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Graphical abstract

Highlights

● Progress is being made on providing automated model building and validation
tools for structural glycobiology

● Electron cryo-microscopy (cryo-EM) can now be routinely used for resolving 
protein glycosylation

● High-resolution cryo-EM structures show fewer pyranose high-energy 
conformations than X-ray ones 

● Re-refinement with the latest methods can produce better structures of 
glycoproteins automatically



Abstract

The methodology underpinning the construction, refinement, validation and analysis 

of atomic models of glycoproteins and protein-carbohydrate complexes has received 

a long-overdue boost in the last five years. This is a very timely development, as the 

resolution revolution in electron cryo-microscopy is now routinely delivering 

structures of key glycomedical importance, with a three-dimensional precision where 

X-ray crystallographic methods have traditionally floundered. This review will focus 

on the new software developments that have been introduced in the past two years, 

and their impact on the field of structural glycobiology in terms of published 

structures. 

Introduction

Protein glycosylation plays a crucial role in recognition processes in e.g. viral 

infection, cancer, fertilisation, immunity and inflammation [1]. In this role, glycans are 

expected to provide stabilising contacts within the buried surface of a glycoprotein, 

while additionally playing a role as interaction partners on the surface, via hydrogen 

bonds or CH-π interactions. As independent entities, carbohydrates also have 

promising biotechnological applications, being a staple in the production of more 

eco-friendly second-generation biofuels from previously untractable crop waste. 

Assisting in this task, carbohydrate-active enzymes recognise, transfer and cut 

saccharide building blocks, often distorting individual rings to achieve catalysis. 

Complicated stereochemistry, branching and unpredictable sequence/structure make

protein glycosylation in particular harder to work with than pure protein, or even 

nucleic acid. Perhaps unsurprisingly, the software for handling structures of 

carbohydrate moieties is not yet as featureful as that for other biomolecules. This 

gap in capabilities becomes evident in both macromolecular crystallography (MX) 

and electron cryo-microscopy (cryo-EM) whenever the model fitting problem deviates

from standard propositions. Indeed, at high-resolution it is possible to identify a 

monosaccharide and ascertain its ring conformation (Figure 1A) – to date, this has 



only been possible with X-ray crystallography. Nevertheless, we fully expect cryo-EM

to reach this level of precision in the near future. As resolution decreases, it 

becomes increasingly difficult to determine its ring conformation - thus requiring 

additional restraints for idealising ring puckering (Figure 1B-F) [2]. Finally, at low 

resolution, usually neither the monosaccharide nor its conformation can be identified 

(Figure 1C-F). It is in this particular case where the articulation of prior glyco-

chemical knowledge must cross boundaries from the realm of validation, and play a 

central role in the structure building process: lowest energy ring conformations, a 

constant in pyranosides except in rare cases (catalysis is one of them), can be 

enforced using unimodal torsion restraints; the most probable linkage types, which 

should match the expression system's available glycosyltransferases, can be 

modelled using automated tools (vide infra); low energy glycosidic linkage 

orientations can be encouraged by using information from homologous structures via

external restraints. As with protein methodology, whatever prior information is useful 

for validation at high resolution – e.g. the Ramachandran criterion – can be turned 

into restraints for refinement at low resolution – e.g. Ramachandran restraints. In 

becoming a target for refinement, validation metrics lose independence; yet as part 

of a balance between experimental and geometric terms, they are still useful as 

validation criteria – e.g. ideal bond lengths and angles are also used both as 

restraints in refinement, and as a measure of distortion particularly for ligands. It is 

ultimately the structural biologist's choice whether they want to produce the best 

possible structure, or have a measure of how correct it is. 

Experimentally, it is clear that the mobility of the glycans poses a problem for both 

MX and cryo-EM, with Nuclear Magnetic Resonance (NMR) providing much of the 

insight into protein-carbohydrate interactions due to the degrading resolvability of the

sugars down the glycans’ branches [3] typically found with the two former 

techniques. On the other hand, most of the challenges present in software spring 

from the particularities of carbohydrate chemistry. Upon cyclisation, there are two 

choices for the orientation of the anomeric hydroxy group, which leads to two 

anomeric forms – alpha or beta (refer to [4] for a graphical description). Most D-

sugar pyranoses adopt the 4C1 conformation, while most L-sugar pyranoses adopt 

the 1C4 conformation. Interconversion of pyranose rings between different 

conformations requires an itinerary, which can be described using the Cremer-Pople 



sphere [5]. The two chair conformations, 4C1 and 1C4 are optimal because of the 60/-

60 degree torsion angle between substituents, leaving them staggered instead of 

eclipsed. Conversion from 4C1 to 1C4 and vice versa requires jumping over a very 

high energy barrier, and normally would involve catalysis, which can be achieved 

with the help of a carbohydrate active enzyme [4,6].

Carbohydrate residue nomenclature is challenging for several reasons, including the 

two different types of glycosidic linkages (alpha or beta), branching and ring 

contortions. Lutteke et al., 2004 [7] first reported that about 30% of the deposited 

carbohydrate structures contain one or more nomenclature errors, a finding that 

gave rise to carbohydrate validation software, recently reviewed in [8,9]. A few years 

later, Crispin et al. also criticised the lack of methodological support for 

carbohydrates, singling out a deposited structure with a glycosidic linkage for which 

there were no available glycosyltransferases along its biosynthetic pathway [10,11]. 

More recently, Agirre et al. [2] performed an analysis on all N-glycan forming D-

pyranosides found in the PDB using the Privateer software (CCP4 suite [12]): as 

data resolution decreases, more and more sugar monomers appear in high-energy 

conformations and/or have low real-space correlation. This indicated the need for 

using appropriate restraints during refinement.

In this review, we shall go through the latest software developments and their 

application to solving real-world structures, placing an emphasis on their impact on 

the recent evolution of electron cryo-microscopy into an all-around player in the 

structural glycobiology field. Aside from the growing access to automated, integrative

model building and validation tools, a number of online support resources are 

available to the structural glycobiologist too: see [13,14] for a review of online 

resources, and Perez and De Sanctis [15] for a recent summary of the resources 

and techniques available where a synchrotron light source is available. 

Dictionaries: the book of chemical knowledge

The model building process involves macromolecular refinement programs deriving 

geometric restraints from libraries of dictionaries, at least for most commonly 



occurring monomers. Dictionaries are used to store prior chemical knowledge about 

compounds, including their composition, connectivity and stereochemistry. The 

CCP4 Monomer Library, one of the first examples of its kind, was based on the 

geometry proposed by Engh and Huber [16], which is now outdated particularly 

concerning sugars [4]. If a chemical compound does not have a library entry, or if it is

incorrect, a new one needs to be generated. There are several programs that can be

used for this, with irregular results for carbohydrates [4]. The CCP4 program 

ACEDRG [17,18] works by mining databases such as the Crystallography Open 

Database (COD) [18] to generate dictionaries from the data available there. It then 

uses RDKit (open source chemoinformatics; http://www.rdkit.org) to generate 

conformers which are ranked by free energy, and the minimal-energy one is chosen. 

ACEDRG/COD produces similar results to GRADE (Global Phasing Ltd.) and 

Phenix.eLBOW [19], which derive their restraints from Mogul [20], a tool that in turn 

mines the Cambridge Structural Database (CSD). Mogul is currently in use for 

geometry validation upon deposition with the Protein Data Bank, meaning that the 

use of old dictionaries during refinement with tight geometry targets – e.g. when 

refining against a cryo-EM map – can produce a disproportionate number of bond 

length and angle outliers. A modernisation effort is currently underway in CCP4, with 

hundreds of carbohydrate entries being marked for update through the combination 

of ACEDRG and Privateer [21]. The new dictionaries have an expected release date 

of 2020. 

Model building

The improved N-glycosylation building module for Coot

Coot [22] has a carbohydrate-building tool [23] – earlier version reviewed in [9] – that

can be used to build N-glycosylation into both crystallographic and cryo-EM maps. 

The module has three modes: manual, semi-automated and automated. The manual

mode allows the user to choose a monosaccharide and a bond type from a selection 

of commonly available glycoforms. Coot chooses the best position, orientation and 

conformation for the selected monosaccharide, and refines the structure. In the 

semi-automated mode the user selects a glycan type and Coot returns possible 



options for the monosaccharide and the glycosidic bond. The automated mode 

requires the user to simply choose the starting point and the glycosylation tree type, 

and Coot builds it automatically, interrupting the process when no more sugars can 

be built into clear density. An overview of results is presented in Figure 2 (adapted 

with permission from IUCr Journals). The tool has received positive adoption by the 

community, as evidenced by its use on several high-profile X-ray and cryo-EM 

structures with abundant protein N-glycosylation [24–27].

Its main limitation is the relatively narrow selection of glycoforms available. This is 

clearly a design decision rather than an oversight, as these represent the most 

common forms that can usually be resolved experimentally. Moreover, Coot does not

include temperature-factor refinement, as all atoms are set to a fixed value. The 

authors suggested integrating the model-free B-factor refinement procedure 

described by Cowtan and Agirre [28] as an improvement. 

PDB-REDO: Carbivore and carbonanza

Van Beusekom et al. [29] presented a set of tools that build on the Coot N-

glycosylation building module to achieve a more automated behaviour; indeed, the 

software is meant to be part of their PDB-REDO [30] rebuilding and re-refinement 

pipeline. The first tool they presented is Carbivore, which can be used to rebuild and 

extend existing N-glycosylation trees automatically, or add new trees where they are 

missing. For the case glycosylation was not detected due to C1 not facing the 

asparagine side-chain, the authors introduced another program, named Carbonanza,

to generate link records. The whole-tree addition method of Coot was extended to 

allow for building partial trees, i.e. extending existing trees. Moreover, a feature that 

finds N-glycosylation sites based on the consensus sequence Asn-X-Ser/Thr was 

implemented in Carbivore. In addition, an option for finding N-glycosylation sites 

based on homologous models was also presented, however this is not used by 

default as the search is likely to be slow.



ISOLDE 
The ISOLDE plugin [31] for ChimeraX [32] offers a refreshing way of dealing with 

protein glycosylation, and supports both electron cryo-microscopy and X-ray 

crystallographic data. The graphical frontend connects to an interactive, GPU-

accelerated molecular mechanics simulation, updating the model – and electron 

density maps, if working on crystallographic data –  based on both the user’s push-

pull movements and the results of running the simulation on the updated 

coordinates. Technology-wise, this new tool makes use of the OpenMM toolkit [33] 

for simulations, and the Clipper-python module [34] for electron density calculations, 

which is heavily CPU-parallelised – using C++11-style threads – in the latest version 

available from the ChimeraX toolshed at the time of publication. Protein glycosylation

is handled by an adapted version of the GLYCAM force field [35]. Although at 

present some unwanted effects such as ring inversions might appear as a result of 

the unrealistically high temperatures simulated by the user’s push-pull movements, it

is clear that this tool will be of great assistance when multiple overall glycan 

conformations need to be evaluated in a low resolution map; a combination with real-

time validation at both the monosaccharide and glycan levels could further inform the

fitting process and prevent errors too. The capabilities of ISOLDE are most 

effectively demonstrated in the supplementary video of [31].

Sails

Sails [36] can be used to build sugars automatically, either covalently linked to 

protein or as ligands. The software is currently in the middle of a major infrastructural

change but is slated for general release in 2020 (with, or through an update to CCP4

7.1). It uses a method similar to that of Nautilus [37] and Buccaneer [38,39], using 

fingerprint-based detection of fragments, which account for both the target and its 

environment. The correlation function behind Sails has been proven to work with 

electron cryo-microscopy data, although adjustments may be needed if e.g. the scale

of the EM map is not accurate or different map sharpening or blurring is required. 

Privateer and Refmac will be integrated with Sails in a pipeline for iterative building, 

refinement and validation.



Refinement and validation

Privateer

Privateer [21] is a carbohydrate-specific validation tool that can determine ring 

conformation of furanose and pyranose rings, anomeric form, absolute 

stereochemistry, real space correlation between model and omit density. In addition, 

Privateer generates other output such as SVG glycan diagrams in the Symbol 

Nomenclature For Glycans (SNFG) notation, and scripts for both Refmac5 [40] and 

Coot [22]. Like Sails, it is undergoing a change in infrastructure in order to future-

proof its architecture. 

Among the different checks that Privateer will do on carbohydrate models, a 

comparison of ring conformation and the ideal, minimal-energy conformation for 

each monosaccharide provides the fastest and most useful indication of potential 

mistakes in modelling and/or refinement: at high resolution, unjustified high-energy 

conformations - those without support of clear electron density - can reveal problems

in the glycosidic bond (wrong anomer used, for instance) or wrong restraints (e.g. 

inverted chiralities). At low resolution, the problem can appear if the model is allowed

to deviate from the ideal geometry due to providing insufficient restraints during 

refinement. Privateer generates dictionaries containing unimodal restraints upon 

detecting unjustified high-energy conformations. The validation and re-refinement 

process via these dictionaries is now completely automated via the CCP4i2 interface

[41]. These developments were spearheaded after it was revealed that the PDB 

contained an unrealistically high number of non-chairs as part of N-glycosylation [2]. 

Many newer cryo-EM structures of glycoproteins are in the 2 Å to 6 Å resolution 

range due to improvement in electron sources, detectors, and image processing and 

3D reconstruction algorithms. But the software for structure solution and validation 

have also improved, and perhaps as a result of that, high-resolution cryo-EM 

structures display fewer sugars in high-energy conformations than crystallographic 

ones. To illustrate this point, Privateer was run on all N-glycosylated structures in the

PDB, solved with X-ray crystallography and cryo-EM. The decoupled results are 

shown in Figure 3. D-sugars are shown in blue, L-sugars are shown in yellow. 



Ideally, in the particular case of N-glycosylation all D-sugars should be in 4C1 

conformation, and all L-sugars in 1C4 conformation. 

As previously highlighted elsewhere [4], pyranose higher-energy conformations are 

even more unusual than Ramachandran outliers, and should be reported alongside 

them in the refinement summary table.

Phenix, Rosetta and AMBER

Phenix uses a conformation-dependent library of restraints for the protein backbone 

[42] and homology refinement [43] for protein modeling. Rosetta can be used for 

carbohydrate refinement of both X-ray and cryo-EM structures using 

parameterisation derived from X-ray structures to approximate conformational 

energy [44]. Frenz et al., [45] developed a protocol that can use either low-resolution 

crystallographic data, through Phenix-Rosetta integration [46] or cryo-EM data. 

The RosettaCarbohydrate framework includes torsion-space refinement for glycans, 

which assumes ideal bond lengths and angles [47]. Frenz et al., [45] build on 

previous work by expanding Rosetta’s geometry term to include bond geometry 

deviations. These were derived from Phenix using eLBOW with AM1 optimization 

and added to the Rosetta database. Currently the sugar monomers included are 

alpha and beta glucose, N-acetyl glucosamine, alpha and beta mannose, and alpha 

and beta fucose.

The authors recommend using Privateer [21] before and after refinement to detect 

errors in the structure. For refinement of crystallography data, Rosetta’s integration 

with Phenix can be used [48]. The protocols were modified to account for glycans, 

including steps for minimisation, increasing repulsive weights, and idealisation of 

anomeric hydrogens.

Phenix also offers integration with the AMBER molecular mechanics package, which 

is known for calculating torsion potentials accurately [49]. 



A word on legacy validation tools

While the tools outlined in this section are now sadly unsupported, it is worth 

mentioning them not just for the sake of completeness, but because there is no 

substitute tool yet for some of the key functions they provide. PDB-CARE (PDB 

CArbohydrate REsidue check; [50,51]) is a tool that can be used for bond and 

nomenclature validation. It is based on pdb2linucs, which is a software for 

carbohydrate detection based on atom types and their coordinates. The LINUCS 

notation [52] is used to normalise carbohydrate structures. This is done by 

comparing the carbohydrate structures’ LINUCS notation to the PDB HET Group 

Dictionary, which contains sugar residues present in the coordinate file [50]. If a 

structure contains multiple anomers due to mutarotation at the reducing end of a 

saccharide, both forms need to have the correct PDB three-letter codes.

CARP (CArbohydrate Ramachandran Plot) is a tool that can be used to evaluate 

glycosidic linkage torsions. CARP also uses the pdb2linucs algorithm to analyse 

data, and compares it to data in GlyTorsionDB or GlycoMapsDB (for less common 

linkages). For each pair of monosaccharides and linkage combination, a separate 

torsional plot is created [7]. While these tools have been used mainly for validation 

purposes, they are a nice complement when examining the different linkage 

conformations in disaccharides [53].

Representation

While all-atom representations are the way to go for showing the interactions 

between protein and carbohydrate ligands, there is a case for using a simplified 

representation for glycans taking part in protein glycosylation; indeed, the sheer 

number of potential interactions occurring due to the size of the glycans – in optimal 

cases, 9 or more linked monosaccharides could be visible – and the particular 

relevance of their composition make all-atom figures difficult or near-impossible to 

follow. McNicholas and Agirre [54] introduced a representation (Glycoblocks for 

CCP4mg [55]) that, building on a 3D extension of the now standard Symbol 

Nomenclature For Glycans (SNFG) [6,56], added minimalistic dashed lines for 



hydrogen bonds and CH-π interactions. 

Not focusing on interactions, many 3D SNFG representations exist now either as 

plugins or as an integral part of wider-purpose graphics software, e.g. VMD [57], 

LiteMol [58], and UCSF Chimera [59] via the Tangram plugin [60]. These provide 

stand-out depictions of protein glycosylation using big regular polyhedra. A side-by-

side comparison is shown in Figure 4. Finally, other software such as SweetUnityMol

[61] and Pymol [62] combine the familiar colouring scheme with a more atomistic 

representation.

Future perspectives

It appears the gears are finally turning in the methodological machine towards 

implementing better support for carbohydrates. However, software still require expert

knowledge of carbohydrate structure or very high resolution to work automatically. 

Work is currently being done on the Sails program to be able to overcome many of 

these limitations. In addition, based on encouraging early results [63–66], new 

carbohydrate dictionaries with more faithful model geometry and accurate torsion 

restraints will improve refinement, particularly for cryo-EM. Finally, sugars in active 

sites of enzymes might be distorted into high energy conformations, and thus may 

require further validation; work will need to be done in this respect in order to give 

users a confidence level on their conformational assignment. 

We should like to emphasise that model building, refinement and validation will need 

to be further integrated together for maximum benefit of users. Recently, Van 

Beusekom, Lutteke and Joosten [8] used a set of tools, including PDB-REDO [30], 

Privateer [21] and CARP [51] to analyse 8,114 glycoproteins from the PDB. They 

succeeded in correctly re-annotating 3,620 carbohydrate residues, which were then 

re-refined and are now available for the community to use. Incorporating prior glyco-

chemical knowledge into the structure solution process will, as exemplified by the 

aforementioned authors, extend the limits of resolvability further down our glycans.
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Figures

Figure 1. Comparison of N-glycan features in electron density maps over a range of 

resolutions. A-C: electron density maps obtained with X-Ray crystallography (MX). 

D-F: electronic potential maps obtained with cryo-EM; PDB codes and data 

resolution have been annotated directly on the figure. In the MX cases (A-C), at high 

resolution it is possible to identify monosaccharides and their ring conformation from 

the density map; at medium resolution, ring conformation becomes difficult to 

determine, whereas at low resolution, and indeed with many cryo-EM maps (D-F), a 

modelled N-glycan should always be backed by prior glyco-chemical knowledge: 

lowest energy ring conformations, most probable linkage types considering the 

expression system's available glycosyltransferases, and low energy glycosidic 

linkage orientations. 



Figure 2. Results from a test of the N-glycosylation building tool in Coot [23]. The 

diagrams in SNFG format show the expected glycoforms and the subsets Coot was 

able to build automatically, while the third row of pictures shows how the maps 

looked like in each example. Reproduced from [23] with permission of the 

International Union of Crystallography.



Figure 3. Pyranose ring conformations vs resolution for all sugars part of N-linked 

glycoproteins solved with (A) X-ray crystallography or (B) electron cryo-microscopy 

in the PDB by April 2019. E/H: Envelopes and Half-chairs, B/S: Boats and Skew-

boats. Wavy lines denote the main ring plane. For reasons of clarity, half-chair, 

skew-boat and envelope were omitted from the axes at θ=45°, θ=90° and θ=135° 

respectively. Percentage of sugars in non-chair conformations is shown for 

resolution ranges 0.0-6.0 Å and 6.01-10.0 Å.



Figure 4. 3D SNFG glycan representation comparison of PDB code 4BYH in 

selected software: (A) CCP4mg [53] with Glycoblocks[54], (B) VMD [56] and (C) 

LiteMol [57]. 
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