧ ϕn). The bounded maximum realizability

problem is defined in the straightforward way.

We can adapt the MaxSAT approach from Section 5.3 to solve the bounded maximum

realizability problem in this setting as follows.

First, for each ψj,k in Relax (ϕj), we construct a universal co-Büchi automaton Aj,k =

(Qj,k, q
j,k
0 , δj,k, Fj,k) such that T ∈ L(Aj,k) if and only if T |= ψj,k. In the MaxSAT

encoding, the hard constraints for the annotation λj,k are

Cj,k
def
=

∧

q,q′∈Qj,k

∧

s,s′∈S

∧

σI∈2I

(
(
λ
B,j,k
s,q ∧ δj,ks,q,σI ,q′

∧ τs,σI ,s′
)
→ succ

j,k
λ (s, q, s′, q′, σI)

)
.

Generalizing the encoding, for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, we now have one

soft constraint Softj,k
def
=
∨k
l=1 λ

B,j,l

s0,qj,l
with weight nk−1.

5.4.2 Maximum Realizability with Priorities

In the definitions in Section 4.2 and the paragraph above, all soft specifications have the

same priority. Now, we extend the maximum realizability setting to the case with priorities

for the soft specifications given as part of the input to the problem.

Soft specifications with priority ordering. We begin with a simple setting where soft speci-

fications are simply ordered in decreasing priority, without assigning any numerical weight

for the preferences over the formulas. More specifically, we assume that the soft specifica-

tions ϕ1, . . . , ϕn are ordered such that, for every i ∈ {1, . . . , n}, we have that ϕi has higher

priority than ϕj for all j > i.

Now, given a vector Relax (ϕj) = (ψj,1, . . . , ψj,m) for ϕj we define the value of ϕj
in a transition system T to be the number of specifications in Relax (ϕj) satisfied by T ,

20 Rayna Dimitrova∗ et al.

i.e., val(T , ϕj) = |{k ∈ {1, . . . ,m} | T |= ψj,k}|. The value of ϕ1 ∧ . . . ∧ ϕn is then

defined as val(T , ϕ1∧ . . .∧ϕn) = (val(T , ϕ1), . . . , val(T , ϕn)). The values of transition

systems are compared according to the lexicographic ordering of vectors in {0, . . . ,m}n,

thus giving priority to ϕi over ϕj for i < j.

The MaxSAT approach can be adapted for this value function in the same way as above.

The difference is in the weights of the soft constraints for the annotations λj,k: for each j ∈

{1, . . . , n} and k ∈ {1, . . . ,m} we have a soft constraint Softj,k
def
=
∨k
l=1 λ

B,j,l

s0,qj,l
with

weight wj,k, where wj,k = 1 if j = n or k < m, and wj,k =
∑n
j′=j+1

∑m
k=1 wj′,k + 1

otherwise.

Soft specifications with given weights. We also consider the weighted maximum realizability

problem, in which, together with Relax (ϕ) for each soft specification ϕ, the user also pro-

vides numerical weights for the formulas in Relax (ϕ). That is, for each j ∈ {1, . . . , n} and

k ∈ {1, . . . ,m}, we are given a weight wj,k for ψj,k. These weights specify the priority of

each of the soft specifications.

The MaxSAT formulation is then adapted to incorporate the given weights, by using

them for the corresponding soft constraints. Namely, for each j and k, the corresponding

soft constraint Softj,k
def
=
∨k
l=1 λ

B,j,l

s0,qj,l
has weight wj,k.

Theorem 3 Given an LTL specification ϕ and soft specifications ϕ1, . . . , ϕn together

with a vector of formulas Relax (ϕj) = (ψj,1, . . . , ψj,m) for each ϕj , if there is a transition

system T with T |= ϕ, then there exists T ∗ such that:

– val(T , ϕ1 ∧ . . . ∧ ϕn) ≤ val(T ∗, ϕ1 ∧ . . . ∧ ϕn) for all T with T |= ϕ, and

– T ∗ |= ϕ and |T ∗| ≤ (2b+log b)!2,

where b = max{|subf(ϕ ∧ ϕ′
1 ∧ . . . ∧ ϕ

′
n)| | ϕ

′
i ∈ Relax (ϕi) for i = 1, . . . , n}.

Proof The proof is a generalization of the proof of Theorem 1. First, we need to establish

the analogue of Lemma 1 for the general case.

Lemma 3 For every transition system T , soft specifications ϕ1, . . . , ϕn, and vector of

formulas Relax (ϕj) = (ψj,1, . . . , ψj,m) for each ϕj , if val(T , ϕ1 ∧ . . . ∧ ϕn) = v,

then there exists an LTL formula ψv such that T |= ψv and the following holds:

(1) ψv = ϕ′
1 ∧ . . . ∧ ϕ

′
n, where ϕ′

i ∈ Relax (ϕi) ∪ {true} for i = 1, . . . , n,

(2) for every T ′, if T ′ |= ψv , then val(T ′, ϕ1 ∧ . . . ∧ ϕn) ≥ v.

The proof of Lemma 3 is analogous to the proof of Lemma 1. Then, with the help of

Lemma 3 we can establish Theorem 3 in the same way as Theorem 1. ⊓⊔

6 Experimental Evaluation

We implemented the proposed approach to maximum realizability1 in Python 2.7. For the

LTL to automata translation Spot [30] version 2.2.4 is used. MaxSAT instances are solved

by Open-WBO [31] version 2.0. We evaluated our method on instances of two examples.

Each experiment was run on a machine with a 2.3 GHz Intel Xeon E5-2686 v4 processor

and 16 GiB of memory. While the processor is quad-core, only a single core was used. We

set a time-out of 1 hour.

1 The code is available at https://github.com/MahsaGhasemi/max-realizability

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 21

Figure 3: Map of the museum.

6.1 Robotic Navigation.

We applied our method to the strategy synthesis for a robotic museum guide. The map

of the museum is shown in Figure 3. The robot has to give a tour of the exhibitions in a

specific order, which constitutes the hard specification. The tour starts at the entrance of the

museum where the robot picks up newly arrived visitors. The main objective is to take the

group through the two exhibitions on that floor and then return to the entrance to pick up

a new group of people. Preferably, it also avoids certain locations, such as the library, or

the passage when it is occupied. These preferences are encoded in the soft specifications.

In particular, on one hand, the robot can only gain access to Exhibition 2 by getting a key

from the staff’s office. On the other hand, the robot is asked not to disturb the employees in

the office. There is a library between Exhibition 1 and Exhibition 2 which can be used to

go from one to the other, but it is preferred that visitors do not enter the library. However, it

is also desirable that when the other passage between these two exhibitions is occupied, the

robot does not go through there.

Clearly, these specifications cannot be realized in conjunction. Given their priorities, we

categorize the requirements into hard and soft specifications, and synthesize a strategy which

satisfies the hard specifications and maximizes the satisfaction of the soft specifications. We

formalize the problem as follows.

Input propositions: The set I contains a single Boolean variable occupied that indicates

whether the passage between the two exhibitions is occupied.

Output propositions: The set of output propositions O consists of eight Boolean vari-

ables corresponding to the eight locations on the map: entrance , corridor1, corridor2,

exhibition1, exhibition2, passage , office , library .

The hard specification is the conjunction of the following formulas.

– The robot starts at the entrance:

entrance.

22 Rayna Dimitrova∗ et al.

– At each time step, the robot can occupy only one location:

∧

o1∈O


o1 →

∧

o2∈O\{o1}

¬o2


 .

– The admissible actions of the robot are to stay in the current location or move to an

adjacent one. This leads to eight requirements describing the map. For instance:

(corridor1 → (corridor1 ∨ office ∨ exhibition1)) .

Remark: Due to the requirements above, the robot will always be in exactly one valid

location, i.e., in a transition system that satisfies the specifications it is impossible to reach a

state where all output variables are false.

– The robot must infinitely often visit both exhibitions:

exhibition1,

exhibition2.

– The robot has to respect the order of visits, by starting from Exhibition 1, going to

Exhibition 2 and finishing at the entrance:

(exhibition1 → ((¬entrance ∧ ¬exhibition1)U exhibition2)) ,

(exhibition2 → ((¬exhibition1 ∧ ¬exhibition2)U entrance)) ,

(entrance → ((¬exhibition2 ∧ ¬entrance)U exhibition1)) .

– The robot does not have access to Exhibition 2 before it visits the office:

¬exhibition2 U office.

The set of soft specifications describes the desirable requirements that the robot does not

enter the office, the library, or a occupied passage. Formally:

– The robot must not enter the office from corridor 1:

(corridor1 → ¬office) .

– The robot must not enter the library from the exhibitions:

(exhibition1 ∨ exhibition2 → ¬library) .

– The robot must not enter the passage from the exhibitions when it is occupied:

((exhibition1 ∨ exhibition2) ∧ occupied → ¬passage) .

We applied the proposed method described in Section 5 on this example. Table 1 sum-

marizes the results. With implementation bound of 8, the hard specification is realizable

and a partial satisfaction of soft specifications is achieved. This strategy always selects the

passage to transition from Exhibition 1 to Exhibition 2 and hence, avoids the library. It also

violates the requirement of not entering the staff’s office, to acquire access to Exhibition 2.

For implementation bound 10 the solver times out. Notice that strategies with higher values

exists, however, they require larger implementation size.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 23

Table 1: Results of applying synthesis with maximum realizability to the robotic navigation

example, with different bounds on implementation size |T |. We report on the number of

variables and clauses in the encoding, the satisfiability of hard constraints, the value (and

bound) of the MaxSAT objective function, the running times of Spot, Open-WBO, and the

time of the solver plus the time for generating the encoding.

Encoding Solution Time (s)

|T | # vars # clauses sat. Σweights Spot Open-WBO enc.+solve

2 4051 25366 UNSAT 0 (39) 0.93 0.011 0.12

4 19965 125224 UNSAT 0 (39) 0.93 0.079 0.57

6 45897 289798 UNSAT 0 (39) 0.93 1.75 2.9

8 95617 596430 SAT 31 (39) 0.93 956 959

10 152949 954532 SAT - (39) 0.93 time-out time-out

6.2 Power Distribution Network.

We consider the problem of dynamic reconfiguration of power distribution networks. A

power network consists of a set P of power supplies (generators) and a set L of loads (con-

sumers). The network is a bipartite graph with edges between supplies and loads, where each

supply is connected to multiple loads and each load is connected to multiple supplies. Each

power supply has an associated capacity, which determines how many loads it can power at

a given time. For each supply p ∈ P , we denote with E+
p the capacity of p, that is, how

many loads p can power, and with Consumers(p) the set of loads connected to p in the

network graph. Similarly, for a load l ∈ L, let Suppliers(l) be the set of suppliers to which

the load l is connected in the network. It is possible that not all loads can be powered all the

time. Some loads are critical and must be powered continuously (hard specification), while

others are not and should be powered when possible (soft specification). Some loads can be

initializing, meaning they must be powered only initially for several steps. Power supplies

can become faulty during operation, which necessitates dynamic network reconfiguration.

The number of supplies that can be simultaneously faulty is upper bounded by a constant f .

Further, we add a soft specification to limit the frequency of switching the relays between

power supplies and loads. We model the problem as follows.

Input propositions: The set I consists of input propositions which form the binary encod-

ing of f integer variables e1, e2, . . . , ef each with domain {0, . . . , |L|}. The values of these

variables indicate which power supplies are faulty at a given point in time: if ei = p for

some i and p, then p is faulty at that time.2

Output propositions: The set of output propositions O consists of the Boolean variables

sl→p for all loads l ∈ L and supplies p ∈ P where l and p are connected. The meaning of

sl→p being true is that l is powered by p.

The hard specification is the conjunction of the following formulas.

– A critical load must always be powered:


 ∨

p∈Suppliers(l)

sl→p


 , ∀ l ∈ L where l is critical.

2 There can be different indices i for which ei = p at the same time. While this will be redundant, it does

not affect the encoding.

24 Rayna Dimitrova∗ et al.

– An initializing node must be powered during the first two steps:

 ∨

p∈Suppliers(l)

sl→p


∧


 ∨

p∈Suppliers(l)

sl→p


 , ∀ l ∈ L where l is initializing.

– A load must only be assigned to one power supply:

∧

l∈L

∧

p1∈Suppliers(l)


sl→p1 →

∧

p2∈Suppliers(l),p2 6=p1

¬sl→p2


 .

– The capacity of power supplies must not be exceeded:

∧

p∈P

∧

L′⊆Consumers(p)

|L′|=E+

p



(
∧

l∈L′

sl→p

)
→

∧

l∈Consumers(p)\L′

¬sl→p


 .

– When a power supply becomes faulty, no loads can be powered by it:

∧

i∈{1,2,...f}

∧

p∈P


ei = p→

∧

l∈Consumers(p)

¬sl→p


 .

The set of soft specifications consists of the requirements for powering the non-vital loads,

and optionally, a restriction on switching supplies too often unless they become faulty. The

respective formulas are given below.

– A non-critical load should always be powered:

 ∨

p∈Suppliers(l)

sl→p


 , ∀ l ∈ L where l is non-critical.

– All loads powered by a supply remain powered by it unless it becomes faulty:

∧

l∈L

∧

p∈Suppliers(l)


sl→p ∧


¬

∨

i∈{1,2,...,f}

ei = l


→ sl→p


 .

We applied our method to the problem of synthesizing a relay-switching strategy from

the above LTL specifications. Table 2 describes the instances to which we applied our syn-

thesis method. Power supplies have the same capacityE+ (number of loads they can power)

and at most one can be faulty at each time. We consider three categories of instances,

depending on the network connectivity (full or sparse), and whether we restrict frequent

switching of supplies.

In Figure 4, we show the results for the instances defined in Table 2 (detailed results are

reported in Table 3). As expected, the value function is monotonically nondecreasing with

respect to the bound on the implementation size. In the first set of instances, the specifi-

cations have large number of variables (due to full connectivity), and the bottleneck is the

translation to automata. In the third set of instances, the limiting factor is the number of soft

specifications, leading to large weights and number of variables in the MaxSAT formula-

tion. We observe that the number of soft specifications is an important factor affecting the

scalability of the proposed method. For example, Instance 12, on which the MaxSAT solver

reaches time-out for implementation size bound 6 contains 23 soft specifications.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 25

1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10
4

0

2

4

6

8

10

12

14

16

10
5

(a) Encoding size

1 2 3 4 5 6 7 8

10
-1

10
0

10
1

10
2

10
3

(b) Running time

1 2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Normalized value

Figure 4: Results of applying our method to the instances in Table 2, with different bounds

on implementation size |T |. (a) shows the size of the MaxSAT encoding as the number of

variables (solid lines) and the number of clauses (dashed lines). (b) shows the running time

of the MaxSAT solver plus the time for the encoding. (c) shows the level of realizability of

soft specifications.

26 Rayna Dimitrova∗ et al.

Table 2: Power distribution network instances. An instance is determined by the number

supplies |P |, the number of loads |L|, the capacity of supplies E+, the number of critical,

non-critical and initializing loads. We also show the number of input |I| and output |O|
propositions and the number of soft specifications.

Network Load characterization Specifications

Instance

#
|P | |L| E+ crit. non-crit. init. |I| |O|

Soft

spec.

fully 1 3 3 1 1 2 0 2 9 2

connected, 2 3 6 2 2 4 0 2 18 4

switching 3 3 3 1 0 2 1 2 9 2

allowed 4 3 6 2 1 4 1 2 18 4

sparse, 5 4 2 1 1 1 0 3 4 1

switching 6 4 4 1 1 3 0 3 8 3

allowed 7 4 6 1 1 5 0 3 12 5

8 4 8 1 1 7 0 3 16 7

sparse, 9 4 2 1 1 1 0 3 4 5

switching 10 4 4 1 1 3 0 3 8 11

restricted 11 4 6 1 1 5 0 3 12 17

12 4 8 1 1 7 0 3 16 23

7 Conclusion and Future Work

In this paper, we considered settings in which a system’s requirements are categorized as

hard and soft linear temporal logic (LTL) specifications and the goal is to design a controller

that satisfies the hard specifications while maximally realizing the soft specifications. To

that end, we introduced relaxations of soft LTL formulas and accordingly defined a value

function that captures the level of realizing a conjunction of soft LTL formulas. We fur-

ther constructed a MaxSAT encoding of maximum realizability that aims to maximize the

value function. By incrementing the size of the implementation and generating the induced

MaxSAT encodings, we developed a bounded synthesis procedure to find a controller with

smallest size that meets a termination criterion. We computed a theoretical bound on the size

of the implementation and proved soundness and completeness of the synthesis algorithm.

Additionally, we discussed multiple generalizations of the proposed method and provided

experimental results in multiple scenarios.

As part of future work, we plan to employ the proposed algorithm to construct con-

trollers from a combination of temporal logic specifications and data in the form of sample

demonstration of desired system behavior. In such settings, the system is asked to imitate

the sample demonstrations as much as possible while satisfying the given specifications. We

are also considering to design a customized search procedure for solving MaxSAT instances

generated for maximum realizability that benefits from the knowledge on the specific struc-

ture of soft clauses.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 27

Table 3: Results of applying synthesis with maximum realizability on the instances in Ta-

ble 2, with different bounds on implementation size |T |. We report on the number of vari-

ables and clauses in the encoding, the value (and bound) of the objective function in the

MaxSAT instance, the running times of Spot, Open-WBO, and the time of the solver plus

the time for generating the encoding.

Encoding Solution Time (s)
Instance

#
|T | # vars # clauses Σweights Spot Open-WBO enc.+solve

1 2 246 3183 8 (14) 0.23 0.0050 0.044
4 1038 18059 8 (14) 0.23 0.046 0.16
6 2862 52999 8 (14) 0.23 2.9 3.2
8 4838 94079 8 (14) 0.23 2305 2306

2 2 452 13429 64 (84) 91 0.015 0.15
4 1860 77125 69 (84) 91 0.15 0.66
6 5100 226933 69 (84) 91 8.5 9.9
8 8588 403165 N/A (84) 91 time-out time-out

3 2 302 7567 8 (14) 0.23 0.0067 0.069
4 1446 42891 13 (14) 0.23 0.021 0.25
6 4206 125287 13 (14) 0.23 0.11 0.73
8 7206 222591 13 (14) 0.23 1.1 2.5

4 2 508 38165 64 (84) 210 0.028 0.34
4 2268 219589 74 (84) 210 0.21 1.5
6 6444 645397 74 (84) 210 2.7 6.4
8 10956 1147101 N/A (84) 210 time-out time-out

5 2 203 2476 3 (3) 0.058 0.017 0.039
4 779 14126 3 (3) 0.058 0.24 0.31
6 2019 41584 3 (3) 0.058 1.4 1.6
8 3395 73808 3 (3) 0.058 4.0 4.3

6 2 433 6722 31 (39) 0.17 0.0069 0.066
4 1649 38472 31 (39) 0.17 0.076 0.29
6 4329 113422 31 (39) 0.17 4.6 5.2
8 7241 201326 N/A (39) 0.17 time-out time-out

7 2 663 13464 100 (155) 1.3 0.011 0.12
4 2519 77538 106 (155) 1.3 0.11 0.54
6 6639 229036 106 (155) 1.3 6.3 7.4
8 11087 406668 N/A (155) 1.3 time-out time-out

8 2 893 29070 196 (399) 30 0.019 0.26
4 3389 169596 294 (399) 30 0.47 1.5
6 8949 503338 294 (399) 30 62 65
8 14933 894122 N/A (399) 30 time-out time-out

9 2 631 7352 131 (155) 0.21 0.0069 0.10
4 2647 43106 131 (155) 0.21 0.15 0.44
6 7311 129100 131 (155) 0.21 71 71
8 12367 229004 N/A (155) 0.21 time-out time-out

10 2 1289 16474 1343 (1463) 0.44 0.012 0.21
4 5385 96432 1343 (1463) 0.44 1.1 1.7
6 14913 288454 1343 (1463) 0.44 3579 3581
8 25185 511718 N/A (1463) 0.44 time-out time-out

11 2 1947 28092 4660 (5219) 1.9 0.021 0.35
4 8123 164478 4678 (5219) 1.9 1.7 2.7
6 22515 491584 N/A (5219) 1.9 time-out time-out
8 38003 872256 N/A (5219) 1.9 time-out time-out

12 2 2605 48574 10724 (12719) 28 0.056 0.61
4 10861 285516 11686 (12719) 28 1.7 3.5
6 30117 853402 N/A (12719) 28 time-out time-out
8 50821 1514906 N/A (12719) 28 time-out time-out

28 Rayna Dimitrova∗ et al.

Acknowledgements This work was supported in part by AFRL grants UTC 17-S8401-10-C1 and FA8650-

15-C-2546, and ONR grant N000141613165.

References

1. R. Dimitrova, M. Ghasemi, and U. Topcu, “Maximum realizability for linear temporal logic specifica-

tions,” in Proc. Automated Technology for Verification and Analysis, pp. 458–475, Springer, 2018.

2. A. Pnueli, “The temporal logic of programs,” in Annual Symposium on Foundations of Computer Science,

pp. 46–57, IEEE, 1977.

3. S. Schewe and B. Finkbeiner, “Bounded synthesis,” in Proc. Automated Technology for Verification and

Analysis, vol. 4762 of LNCS, pp. 474–488, 2007.

4. P. Faymonville, B. Finkbeiner, M. N. Rabe, and L. Tentrup, “Encodings of bounded synthesis,” in

Proc. International Conference on Tools and Algorithms for the Construction and Analysis of Systems,

vol. 10205 of LNCS, pp. 354–370, 2017.

5. A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability, vol. 185. IOS press, 2009.

6. J. D. Park, “Using weighted MAX-SAT engines to solve MPE,” in Proc. American Association for Arti-

ficial Intelligence, pp. 682–687, 2002.

7. M. Janota, I. Lynce, V. Manquinho, and J. Marques-Silva, “PackUp: Tools for package upgradability

solving,” Journal on Satisfiability, Boolean Modeling and Computation, vol. 8, pp. 89–94, 2012.

8. J. Berg, A. Hyttinen, and M. Järvisalo, “Applications of MaxSAT in data analysis,” Pragmatics of SAT,

2015.

9. J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-violating control strategy synthesis

with safety rules,” in Proc. ACM International Conference on Hybrid Systems: Computation and Control,

2013.

10. K. Kim, G. E. Fainekos, and S. Sankaranarayanan, “On the minimal revision problem of specification

automata,” International Journal of Robotics Research, vol. 34, no. 12, 2015.

11. M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi, “This time the robot settles for a

cost: A quantitative approach to temporal logic planning with partial satisfaction,” in Proc. Association

for the Advancement of Artificial Intelligence, 2015.

12. M. Lahijanian and M. Z. Kwiatkowska, “Specification revision for Markov decision processes with op-

timal trade-off,” in Proc. IEEE Conference on Decision and Control, pp. 7411–7418, 2016.

13. M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi, “Iterative temporal

planning in uncertain environments with partial satisfaction guarantees,” IEEE Trans. Robotics, vol. 32,

no. 3, pp. 583–599, 2016.

14. T. Tomita, A. Ueno, M. Shimakawa, S. Hagihara, and N. Yonezaki, “Safraless LTL synthesis considering

maximal realizability,” Acta Informatica, vol. 54, no. 7, 2017.

15. F. Juma, E. I. Hsu, and S. A. McIlraith, “Preference-based planning via MaxSAT,” in Proc. Advances in

Artificial Intelligence, vol. 7310 of LNCS, pp. 109–120, 2012.

16. N. Robinson, C. Gretton, D. N. Pham, and A. Sattar, “Partial weighted MaxSAT for optimal planning,”

in Proc. Pacific rim international conference on artificial intelligence, pp. 231–243, Springer, 2010.

17. R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Better quality in synthesis through quanti-

tative objectives,” in Proc. International Conference on Computer-Aided Verification, vol. 5643 of LNCS,

pp. 140–156, 2009.

18. S. Almagor, U. Boker, and O. Kupferman, “Formally reasoning about quality,” Journal of the ACM,

vol. 63, no. 3, pp. 24:1–24:56, 2016.

19. P. Tabuada and D. Neider, “Robust linear temporal logic,” in Proc. Computer Science Logic, vol. 62 of

LIPIcs, pp. 10:1–10:21, 2016.

20. R. Alur, A. Kanade, and G. Weiss, “Ranking automata and games for prioritized requirements,” in Proc.

International Conference on Computer-Aided Verification, vol. 5123 of LNCS, 2008.

21. A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta, “Boolean abstraction for temporal logic satisfiabil-

ity,” in Proc. International Conference on Computer-Aided Verification, vol. 4590 of LNCS, pp. 532–546,

2007.

22. V. Schuppan, “Towards a notion of unsatisfiable and unrealizable cores for LTL,” Science of Computer

Programming, vol. 77, no. 7-8, pp. 908–939, 2012.

23. V. Raman and H. Kress-Gazit, “Towards minimal explanations of unsynthesizability for high-level robot

behaviors,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 757–762,

2013.

24. A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev, “Diagnostic information for realizability,” in Proc.

International Conference on Verification, Model Checking, and Abstract Interpretation, LNCS, 2008.

Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications 29

25. R. Ehlers and V. Raman, “Low-effort specification debugging and analysis,” in Proc. Workshop on Syn-

thesis, vol. 157 of EPTCS, pp. 117–133, 2014.

26. C. Baier and J. Katoen, Principles of model checking. 2008.

27. O. Kupferman and M. Y. Vardi, “Safraless decision procedures,” in Proc. IEEE Annual Symposium on

Foundations of Computer Science, pp. 531–542, 2005.

28. B. Finkbeiner and S. Schewe, “Bounded synthesis,” International Journal on Software Tools for Tech-

nology Transfer, vol. 15, no. 5-6, 2013.

29. O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Formal Methods in System De-

sign, vol. 19, no. 3, pp. 291–314, 2001.

30. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu, “Spot 2.0 - A framework

for LTL and ω -automata manipulation,” in Proc. Automated Technology for Verification and Analysis,

vol. 9938 of LNCS, 2016.

31. R. Martins, V. M. Manquinho, and I. Lynce, “Open-WBO: A modular MaxSAT solver,,” in Proc. SAT’14,

vol. 8561 of LNCS, pp. 438–445, 2014.

