
Received October 4, 2019, accepted November 4, 2019, date of publication November 19, 2019, date of current version December 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2954165

Invalidating Analysis Knowledge for Code
Virtualization Protection Through
Partition Diversity
WEI WANG 1,2, MENG LI1,2, ZHANYONG TANG 1,2, HUANTING WANG 1,2, GUIXIN YE1,2,
FUWEI WANG1,2, JIE REN 3, XIAOQING GONG1,2, DINGYI FANG1,2, AND ZHENG WANG 4
1School of Information Science and Technology, Northwest University, Xi’an 710127, China
2Shaanxi International Joint Research Centre for the Battery-Free Internet of Things, Northwest University, Xi’an 710127, China
3School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
4School of Computing, University of Leeds, Leeds LS2 9JT, U.K.

Corresponding author: Zhanyong Tang (zytang@nwu.edu.cn)

This work was supported in part by the NSFC under Grant 61972314 and Grant 61672427, in part by the Key Research and Development
Project of Shaanxi Province under Grant 2017GY-191, in part by the International Cooperation Project of Shaanxi Province under Grant
2019KW-009 and Grant 2017KW-008, in part by the Shaanxi Science and Technology Innovation Team Support Project under Grant
2018TD-O26, in part by the Foundation of Education Department of Shaanxi Province Natural Science under Grant 15JK1742, and in part
by the Ant Financial through the Ant Financial Science Funds for Security Research.

ABSTRACT To protect programs from unauthorized analysis, virtualize the code based on Virtual
Machine (VM) technologies is emerging as a feasible method for accomplishing code obfuscation. However,
in some State-of-the-art VM-based protection approaches, the set of virtual instructions and bytecode
interpreters are fixed across the whole programs. This means an experienced attacker could extract the
mapping information between virtual instructions and native code from programs, and use this knowledge
to uncover the mapping relationships in similar protecting applications. To address this problem, we present
CoDiver (Code Virtualization Protection with Diversity), a novel VM-based code obfuscation system in
this paper. The main idea of our approach is to obfuscate the mapping between the opcodes of bytecode
instructions and their semantics. To achieve this goal, we first turn every protected code region into multiple
parts by partition proceeding, randomize the mapping of opcodes and their semantics of each part. By this
way, we could translate the bytecode instruction into different native code in different sections of the
obfuscated code. This method could increase the diversity of program behavior significantly. As a result,
it will be useless to learn the mapping relationship between bytecode and native code of some other
programs, then migrate it into a new program. We build a prototype of CoDiver and tested it on a set of
real-world applications. Experimental results show that as compared with two state-of-the-art VM-based
code obfuscation approaches, our approach is more effective and could provide stronger protection with
comparable runtime overhead and code size.

INDEX TERMS Instruction set randomization, reverse engineering, virtualized obfuscation.

I. INTRODUCTION
For software developers, unauthorized code reverse engineer-
ing is an important threat. This could bring up various attacks,
taking out advertisements from the application, including
removing copyright protection of software or injecting mali-
cious code into the program. Code obfuscation could make it
difficult to trace and analyze the program, protect the software
from unauthorized code modification [1]–[7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Esposito .

Code virtualization based on Virtual Machine (VM)
is emerging as a promising way for implementing code
obfuscation [8]–[11]. It converts the opcodes into another
code that has an identical function to the original code. This
strategy forces the attacker to face with an unfamiliar instruc-
tion set, which can significantly increase the time and effort
involved in the attack. As an attacker implement reverse engi-
neering of VM-obfuscated code, it will typically follow two
steps. First, the attacker needs to understand the semantics
of individual bytecode instructions by analyzing the virtual
interpreter. Then, theywould understand the program logic by
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translating the bytecode back into nativemachine instructions
or even high-level program languages [12], [13]. In these
two steps, the difficulty varies at different stages, and the
most-consuming process is the first one that understanding
the semantics of individual bytecode instructions. This step
also involved in analyzing the handler that will be used to
interpret every bytecode instruction.

Researchers have proposed numerous approaches to pro-
tect VM handlers from reverse engineering. Most of the
studies focus on how to increase the diversity of program
behavior by obfuscating the handler implementation [14] or
using different interpretation techniques to transform a sin-
gle program through multiple iterations [15], [16]. However,
these previous works use a static strategy to convert each
native code into a fixed set of bytecode. Which means there
are no significant changes in the probability distribution of the
native code, the frequency of a bytecode will be present by its
handler, but only the expression has changed. So when we use
the same obfuscation technique, the attacker could extract the
mapping relationship and distribution law from one program,
then reuse this knowledge (termed analysis knowledge) to
launch the attack on another program.

In this paper, we focus on addressing the challenge of
reusing analysis knowledge. We propose CoDiver, a Code
Virtualization Protection with Diversity, which can enhance
VM-based code obfuscation. We introduce Instruction Set
Randomization (ISR) [17] to change the opcodes of byte-
code instructions and their semantics randomly. As a result,
the mapping relationships between bytecodes and their han-
dlers varies across the program. But as we mentioned, this is
not sufficient to provide adequate protection, for the distribu-
tion of the bytecode instructions have not changed. So further
than that, CoDiver partitions the protected code region into
several parts and use different mappingmode for the bytecode
instructions and their handlers in each part. By doing this,
the same bytecode instruction in different parts of the pro-
gramwill have different semantics, so the analysis knowledge
of the other program will be void.

The key contribution our paper makes is proposing a cor-
responding countermeasure to block the reuse of analytical
knowledge in code reverse engineering. We have build up a
prototype of CoDiver, and compare it with Themida [10] and
VMProtect [9] while working on a set of real-world algo-
rithms and applications. The test results prove that as com-
pared with two commercial code obfuscation tools, CoDiver
could provides stronger protection with similar code size and
runtime overhead.

II. BACKGROUND
The virtualization technique could provide convenience in
software protection, help us to keep the programs safe from
unauthorized analyses. There are a number of VM-based
protection tools that have emerged, including themida [10],
Code Virtualizer [8] and VMProtect [9]. These VM-based
tools performing the protection by converting the protected
code area into a set of custom virtual instructions that will

be stored in program binaries as bytecodes. At run time,
the virtual instructions will revert to native code by byte
interpreters.

FIGURE 1. The architecture of VM-based code obfuscation. The main work
of CoDiver is to strengthen the two steps of VM-based protection (these
two steps been marked as ‘‘a’’ and ‘‘b’’). In the step (a), we partition the
protected code into different parts, and obfuscate the bytecode
handlers to form multiple implementations for each handler. In the
step (b), we use various obfuscation and anti-taint analysis technologies
to protect the important components of the VM core.

As shown in figure 1, it’s a classical architecture of a
VM-based obfuscation system. Virtual IS (Instruction Set) is
the kernel part of this system. The interpreter will been used
to convert IS into native code of Virtual instruction interpreta-
tion according to the classical decode-dispatch method [18],
using a set of handlers and a VMloop. In this system,
VMloop is the execution engine to fetch and decode the
bytecode instructions and dispatch handler to interpret the
instructions. VMcontext involves virtual registers and flags
that are hardware-independent. During run time, the virtual
registers and flags will be mapped to the underlying hard-
ware, and VMInit will initialize the VMcontext and save
the native context. Accordingly, while exiting VM, VMExit
will restore the native context. At last, all these VM compo-
nents will be assembled into a new section and appended to
the end of the target program by binary rewriting.

This paper starts with two critical components of the
VM-based obfuscation architecture, and highlights themwith
label ‘‘a’’ and ‘‘b’’, as shown in figure 1. In our method,
the area of protected code will be divided into different sec-
tions. Then using code obfuscation techniques to generates
multiple implementations for each bytecode handler. For the
same bytecode handler, there will be different implementa-
tions that are semantically equivalent. And these implemen-
tations could generate the same output for a given virtual
instruction, but during the runtime their execution paths and
behaviors are different. To further enhance the protection,
we use some obfuscation and anti-taint analysis technologies
to protect these key components of the VMCore.

III. THE THREAT MODEL
We use white-box attack [19], [20] as the threat model, which
assumes that the attacker has a copy of the target program,
and could run it in a malicious host environment [21]. In this
threat model, the adversary has full access privileges to
the system. And they can use any kind of analysis tools,
including static and dynamic types such as OllyDbg [22],
IDA [23] and Sysinternals Suite [24]. With these
tools, the attacher could trace and analyze the instructions,
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monitor process memory and the registers, even modify the
instruction bytes and control flows during run time, and so
on. As demonstrated in previous work [12], these assump-
tions are reasonable, that usually available for experienced
adversaries.

At present, there are two main attack methods for the
protection system based on VM, as been described below.
In this paper, we assume an adversary could launch the
attack with either one or a combination of these methods.
The first one is working on the base of virtual execution
analysis which was proposed by Rolles and Rolf [13]. This
kind of method requires a deep insight into the code virtu-
alization techniques which is used by the obfuscation sys-
tem. It extracts key bytecodes and handlers by track the
execution of the virtual interpreter dynamically and then
restores the program logic through analysis and code sim-
plification. Falliere and Nicolas [12] show that performing
such analysis is possible [9]. And this attack method is
relevant to the basic principle and structure of code virtu-
alization and has been widely used to analyze obfuscated
malware.

The second type of attack will analyze the behavior and
semantics of the target program first and then perform the
attack base on this analysis. This kind of approach could
attack the obfuscation methods whether it’s base on code
virtualization or not. Yadegari et al. [25] propose a behavior
analysis method. This approach focuses on analyzing the
important behavior of the original code but fails to restore the
code. Tang et al. [26] propose an attack method that working
on semantic analysis. It tracks the input values flow with taint
propagation, and simplify the logic of the instructions with
semantics-preserving code transformations. This approach
has extensive applicability but is limited to a small region of
code.

IV. MOTIVATION
In figure 2, shows a scenario of reverse analysis in which
an attacker could first extract the analysis knowledge from
a program, then reuse them to attack some other applications
that been protected by the same VM-based code obfuscation
scheme. We can see four different target programs in this
figure that need to be protected, and marked as A, B, C, and
D respectively.

As pictured at right, these four target programs all use
a uniform set of virtual instructions and bytecode for the
handler to perform the protection. And that means an expe-
rienced attacker could first obtain the mapping relation-
ship between virtual instructions and bytecode handlers
from one program, and then use this knowledge to accom-
plish the reverse-engineer of the remaining three programs.
As we mentioned before, during attacking the VM-based
code obfuscation, uncovering the mapping between vir-
tual instructions and native code is usually the hardest and
time-consuming process. So if the attacker could reuse the
analysis knowledge, the cost involved in the attack will be
reduced significantly.

FIGURE 2. The process of code reverse-engineering that reuses the
analysis knowledge. Here we marked four different target programs as A,
B, C, and D. As pictured at right, every program uses the same code
obfuscation scheme which mean a virtual instruction will
deterministically mapping to a fixed set of native code. This makes it
possible for an attacker to reuse the knowledge obtained from one
program to finish the reverse engineer of the other program efficiently.
Our approach is shown on the left side, and we can see for different
programs the mappings between virtual instructions and native code are
totally different. As a result, the attacker no longer able to reuse the
previous analysis knowledge to perform the reverse engineering of
another program.

Our approach is shown on the left side, the mapping
between virtual instructions and native code are varied
among different programs. This means the analysis knowl-
edge obtained from one program is inapplicable to the others.
This could force the attacker to restart from scratch while
performing reverse engineering to a new program. As this
example demonstrates, with shuffling the mapping relation-
ship between the virtual instructions and bytecode handlers,
the effort and cost involved in performing an attack could
increase significantly. In the rest of this paper, we’ll describe
in detail how to construct such a scheme.

V. OVERVIEW
CoDiver consists of four components as follows.

A. VIRTUAL INSTRUCTION SET AND HANDLERS
We design a set of virtual instructions and handlers to trans-
late the virtual instructions to native code. In this work, we tar-
get the x86 instruction set. Our virtual instruction set is based
on a stack machine architecture and is Turing-equivalent to
the native machine code. The virtual instruction set design
will be discussed in Section VI.

B. NATIVE CODE TRANSLATION
We develop a tool to convert native machine code into virtual
instructions and then store them as bytecode automatically.
Details of this tool are described in Section VII-A.

C. BYTECODE DIVERSIFICATION
We use a special encoding scheme to diversify the generated
bytecode instructions, and divide each protected code region
into several partitions. In each partition, we mapping the
opcodes of the virtual instructions to different native code.
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It means, even if an attacker finds amapping rule from opcode
to native code in one segment, the rule is difficult to be
applied to other segments. We also obfuscate each handler to
produce a set of obfuscated handlers where handlers follow
different execution paths at runtime but produce identical
results for a given virtual instruction. We also protect the
core component of the VM using anti-taint analysis. This is a
critical component of CoDiver, described in Section VII-B.

D. PE REFACTORING
Finally, the generated bytecode program and other VM com-
ponents will be linked together with binary rewriting.

VI. VIRTUAL INSTRUCTION SET AND HANDLERS
In any code obfuscation system that based on VM, virtual
instruction set and handler are the key foundations. The vir-
tual instruction set must be Turing-equivalent to target native
machine code, whichmeans that any native instructions could
replace the virtual instructions. Virtual instructions ultimately
will be executed by the hand-crafted handlers, and these
handlers are written in native instructions.

There are two main VM architectures: stack-based, and
register-based. Examples of stack-based virtual machines are
the Java Virtual Machine and the.Net CLR, and examples
of register-based virtual machines are the Lua VM and the
Dalvik VM. Here, we choose the stack-based architecture
for our VM-based obfuscation system, the reasons are as
follows:

• In stack-based VM, operations are performed with the
help of the stack, which stores the operands and the
results of operations. This could simplify the address-
ing of operands and the implementation of handlers
ultimately.

• Native x86 instructions can be converted to virtual
instructions more easily.

• During a given computation, stack-based VMs need
more virtual instructions. This would make the instruc-
tions become more complex and precisely in line with
our goal of preventing reverse analysis.

To devise a virtual IS that is Turing-equivalent to the native
IS, one naive approach is devising a virtual instruction for
every single native instruction. However, this results in a very
large size of handlers. As the basic idea of stack-based VMs
implies, a native operation is carried out or virtualized by vir-
tual instructions in a three-phase fashion: pushing operands
into the stack, executing the aimed operation, and storing the
result into the virtual context. Therefore, it is sufficient for
the virtual IS to include the following instructions:

• load instructions and store instructions are used for
data transmission. load instructions are used to push
operands onto the stack, and store instructions are
used to pop the results out of the stack and store them
into the virtual context.

• Arithmetical and logical instructions. Variants of these
instructions are much smaller than their native ones,

because the addressing mode of operands is simpler and
more uniform, i.e. stack-based addressing.

• Branch instructions used to change the control flow of
the bytecode program.

Other instructions not included in the above categories are
defined as special virtual instruction - undef, which we will
discuss later. We first discuss the different formats of these
instructions and how to implement the handlers of them.

A. LOAD AND STORE INSTRUCTIONS
load and store instructions are used for preparing
operands and storing the results of operations. They are
used in the first and third phases of virtualizing a native
instruction. In our virtual IS, they are the only ones that
have operands. For a load instruction, the operand could
be a virtual register, a memory addresses, or an immediate
value, and for a store instruction, the operand is a virtual
register or a memory address. Virtual registers are stored in
the virtual context, i.e., the VMcontext. A naive construc-
tion of VMcontext is simply copying the values of native
registers into the VMcontext. But the mapping between the
virtual registers and the native registers is not necessarily one-
to-one. To further impede the reverse analysis, the mapping
mechanism could be made purposely more complex, as NIS-
LVMP [11] does. In this section, we only consider the one-
to-one mapping between the virtual registers and the native
ones.

Besides the operand type, the operand size matters as well.
In x86 architecture, the size of an operand could be 8-bit,
16-bit, and 32-bit. For example, given a memory address,
the load instruction could fetch the first 8-bit, or the lower
16-bit value, or the entire 32-bit value that stored in that
address. Therefore, it is better to design a virtual instruc-
tion for every distinct combination of operand type and
size. However, in x86 architecture, push and pop opera-
tions do not support 8-bit operations. We decide to delay
distinguishing different size operands to the second phase
of virtualizing native instructions. Table 1 shows the vir-
tual instructions of load and store and their correspond-
ing handlers. In table 1, there exist four special virtual
instructions: load r8h and store r8h are used when
we encounter an operation that manipulate the second least
significant byte of a register, i.e., ah, dh, ch, bh, load ms
and store ms have no operands and are used to process
instructions with indirect memory addressing mode (memory
address is stored in a register or presented as an expression).
An example in table 5 illustrates the situation of using of
load ms.

B. ARITHMETICAL AND LOGICAL INSTRUCTIONS
Arithmetical and logical virtual instructions are used to exe-
cute the aimed operations and they do not need to worry
about operands, since their operands have been pushed into
the stack by load instructions. However, as we said before,
these instructions must consider the size of the operands.
These instructions are in similar forms and we take add
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TABLE 1. The virtual instructions and corresponding handlers of load
and store.

operation as an example to illustrate. Table 2 lists the virtual
instructions and handling procedures of add operation. Since
the operations of these instructions could be 8-bit, 16-bit, or
32-bit, we design virtual instruction for each of the operations
of different operand sizes.

TABLE 2. The virtual instructions and handlers of add virtual instructions.

C. BRANCH INSTRUCTIONS
In native IS, the commonly used branch instructions include
jmp, jcc (conditional jump), call and retn. It is a
big challenge to virtualize these instructions, since they
have many different variants and each of these variants
needs a virtual instruction. Considering the destination of a
jump (branch) instruction, if its destination also resides in the
critical code, we call it an inner jump; otherwise, we call it
an outer jump. Figure 3 illustrates these two kinds of branch
instructions. In CoDiver, we ignore the situation where the

destination of a branch instruction outside the critical code
resides in the critical code, the start instruction of the critical
code excluded. This situationwill not occur if the critical code
to be protected is well-structured.

FIGURE 3. The destination of a branch instruction could be in the critical
code or outside the critical code. Branch instructions include jmp, jcc,
call, and retn.

Besides the location of the destination instruction,
we should also consider if the destination of a branch instruc-
tion can be determined statically. From this point of view,
the branch instructions can be divided into two categories:
one is direct branches, whose destinations are calculated in a
PC (Program Counter)-relative mode and can be calculated
statically. The other is indirect branches, whose destina-
tions are stored in registers or memories. Their destina-
tions are undefined statically and are determined at runtime.
Table 3 classifies different forms ofjmp/jcc/call/retn
instructions considering the above two categories.

TABLE 3. Examples of direct and indirect branches.

1) DIRECT BRANCHES
Since jmp instructions are the basis of the other branch
instructions, we elaborate on the introduction of the virtual
instructions and handlers of jmp instructions. As we have
illustrated, the destination of a direct jmp instruction can
be calculated statically. If the destination instruction of the
jmp instruction resides in the critical code, the jmp is a
direct inner jmp; otherwise a direct outer jmp. We desig-
nate virtual instructions for both of them, jmp di for the
former, and jmp do for the latter. For direct inner jmp,
it is able to obtain the corresponding bytecode instruction
address of its native destination instruction during protection.
Therefore, we set that bytecode instruction address as the
operand of jmp di, which is pushed into stack by load i.
The handler of jmp di fetches the address from stack and
assigns it to VPC (Virtual Program Counter). For direct outer
jmp, we just need to jump to that destination instruction.
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Prior to that, we should restore the native context. There-
fore, the operand of jmp do is the address of the native
destination instruction. Table 4 presents the above two virtual
instructions of direct jmp and their handlers.

TABLE 4. The virtual instructions and handlers of jmp instructions.

jcc and direct call instructions are similar to direct
jmp. jcc has many different kinds of instructions for differ-
ent conditions, and each needs a specific virtual instruction.
In the handlers, some extra instructions are needed to
check the state of the conditions and decide to jump or not.
call instructions can be considered as a push instruction
followed by a jmp instruction. The push instruction pushes
the return address into the stack and the jmp instruction
jumps to the address of the subroutine.

2) INDIRECT BRANCHES
Since it is difficult to obtain the address of an indirect branch,
we cannot decide whether the branch is an inner one or an
outer one. One solution is to delay the decision until runtime.
In such a case, however, the implementation of the handler
is complex. Hence, for these instructions, instead of using
a similar idea as that for direct branches, we use a special
virtual instruction undef, which will be introduced later.

D. OTHER INSTRUCTIONS
The above three categories cover the commonly used instruc-
tions. Although the other native instructions are rarely used,
such as bts, enter, int n, and out, our native IS should
consider them too. For these instructions, we define a special
virtual instruction - undef. At runtime, when encountering
such an instruction, it first restores the native context and exits
the VM. Then, it executes that native instruction in the native
context and finally re-enters the VM and continues to execute
the left bytecode instructions. The indirect branches are also
processed in this way.

VII. OFFLINE CODE OBFUSCATION
In this section, we describe how to convert native instructions
into virtual instructions and store them in bytecode format.

A. NATIVE INSTRUCTIONS TO VIRTUAL INSTRUCTIONS
In the obfuscation, we first convert native instructions into
virtual instructions. This process has three steps: first, use
load virtual instructions to load the operands into the stack;
then, perform the target operation; finally, use store virtual
instructions to put the result into a virtual context or a certain

memory address. Table 5 gives some examples of native
instructions and their corresponding virtual instructions.

TABLE 5. Examples of native instructions and their corresponding virtual
instructions.

Data transfer instructions are mainly mapped to load
and store instructions. Typical examples of these instruc-
tions are pop, mov, and push. Arithmetical and logical
instructions will follow the three-phase processing strictly.
Branch instructions will be mapped to a load instruction,
and followed by the branch virtual instructions. The native
instructions which has complex addressing mode will use
the above virtual instructions for iteratively processing, for
example, the ‘‘mov eax, dword[esi+4]’’ instruction
in Table 5.

B. VIRTUAL INSTRUCTIONS TO BYTECODES
Virtual instructions will be encoded into bytecodes in the end.
It is similar to that an assembler assembles assembly instruc-
tions intomachine code and only can be interpreted by the vir-
tual interpreter of a VM-based protection system. We adopt
an encoding scheme less compacted than the x86 instruction
architecture which uses separate bytes for the opcode and
operand of virtual instruction. In practice, we assign a distinct
ID to each virtual instruction as its opcode. Using this ID
as an index, VMloop looks for the address of the virtual
instruction handler in the address table that records the
address of eachhandler. The number of virtual instructions
is under 256, so one byte is enough to encode their IDs. For
operands, because they could be different in size,1 so here
we use one, two, or four bytes to encode them accordingly.
Figure 4 shows examples of virtual instructions and their
bytecode. The figure also demonstrates how VMloop fetches
and interprets the bytecode instructions.

C. RANDOMIZE THE SEMANTICS OF BYTECODE
INSTRUCTIONS
We can see from the demo above, if the attacker knows the
semantics of a bytecode instruction, when he encounters it

1The operand of a virtual instruction may be the index of virtual register,
an immediate value, or a memory address. So their size could be varied:
a virtual register index is 8 bits, an immediate value is 8/16/32 bits, and a
memory address is 32 bits.
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FIGURE 4. Examples of virtual instructions and their bytecode. Each
virtual instruction is encoded as a bytecode instruction that contains an
opcode and an optionally operand. The bytecode instructions is passed
into VMloop, which uses the opcode of each bytecode instruction as an
index to find the address of the corresponding handler in the HAT
(Handler Address Table).

next time, he doesn’t need to re-analyze its handler to
find out what it could do.2 As shown in Figure 4, by ana-
lyzing Handler 4023e0, an attacker could find out the
bytecode instruction ‘‘10’’ presents an addition operation.
Then the next time he encounters this bytecode instruction
‘‘10’’, he will know immediately that it performs an addition
operation.

In order to make previously obtained analysis knowledge
difficult to be reused, we need to break the fixed corre-
spondence between virtual instructions and semantics and
randomize them. We can achieve this goal base on the encod-
ing scheme. The main idea of this scheme is to change
the relationship between the IDs (opcodes) and the virtual
instructions, which is similar to [17]. Each time the virtual
instructions are encoded, the IDs will be shuffled first. Then
the virtual instructions are encoded with scrambled IDs.
The addresses of handlers are also stored in the handler
address table accordingly.

D. PARTITION BYTECODE PROGRAM
After randomized the semantics of bytecode instructions,
an attacker can not reuse this analysis knowledge to figure out
the real function of a bytecode instruction. However, there is
still a way to bypass the effect of randomization. As shown
in table 5, every virtual instruction has its own frequency,
we can see load r and store r are two of the most
frequent virtual instruction that been used. So even after
randomization, an attacker still could find out the semantics
of bytecode instructions according to the probability distri-
bution of opcodes. This problem could come down to the
static mapping relationship between IDs and virtual instruc-
tions in each use. Although we have executed randomization,
the probability distribution property of the virtual instruction
will still be passed to the ID been used this time.

2Because programmer could modify handlers to hinder analysis,
it saves the analyst a lot of time without having to bother to analyze them.

1) BYTECODE PROGRAM PARTITION DESIGN
To frustrate the inferences based on the frequency statistic of
opcodes, we need to break the static mapping relationship.
So all the generated virtual instructions are partitioned into
several parts, and each part is encoded differently. Especially,
instead of encoding all the generated virtual instructions
simultaneously during obfuscation, we encode every part sep-
arately. Before an encoding process is executed, we first shuf-
fle the IDs of virtual instruction randomly, then encode it with
the result. With shuffles, an identical opcode in different parts
of the bytecode program may reveal different semantics, thus
the probability distribution property of opcodes are obscured.
As shown in Figure 5, partition the virtual instructions into
two parts and encode each part of virtual instruction into
different opcode. For example, in the first part load r is
encoded into ‘‘00’’, yet in another part is ‘‘7a’’.

FIGURE 5. Example of partition, and there are two parts in this figure.
In different part, the virtual instructions are encoded differently and
interpreted with different handlers set. So the number of HAT increases
accordingly. To switch the currently used (by VMloop) HAT to the next one,
we add a new virtual instruction switch HAT. The operand of
switch HAT is the size of a HAT.

Algorithm 1 Partition Bytecode Program
Require: VIs of critical code segment, partition number N.
Ensure: Bytecode program with N partition.
1: Apply memory space M;
2: VIs randomly divided into N partitions;
3: Generate N sets of handlers by using algorithm 2;
4: while N 6= 0 do
5: Take a partition;
6: Randomly select a set of handlers and shuffle the

IDs of virtual instructions;
7: Build a corresponding HAT;
8: Use the shuffle results to encode bytecode program P;

9: Store the P to M;
10: N decrement operation
11: N −−;
12: end while

Algorithm 1 demonstrates partition encoding. To parti-
tion the bytecode program, we randomly divide the virtual
instructions into N partitions and obfuscate the original HAS
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(Handler Set) N times to get N sets of handlers, and
the detailed HAS obfuscation approach are demonstrated in
section VII-E. For each partition, we will randomly select
one set of handlers and shuffle the IDs of virtual IS,
and then use the results to encode the VIs into a specific
bytecode program. In the end, a complete bytecode program
is generated, which has multiple partitions and the same
bytecode has different semantics in different partitions. These
specific bytecodes only can be interpreted by the system’s
virtual interpreter.

For the VMloop uses the opcodes of bytecode instructions
as the indexes of their corresponding handler addresses,
and each part will be encoded differently, so every part needs
his own HAT. At the end of each part, the HAT used by
it will switch to the HAT of the next part. The new virtual
instruction - switch HAT This mission is executed by a.
Because switch HAT is always added to the end of a
part, and the order of HATs is in accordance with parti-
tions. So we need to add the size of a HAT to the HAT
pointer that been used by VMloop (as shown in figure 5
that Handler 4024a6 does). In our prototype, the number
of Handlers is 148 and the address of a Handler is
4 bytes, so the size of a HAT should be 592 (250h in
hexadecimal) bytes.

FIGURE 6. The virtualization of a direct inner transfer instruction with
HAT switching. Instruction load i push the address of the destination
HAT into stack, and assign it to the HAT pointer that is used by VMloop at
runtime.

HATs switching is not only limited to the end of every
part. Switching can also occur when the target of a branch
instruction is in a different part.We know, a branch instruction
could change the control flow of a program though changing
the VPC. When encounter such an instruction, we cannot just
only add a switch HAT to it, because if we change the VPC
to a location in another part, switch HAT might not be
interpreted by VMloop. So we put the code for the switch
in the Handlers of the branch instruction. In this case,
the branch instructions indicating the direct inner, as direct
outer branches and indirect branches will all leave the vir-
tual context and we do not need to worry about the HATs
switching. In the process of protection, we will first calcu-
late its destination for each direct inner branch instruction,
and then calculate the partition where the destination should
reside. The HAT address of the partition is pushed onto the
stack by load i and will be used by the Handler of the
branch instruction to set the value of the HAT pointer used
by VMloop. Figure 6 shows the virtualization of direct inner
branch instruction, as compared to that in table 4.

2) SECURITY ANALYSIS OF PARTITION DESIGN
Assume there is an attacker now, which uses the attack
method based on virtual execution that introduced in
section III to reverse the bytecode partition program. First,
the attacker needs to perform dynamic debugging the target
program, and then spend some time to locate the address
of VMloop from the obfuscated virtual interpreter. Next,
he needs to collect the bytecode program by analyzing the
parameters of VMloop.
To restore the logical function of the original code,

the attacker needs to analyze the semantics of these extracted
bytecodes. But for the target program, which generated by
using special encoding schemes and its bytecode program
is divided into multiple partitions. So the attacker must first
obtain the partition information of critical code to further
reverse analysis, but it is difficult for him. After the NIs have
been converted to a VIs, there is a HAT switching operation
by using VI - switch HAT at the end of each partition.
However, virtual instruction is just an intermediate language
in the process of protection, and it does not appear in the
final program. All of the instructions will eventually be in
the form of bytecodes, and the bytecode semantics of each
partition is randomly changed (such as bytecode ‘‘93’’ and
‘‘52’’ in figure 5). So the attacker cannot use this feature to
delineate the partition. He can only spend a lot of time through
continuous tracking and debugging to predict the partition of
the transformation.

Assume that the attacker gets the partition information
after a lot of analysis. Next, the attacker needs to analyze
the bytecode of each partition and extract the semantic infor-
mation implied by the handlers. Because the bytecode
of each partition has different semantics, and their map-
ping handlers are also with different forms. Therefore,
the attacker cannot reuse the previous analysis knowledge
to attack the next partition, and for different target program
that protected by CoDiver is more like this. Unique partition
configuration and different handler sets so that the attacker
cannot achieve the batch automatic attack by building an
attack knowledge base. The attacker has to spend a lot of time
to analyze every detail for each program.

E. OBFUSCATE THE HANDLER SETS
To further impede automated reverse analysis, we can obfus-
cate the handlers, and use different obfuscation strate-
gies for handlers in different partitions. As a result,
a handler in different partitions will look different. An ana-
lyst cannot immediately recognize them as the same one
and needs to analyze each of them, which increases the
workload of the analyst. At the same time, it can also pre-
vent the attacker use attack knowledge base to match these
handlers for automatic reverse analysis.

Our obfuscation method is shown in Algorithm 2. The
number of HAS obfuscation will be determined by the num-
ber of partitions. Our system will select several methods
from the obfuscation library randomly. This library contains

VOLUME 7, 2019 169167



W. Wang et al.: Invalidating Analysis Knowledge for Code Virtualization Protection Through Partition Diversity

Algorithm 2 Virtual Interpreter Obfuscation
Require: The original HAS, partition number N.
Ensure: N equivalent HASs with different forms.
1: while N 6= 0 do
2: Apply memory space M1;
3: Take the first handler from HAS;
4: while There are still untreated handler do
5: Randomly select multiple obfuscation methods and

using order of them;
6: Obfuscate handler and store the results to M1;
7: Take the next handler from HAS;
8: end while
9: Apply memory space M2;

10: Using the anti-taint analysis technique to protect the
code in M1;

11: Store the results to M2, and release the memory space
of M1;

12: N decrement operation
13: N −−;
14: end while

equivalent instruction substitution [27], control flow flatten-
ing [29], code out-of-order [28] and junk instructions injec-
tion. Then the system will obfuscate the handler by these
selected methods. Finally, we have multiple equivalent HASs
but with different forms. After obfuscation, we will still use
some anti-taint analysis techniques (more details are pre-
sented in section VII-F) to protect the HASs. This approach
could protect the virtual interpreter from the attack based on
de-obfuscation effectively.

For instance, HAS is an original handler set consist of
m handlers. HAT stores the addresses of these
handlers, whose indexes correspond to the opcode of the
virtual instruction. We first use different strategies to obfus-
cate HAS for n times, and n is determined by the number of
partitions. Then we can obtain multiple HASs with different
forms but they are semantic equivalence. At this point, every
equivalent handler still has the same index, this means
the relationship between them is direct mapping and it is
insecure. Therefore, as mentioned in prior section VII-D,
the method of bytecode program partitioning and semantics
of bytecode instructions randomization. We will first shuffle
the virtual instruction IDs randomly, and then provide a
new HAT for every partition (as shown in figure 5) with
these results. With this shuffle method, in different parts of
the bytecode program, the same opcode may correspond to
different semantics. So in different HASs, the relationship
between these equivalent handlers could be:

HAS1(i)⇔ HAS2(j)⇔ . . .⇔ HASn(k), 1 ≤ i, j, k ≤ m.

We can see, with these different forms of handlers and
various semantics of bytecode instructions, even though the
attacker has rich knowledge of attack, it is still difficult to
reuse the knowledge to perform automatic reverse analysis.

Attackers have to start from scratch and spend a lot of time in
detail analyzing.

F. ANTI-TAINT ANALYSIS
Simply obfuscating the handlers, however, cannot pre-
vent an attacker from reverse engineering completely. There
are several existing de-obfuscating techniques that can be
used to counter the traditional virtualization protection. Such
as Yadegari et al. [25] use equational reasoning about
assembly-level instruction semantics to simplify away obfus-
cation code from execution traces of emulation-obfuscated
programs. Tang et al. [26] use taint propagation to track the
value flows from the inputs of the programs to the outputs,
and simplify the logic of the instructions that operate on and
transform values through this flow by semantics-preserving
code transformations.

However, the work of Coogan et al. is working on the
base of equational reasoning about assembly level instruc-
tion semantics. And simplify these complex equations are
difficult, so it is also hard to separate the complex control
flow or different components of nested loops. The work
of Yadegari et al. is effective even applied to previously
unseen obfuscations, but the code simplification should be
first to identify input-to-output data flows. This relies on the
taint propagation and analysis to identify the explicit value
flows from inputs to outputs, and then identify implicit flows
by control dependence analysis. Therefore, these methods
could be obstructed by enforcing dataflow obfuscation to the
handling procedures [20]. We adopt some anti-taint analysis
techniques to protect the data flow of the handlers from
taint analysis. Specific ways are as follows:

a: THE TRANSFER OF NAIVE MODEL
A simple case is given in figure 7-(a), assuming that there
is a variable B that has been marked by taint, we need to
transfer the value of B to AX. If we use the MOV instruction,
AX will also be tainted. The transfer of naive model is that to
do subtraction operation for B, at the same time to do addition
operation for AX. When the value of B is reduced to ‘‘0’’,
the value of AX increased from ‘‘0’’ to B, and AX will not be
marked as a tainted data.

b: THE TRANSFER OF CONTROL DEPENDENCIES
Control dependence analysis is an important step towards the
process of taint analysis. For a set of tainted data, to carry
out anti-taint analysis processing. As shown in figure 7-(b),
we can launder tainted data by assigning the data that no
tainted directly to the tainted data. This process needs to
match the tainted data and not tainted data, in order to ensure
the correctness of the data will not be affected.

c: THE INDIRECT TRANSFER OF STACK POINTER
As we can see from figure 7-(c). The indirect transfer of
stack pointer took advantage of the working principle of the
stack to implement the anti-taint analysis. The principle of
this method is to first put a set of no tainted data into the
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FIGURE 7. Examples of three anti-taint analysis techniques. Respectively as, (a) the transfer of naive
model, (b) the transfer of control dependencies and (c) the indirect transfer of stack pointer.

stack and then through the address pointer of stack data to
access them, and finally use them to replace the tainted data
to implement the anti-taint analysis.

These three methods could effectively prevent the dis-
semination of tainted data and resist the taint analysis by
laundering tainted data.

VIII. EFFECTIVENESS EVALUATION
CoDiver could effectively blockmalicious reverse analysis by
invalidating the existing analysis knowledge.We have learned
in Section II, for VM-based obfuscation program reverse
engineering, it is indispensable to understand the seman-
tics of bytecode instructions. But in this kind of program,
semantics have been encapsulated in handlers, and it is
tedious and error-prone to extract them form handlers.
Therefore, it would save the analyst a lot of time and effort,
if the semantics of bytecode instructions could be accessed
without the need to re-trace and re-analyze the handlers.
The main goal of CoDiver is right to frustrate this attempt,
and constrain the attacker to analyze the handlers each
time. With the randomized process of the bytecode instruc-
tion semantics, the same instruction may represent different
instances of obfuscation. Even in the same obfuscation pro-
gram, with applying different encoding schemes to different
partitions of the bytecode program, the result may still dif-
ferent, which could confuse the analysts and increase their
workload largely.

As assuming the number of virtual instructions,
handlers, isH , then in two different obfuscated programs,
the probability of a bytecode instruction has the same seman-
tics is 1

H . The total shuffling time of opcodes is H !. As in
an obfuscation program, we assume the partition number of
it is N , the probability of a bytecode instruction in different

partition having the same semantic is
(

1
H

)N−1
. So we believe

that CoDiver could invalidate the analysis knowledge of
bytecode instruction semantics effectively.

The average frequency of each opcode been used in the
benchmark is also calculated. We use the obfuscation pro-
grams to represent different partition numbers like 2, 8,
and 32 for comparison. As shown in figure 8, with the
increase of the partition number, the frequency of different
opcodes become more similar. In contrast, when the number

FIGURE 8. The average frequency of using an opcode during execution.
The graph displays opcode ID on the horizontal axis and the frequency
(normalized between 0 and 1) of each opcode to be used on the vertical
axis.

of partitions is very small, it is easy to see that the most
common instruction ‘‘load r’’ has the highest frequency.
In order to evaluate ourmethod’s spatial and temporal over-

head, we implemented a prototype of CoDiver on the Win-
dows platform to obfuscates x86 PE executable programs.
In implementation, we designed 148 virtual instructions and
the corresponding handlers. All experiments were per-
formed on a Dell Optiplex 960h using Intel R©CoreTM 2 Duo
Processor E8400 at 3.00 GHz with 4.00 GB of RAM. The
operating system was Windows 7 Enterprise.

We use CoDiver to protect four x86 PE executable pro-
grams, as md5,3 gzip,4 bcrypt,5 mat_mul.6 We use the
first three programs to process a 10KB text file (test.txt),
and use mat mul to calculate the product of two 5×5 matri-
ces. The statistics of these executables are shown in table 6.
We select a key piece of code from each program to protect.
This protection process will be performed for 10 times, during
each execution we specifying a number (from 1 to 10) as the
parameter of partitions.

Figure 9 shows the change of code size under the action
of the obfuscated program. The graph displays the number
of partitions that been used in the obfuscated method on the

3MD5. http://www.fourmilab.ch/md5/.
4gzip. http://www.gzip.org/#sources.
5Bcrypt - Blowfish file encryption. http://sourceforge.net/projects/bcrypt/.
6Matrix Multiply. https://github.com/MartinThoma/matrix-

multiplication.
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TABLE 6. Statistics of the target programs.

FIGURE 9. The impact of CoDiver on code size (KB). The file size slightly
increased with the increase of number of partitions.

horizontal axis, and the number ‘‘0’’ for the original program.
While the number of partitions increases, so does the number
of bytes in the final program, and these increments are mainly
come from the increase of HATs and HAS. However, for
the size of the HAT is just 592 bytes, so it grows slowly.
Also, the PE executable file is aligned to a value (4096 or
512 usually) [31], so the final size of the program is mainly
determined by the number of HAS, which increases regularly
with the grows of the partition number.

To estimate the runtime overhead of CoDiver, we will
run the obfuscated programs multiple times and then take
the average of the execution times, the results are shown
in figure 10. Amongst these, the execution time of bcrypt
increases by the most than original program.7 For the key
instructions in bcrypt is frequently executed than others
(as shown in the bottom row of the table 6). In addition, execu-
tion time does not change much with the increase of partition
number. In section VII-D, we can see that the addition of each
one part, the obfuscated program only needs to execute one

7The execution time of the original program is specified by ‘‘0’’ on the
horizontal axis.

FIGURE 10. The impact of CoDiver on runtime performance (µs) with
different partitions.

more handler to interpret the switch HAT instruction.
The resulting runtime overhead could be negligible.

We estimate the average runtime overhead of each dynam-
ically executed instruction. Tob is used to represent the exe-
cution time of a obfuscated program, To for the execution
time of the original program, and Ce for the number of
key instructions executed dynamically. Calculate the average
runtime overhead for each dynamically executed instruction
according to

(Tob − To)/Ce.

Figure 11 shows the results.We can see thatmd5 has the high-
est average runtime overhead. This is because the key code of
md5 contains many arithmetical and logical instructions, so it
tends to take longer to interpret.

FIGURE 11. The average runtime overhead per dynamically executed
critical instruction.

Finally, we compare CoDiver with two commercial
code virtualization protection systems, VMProtect [9] and
Themida [10]. We select some instructions from the previous
four test cases, using CoDiver, VMProtect, and Themida
to protect them respectively. Next, the size and average
execution time of these protected programs are compared.
Figure 12 shows the effects of these three virtualization pro-
tection systems on the file sizes of these four test programs.

FIGURE 12. The comparison of impact on file size (KB) and runtime
performance (µs) with VMProtect and Themida.
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CoDiver and VMProtect are comparable in file size and less
than Themida. This result is related to the design of the virtual
instructions and handlers. The runtime overheads of all
systems are shown in figure 12. Overall, the costs of these
three protection systems are similar. In particular, the runtime
overhead of Themida protecting bcrypt is much greater
than the other target programs. This result may be related
to Themida’s design and the number of key instructions exe-
cuted in bcrypt. From the above comparison, we can see
that CoDiver and VMProtect are similar in time and space
overhead, and both of them are better than Themida.

IX. RELATED WORK
In recent years, people have proposed the code deobfus-
cation technique. Yadegari et al. [25] proposed a method
to identify the instructions related to system calls, and
extract the approximate dynamic tracking of the original
code automatically. Tang et al. [26] proposed a method to
track the flow of input values and then simplify the logic
of the instructions by semantic preserving code transfor-
mation. However, these methods can only extract certain
execution characteristics of the target program, but can not
completely restore the structure of the original code. Or they
need taint analysis to track and analyze the data flow, which
may be hindered by enforcing dataflow obfuscation to the
handling procedures [20]. These methods are more or less
limited.

CoDiver adopts ISR (Instruction Set Randomization) tech-
nology to generate random and unique virtual instruction
sets. ISR has been widely used to prevent code injection
attack by randomizing the underlying system instructions
[17], [32], [33]. In our approach, using a set of random keys to
encrypt the instructions, and then decrypt them before being
executed by the CPU. ISR is effective to protect the system
against code injection attack, but cannot prevent reverse engi-
neering attack. In our attack model, software programs are
executed in a malicious host environment, and attackers can
trace and record the decryption instructions for later analysis.
When generating random virtual instruction sets, CoDiver
adopts a method similar to ISR, by changing the relation-
ship between the opcodes and the virtual instructions [17],
but it never ‘‘decrypts’’ the virtual instructions back to the
original instructions. Instead, CoDiver uses handlers to
interpret the virtual instructions, and the handlers of vir-
tual instructions are more complex than their corresponding
native instructions. Besides, CoDiver uses multiple partitions
in a single program and has different ISRs, making reverse
analyses more tedious and difficult.

X. CONCLUSION
This paper present CoDiver, a code obfuscation scheme
base on the virtual machine. CoDiver is designed to pre-
vent attacks by reverse engineering the code base on the
knowledge obtained from analyzing the programs that been
protected by the same code obfuscation technique. The
core of CoDiver lies in a novel strategy to diversify the

obfuscating process. To achieve this goal, we first divide
the protected code area into different partitions. Then the
opcode of each virtual instruction in each partition is ran-
domly mapped to different bytecode handlers. Therefore,
the mapping between virtual instruction and native code is
different in different code partition. This makes the pro-
gram behavior unpredictable and makes it harder to reuse
the knowledge obtained from analyzing other programs to
attack the target application. We evaluated our approach
on real-world applications and compared it to the most
advanced VM-based code protection tools. Experimental
results show that CoDiver provides stronger protection with
comparable overhead.
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