
This is a repository copy of Efficient and Secure Delegation of Exponentiation in General 
Groups to a Single Malicious Server.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/156738/

Version: Accepted Version

Article:

Kahrobaei, Delaram orcid.org/0000-0001-5467-7832 (2020) Efficient and Secure 
Delegation of Exponentiation in General Groups to a Single Malicious Server. Mathematics
in Computer Science. 

https://doi.org/10.1007/s11786-020-00462-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Efficient and Secure Delegation of Exponentiation in

General Groups to a Single Malicious Server

Giovanni Di Crescenzo, Matluba Khodjaeva, Delaram Kahrobaei and Vladimir

Shpilrain

Abstract. Group exponentiation is an important and relatively expensive operation used in many

public-key cryptosystems and, more generally, cryptographic protocols. To expand the applicability

of these solutions to computationally weaker devices, it has been advocated that this operation is

delegated from a computationally weaker client to a computationally stronger server. Solving this

problem in the case of a single, possibly malicious, server, has remained open since the introduction

of a formal model. In previous work we have proposed practical and secure solutions applicable to

two classes of specific groups, related to well-known cryptosystems. In this paper, we investigate

this problem in a general class of multiplicative groups, possibly going beyond groups currently

subject to quantum cryptanalysis attacks. Our main results are efficient delegation protocols for

exponentiation in these general groups. The main technique in our results is a reduction of the

protocol’s security probability (i.e., the probability that a malicious server convinces a client of

an incorrect exponentiation output) that is more efficient than by standard parallel repetition. The

resulting protocols satisfy natural requirements such as correctness, security, privacy and efficiency,

even if the adversary uses the full power of quantum computers. In particular, in our protocols the

client performs a number of online group multiplications smaller by 1 to 2 orders of magnitude

than in a non-delegated computation.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary 00A00.

Keywords. Secure Outsourcing, Secure Delegating, Group Exponentiation, Cryptography, Group

Theory.

1. Introduction

In emerging applications related to Cloud Computing and the Internet of Things, including RFID

networks, interest is growing on deploying cryptography solutions onto computationally weaker

devices. To achieve that goal, it has been advocated that the most expensive cryptographic operations

are delegated from a computationally weaker client to a computationally stronger server. Group

exponentiation is an important operation and among the most expensive ones used in many public-

key cryptosystems and, more generally, cryptographic protocols. Many studies have already been

performed towards various types of delegation of group exponentiation, but almost exclusively in

the case of abelian groups; specifically, groups related to discrete logarithm or factoring problems

(see, e.g., [30, 24, 21, 19] and references therein).

As progress is being made towards building a large-scale quantum computer [39], much atten-

tion is being devoted in the cryptography community to early quantum computer algorithms such

as Shor’s [37], capable of solving in quantum polynomial time both the discrete logarithm and the
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factoring problem. More specifically, the problem at the heart of Shor’s algorithms, also known as

the hidden subgroup problem, can be solved in quantum polynomial time over any finite abelian

group, but currently seems much harder over non-abelian groups [31]. Therefore, the study of cryp-

tographic solutions over non-abelian, or just general, groups is an appealing research direction within

quantum-resistant cryptography (see, e.g., [28, 2, 29] and references therein).

In this paper we consider the problem of a client delegating to a server the exponentiation

function over a large class of general multiplicative groups, not limited to abelian groups and thus

going beyond groups currently subject to quantum cryptanalysis attacks. We target solutions that

satisfy natural requirements of correctness (i.e., if client and server follow the protocol, then at the

end of the protocol execution, the client’s output is the desired exponentiation), security (i.e., if the

client follows the protocol, no malicious adversary corrupting the server can convince the client

of an incorrect exponentiation, except with small probability), privacy (i.e., if the client follows the

protocol, no malicious adversary corrupting the server can obtain some information about the client’s

input exponent), and efficiency (most notably, the client’s runtime in the online phase is smaller than

in a non-delegated computation of the exponentiation).

Related Work. Secure delegation of computation can be seen as a successor of previous research

areas such as computational program checking and testing (see, e.g., [8, 9, 1]). Early research in

secure delegation include [4], which studied delegation of scientific computations and [30], which

presented the first formal security definition of secure delegation of computation. In particular, this

latter paper considered the delegation of exponentiation over a specific cyclic group in the presence

of two servers of which one was untrusted and of a single server almost always returning a correct

computation. Several papers have been published in this area since then. We can classify all secure

(single-server) delegation protocols we are aware of in 3 main classes, depending on whether they

delegate (a) exponentiation in a specific group; (b) other specific operations (e.g., linear algebra

operations, group inverses, elliptic curve pairings); and (c) an arbitrary polynomial-time computable

function.

With respect to (a), protocols were proposed for a single exponentiation in specific groups re-

lated to discrete logarithm or factoring problems (see, e.g., [30, 13, 19, 20] and references therein).

These protocols delegate exponentiation in settings where the client is assumed to be powerful

enough to run a not-too-large number of group multiplications, but not powerful enough to eval-

uate the delegated exponentiation function (unless in an offline phase, before the exponentiation

input is known). There are also many protocols in the literature for delegating a single exponentia-

tion, not targeting or achieving all of our requirements (see, e.g., [21, 33, 38, 14]). Almost all of these

solutions can improve the client efficiency also in the offline phase, under a pseudo-random powers

generation assumption, in turn based on the hidden-subset-sum hardness assumption [10, 35], or a

the (stronger) subset sum hardness assumption. We note that these assumptions need to be reeval-

uated in light of more recent results. In [18] we proposed batch delegation of exponentiation for

specific discrete logarithm and RSA groups from batch verification, leveraging the small exponent

test introduced and studied by [6] over prime-order groups.

With respect to (b), a number of protocols for delegating linear algebra operations and/or scien-

tific computation were proposed (see, e.g., [34, 4, 7, 5, 23]). These protocols delegate various linear

algebra operations in settings where the client is assumed to be powerful enough to run some other

linear algebra operations of lower time complexity, but not powerful enough to evaluate the dele-

gated linear algebra function. Efficient and secure delegation of group inverses for a general group,

from a client powerful enough to run group multiplication, was presented in [12]. The delegation of

the computation of elliptic curve pairings also has received much attention (see, e.g., [26, 15, 11]). In

these protocols bilinear pairings are delegated by a client that only performs group exponentiations

and/or multiplications, but in all of these protocols the delegation has been experimentally evaluated

to be more costly or only slightly less costly than computing a pairing without delegation.
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With respect to (c), in [24] the authors proposed a protocol using garbled circuits (see [40]) and

fully homomorphic encryption [25]. This protocol delegates functions in settings where the client is

powerful enough to run encryption and decryption algorithms of a fully homomorphic encryption

scheme, but not powerful enough to homomorphically evaluate a circuit that computes decryption

steps in the garbling scheme for the function. Different protocols, not using garbled circuits, were

later proposed in [16]. These protocols delegate functions in settings where the client is assumed to

be powerful enough to run encryption and decryption algorithms of a fully homomorphic encryption

scheme, but not enough to homomorphically evaluate the delegated function.

Our Contributions. We show a number of interactive protocols allowing a client to securely dele-

gate exponentiation in a general class of groups to a single, possibly malicious, server. Our protocols

mainly target the delegation of function FG,exp,k(x) = xk (i.e., fixed-exponent, variable-base ex-

ponentiation over multiplicative group G), but we also reformulate then so to delegate function

FG,exp,g(x) = gx (i.e., variable-exponent, fixed-base exponentiation).

Our first protocol, in Section 3.1, consists of a direct parallel repetition of (a slightly simplified

version of) a protocol from [12] that achieves security probability 1/2. Our main result, in Sec-

tion 3.2, is a class of protocols where the security probability is reduced more efficiently than by

direct parallel repetition. Their privacy and security properties are satisfied even if the adversary cor-

rupting the server is not limited to run in (classical or quantum) polynomial time, and they achieve

an efficiency tradeoff, in that they improve the client’s runtime during the online protocol phase,

while increasing the server’s runtime and requiring offline computations returning data to be stored

on the client’s device. Our theoretical analysis, only considering group exponentiations and multipli-

cations, and neglecting simpler operations such as equality checks and random element generations,

suggests that our first (resp., second) protocol reduces the client’s online runtime by 1 (resp., 1 to

2) orders of magnitude with respect to the textbook exponentiation algorithm, while increasing the

server runtime and the protocol communication complexity by 2 (resp., 1) orders of magnitude and

the offline client runtime between a constant and 1 order of magnitude.

In Section 3.3 we adapt these protocols so to delegate variable-exponent fixed-base exponen-

tiation. The resulting protocols have similar efficiency properties, with a slight improvement on the

client’s online runtime, which can be about 2 orders of magnitude less than in the textbook exponen-

tiation algorithm, according to our theoretical analysis.

Finally, in Section 3.4, we present our software implementation, in Python 3.6, using commod-

ity computing resources and the gmpy2 package, which confirms that both our protocols improve the

client’s online runtime with respect to the exponentiation algorithm available in the same package.

As in all previous work in the area, we consider a model with an offline phase, where a trusted party

can precompute exponentiations, and store them on the client’s device to be later used in the online

phase, when the client becomes aware of the input to the exponentiation function.

2. Models and Definitions

In this section we formally define delegation protocols, and their correctness, security, privacy and

efficiency requirements, building on the definitional approach from [12] (also based on [24], [30]),

and describe group notations and protocol preliminaries.

Basic notations. The expression y ← T denotes the probabilistic process of randomly and indepen-

dently choosing y from set T . The expression y ← A(x1, x2, . . .) denotes the (possibly probabilistic)

process of running algorithm A on input x1, x2, . . . and any necessary random coins, and obtaining

y as output. The expression (zA, zB)← (A(x1, x2, . . .), B(y1, y2, . . .)) denotes the (possibly prob-

abilistic) process of running an interactive protocol between A, taking as input x1, x2, . . . and any

necessary random coins, and B, taking as input y1, y2, . . . and any necessary random coins, where

zA, zB are A and B’s final outputs, respectively, at the end of this protocol’s execution.
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System scenario, entities, and protocol. We consider a system with two types of parties: clients

and servers, where a client’s computational resources are expected to be more limited than those of

a server, and therefore clients are interested in delegating the computation of specific functions to

servers. In all our solutions, we consider a single client, denoted as C, and a single server, denoted as

S. We assume that the communication link between each client and S is authenticated or not subject

to integrity or replay attacks, and note that such attacks can be separately addressed using known

techniques in cryptography and security. As in all previous work in the area, we consider a model

with an offline phase, where for instance exponentiations to random exponents can be precomputed

and made somehow available to the client. This model has been justified in several ways, all moti-

vated by different application settings. In the presence of a trusted party (say, setting up the client’s

device), the trusted party can simply perform the precomputed exponentiations and store them on

the client’s device. If no trusted party is available, in the presence of a pre-processing phase where

the client’s device may not have significant computation constraints, the client can itself perform the

precomputed exponentiations and store them on its own device. For simplicity of description, we

will consider a generic Offline algorithm keeping in mind that it is run by either a trusted party or a

client without significant computation constraints.

Let σ denote the computational security parameter (i.e., the parameter derived from hardness

considerations on the underlying computational problem), and let λ denote the statistical security pa-

rameter (i.e., a parameter such that evens with probability 2−λ are extremely rare). Both parameters

are expressed in unary notation (i.e., 1σ, 1λ). When performing numerical performance analysis, we

use σ = 2048 and λ = 128, as these are currently the most often recommended parameter settings

in cryptographic protocols and applications.

Let F be a function, and let desc(F ) denotes F ’s description. Assuming desc(F ) is known to

both C and S, and input x is known only to C, we define a client-server protocol for the delegated

computation of F in the presence of an offline phase as a 2-party, 2-phase, communication protocol

between C and S, denoted as (C(1σ, 1λ, desc(F ), x), S(1σ, 1λ, desc(F ))), and consisting of the

following steps:

1. pp← Offline(1σ, 1λ, desc(F )),
2. (yC , yS)← (C(1σ, 1λ, desc(F ), pp, x), S(1σ, 1λ, desc(F )).

As discussed above, Step 1 is executed in an offline phase, when the input x to the function

F is not yet available. Step 2 is executed in the online phase, when the input x to the function F
is available to C. At the end of both phases, C learns yC (intended to be = F (x)) and S learns

yS (usually an empty string in this paper). S. We will often omit desc(F ), 1σ, 1λ for brevity of

description. Executions of delegated computation protocols can happen sequentially (each execution

starting after the previous one is finished), or concurrently (S runs at the same time one execution

with each one of many clients).

Correctness. Informally speaking, the correctness requirement states that if both parties follow the

protocol, at the end of the protocol execution, C’s output y is, with high probability, equal to the

evaluation of function F on C’s input x. A formal definition follows.

Definition 2.1. Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-

server protocol for the delegated computation of F . We say that (C, S) satisfies δc-correctness if for

any x in F ’s domain, it holds that

Prob
[

out← CorrExp
F
(1σ, 1λ) : out = 1

]

≥ δc,

for some δc close to 1, where experiment CorrExp is detailed below:

CorrExp
F
(1σ, 1λ)

1. pp← Offline(desc(F ))
2. (yC , yS)← (C(pp, x), S)
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3. if yC = F (x) then return: 1

else return: 0

Security. Informally speaking, the security requirement states that if C follows the protocol, a ma-

licious adversary corrupting S and even choosing C’s input x can only convince C with a small

probability to output, at the end of the protocol, some y′ different from value F (x) or some fail-

ure symbol ⊥. We will also call this probability as the security probability, and denote it as ǫs. A

desirable value for it will be 2−λ, for some statistical security parameter λ, concretely set as, for

instance, equal to 128. A formal definition follows.

Definition 2.2. Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-

server protocol for the delegated computation of F . We say that (C, S) satisfies ǫs-security against

a malicious adversary if for any algorithm A, it holds that

Prob
[

out← SecExp
F,A(1

σ, 1λ) : out = 1
]

≤ ǫs,

for some ǫs close to 0, where experiment SecExp is detailed below:

SecExp
F,A(1

σ, 1λ)

1. pp← Offline(desc(F ))
2. (x, aux)← A(desc(F ))
3. (y′, aux)← (C(pp, x), A(aux))
4. if y′ =⊥ or y′ = F (x) then return: 0

else return: 1.

Privacy. Informally speaking, the privacy requirement states the following: if C follows the protocol,

a malicious adversary corrupting S cannot obtain any information about C’s input x from a protocol

execution. This is formalized by extending the indistinguishability-based approach typically used in

formal definitions for encryption schemes. That is, the adversary can pick two inputs x0, x1, then

one of these two inputs is chosen at random and used by C in the protocol with the adversary acting

as S, and then at the end of the protocol the adversary can only guess which input was used by C
with probability 1/2. A formal definition follows.

Definition 2.3. Let σ, λ be the security parameters, let F be a function, and let (C, S) be a client-

server protocol for the delegated computation of F . We say that (C, S) satisfies ǫp-privacy (in the

sense of indistinguishability) against a malicious adversary if for any algorithm A, it holds that

Prob
[

out← PrivExp
F,A(1

σ, 1λ) : out = 1
]

≤ ǫp,

for some ǫp close to 0, where experiment PrivExp is detailed below:

PrivExp
F,A(1

σ, 1λ)

1. pp← Offline(desc(F ))
2. (x0, x1, aux)← A(desc(F ))
3. b← {0, 1}
4. (y′, d)← (C(pp, xb), A(aux))
5. if b = d then return: 1

else return: 0.

Efficiency. We measure the efficiency of a client-server protocol (C, S) for the delegated compu-

tation of function F by the efficiency metrics (tF , tP , tC , tS , cc), meaning that F can be computed

(without delegation) using tF atomic operations, C can be run in the offline phase using tP atomic

operations and in the online phase using tC atomic operations, S can be run using tS atomic oper-

ations, and C and S exchange messages of total length at most cc. In our theoretical analysis, we

only consider the most expensive group operations as atomic operations (e.g., group multiplications
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and/or exponentiation), and neglect lower-order operations (e.g., equality testing, random element

generations, additions and subtractions over Zn-type groups). While we naturally try to minimize

all these protocol efficiency metrics, our main goal is to design protocols where tC << tF , even if

possibly resulting in tS being somewhat larger than tF and cc being somewhat larger than the length

of F ’s input and output. We note that, according to the textbook ‘square-and-multiply’ algorithm, tF
is, on average, = 1.5σ group multiplications, where σ denotes the length of the binary representation

of a group element. As a theoretical goal, we target protocols where tC is much smaller than σ group

multiplications.

Group notations. Let ℓ denote the length of the binary representation of a group’s elements. We

say that a group is efficient if its description is short (i.e., has length polynomial in ℓ), its associated

operation ∗ and the inverse operation are efficient (i.e., they can be executed in time polynomial in

ℓ). The security parameter σ and the group element length ℓ are typically set as the same value. In the

rest of the paper we study two types of exponentiation in any efficient group, depending on whether

the base or the exponent are the input to the exponentiation function.

Fixed-exponent variable-base exponentiation. Let (G, ∗) be an efficient group of order q, and let k
be an integer known to both parties, and assumed, for simplicity, less than q. Also, let y = xk denote

the fixed-exponent variable-base exponentiation (in G) of x to the k-th power; i.e., the value y ∈ G
such that x∗· · ·∗x = y, where the multiplication operation ∗ is applied k−1 times. Then we denote

by FG,exp,k : G → G the function that maps every x ∈ G to the variable-exponent fixed-base

exponentiation (in G) of x to the k-th power.

Variable-exponent fixed-base exponentiation. Let (G, ∗) be an efficient group, and let g be an element

with order q, for some large integer q known to the client, and let y = gx denote the variable-

exponent fixed-base exponentiation (in G) of g to the x-th power; i.e., the value y ∈ G such that g ∗
· · ·∗g = y, where the multiplication operation ∗ is applied x−1 times. Also, let Zq = {0, 1, . . . , q−
1} and FG,exp,g : Zq → G denote the function that maps every x ∈ Zq to the variable-exponent

fixed-base exponentiation (in G) of g to the x-th power.

Protocol preliminaries. In all our protocols, inputs commons to client and server include a descrip-

tion of the group, the exponentiation function to be delegated, a computational parameter 1σ and

a security parameter 1λ. The input to the exponentiation function will be known to the client only.

Our main protocol descriptions will be for the fixed-exponent variable-base exponentiation function

FG,exp,k and therefore k will also be known to both client and server. When we describe our proto-

cols for the variable-exponent fixed-base exponentiation function FG,exp,g , the group element g will

also be known to both client and server, and the client will also know g’s order q.

3. Delegating Exponentiation in General Groups

In this section we present our protocols for the delegation of exponentiation in a general class of

groups to a single (possibly malicious) server.

We note that general conversion techniques are known in the cryptography literature to trans-

form a protocol secure against a honest adversary into one secure against a malicious adversary.

Typically these techniques are based on zero-knowledge proofs of knowledge of secrets that certify

the correctness of the computation, a methodology often used in cryptography papers since [27].

In their most general version, these techniques do not perform well with respect to many efficiency

metrics. Even considering their most simplified version, basic proofs of knowledge of exponents in

the literature require the verifier to perform group exponentiations, which is precisely what the client

is trying to delegate in our protocols. Accordingly, new techniques are needed. Our first protocol, in

Section 3.1, uses a direct parallel repetition of an efficient subprotocol that achieves security proba-

bility 1/2, this latter subprotocol being an improved version of our scheme from Section 5 of [12].

Our second protocol, in Section 3.2, is actually a parameterized class of protocols where, for some
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values of two parameters c,m, the security probability is reduced more efficiently than by direct par-

allel repetition. The protocols in Sections 3.1 and 3.2 are presented for fixed-exponent variable-base

exponentiation. Analogue protocols are achieved for variable-exponent fixed-base exponentiation

and are briefly presented in Section 3.3. Finally, in Section 3.4 we show performance results from

our software implementation of these protocols.

3.1. Delegating Fixed-Exponent Variable-Base Exponentiation: a Cut-and-choose Approach

We first describe a basic protocol (bC1, bS1) with constant security probability (obtained by simpli-

fying the protocol in Section 5 of [12]) and then the final protocol (fC1, fS1), obtained as a parallel

repetition of the basic protocol.

A protocol (bC1, bS1) with constant security probability. In an offline phase, bC1 randomly chooses

u0, u1 ∈ G, b ∈ {0, 1} and computes vb = uk
b and v1−b = u−k

1−b. In the online delegation phase, bC1

computes zb = ub and z1−b = x ∗ u1−b, and sends (z0, z1) to bS1. Next, bS1 computes wi = zki ,

for i = 0, 1 and sends (w0, w1) to bC1. Finally, bC1 checks that wb = vb; if not, bC1 returns failure

symbol ⊥; otherwise, bC1 returns y = w1−b ∗ v1−b.

We now observe that protocol (bC1, bS1) satisfies correctness, privacy, security (with prob-

ability 1/2), and efficiency (with tC = 2 multiplications, tS = 2 exponentiations, and tP = 2

exponentiations plus 1 inversion in G).

The efficiency properties are verified by protocol inspection. The correctness property follows

by observing that if bC1 and bS1 follow the protocol, bC1’s equality verification is satisfied, and thus

C’s output y satisfies y = w1−b ∗ v1−b = zk
1−b ∗ u−k

1−b = (x ∗ u1−b)
k ∗ u−k

1−b = xk, which implies

that y = FG,exp,k(x) for each x ∈ G. The privacy property follows by observing that the message

z0, z1 sent by bC1 does not leak any information about x, since they are randomly and independently

distributed in G, as so are chosen u0 and u1. To see that the security property is satisfied, for any

probabilistic polynomial-time adversary corrupting bS1, consider the values w0, w1 returned by the

adversary to bC1. If the adversary honestly computes wi = zki for both i = 0, 1, then the probability

it fools bC1 into an incorrect output y is 0. Thus, assume the adversary computes wc 6= zkc , for some

bit c ∈ {0, 1}. Then note that bC1 will find this out and return failure symbol ⊥ when b = c, and,

since the message (z0, z1) leaks no information about b, the equality b = c holds with probability at

least 1/2. This implies that the probability that the adversary fools bC1 into an incorrect output y is

≤ 1/2.

A protocol (fC1, fS1) with exponentially small security probability. Protocol (fC1, fS1) consists

of λ parallel executions of the basic protocol (bC1, bS1), with the only additional modification that

the output of fC1 is defined as y if in all λ parallel executions bC1 would return the same value y,

or as failure symbol ⊥ otherwise (that is, if bC1 returns ⊥ in any one of the parallel executions, or

two different values 6=⊥ in any two of the parallel executions).

Protocol (fC1, fS1) satisfies correctness, privacy, security (with probability 1/2λ), and effi-

ciency (with tC = 2λ multiplications, tS = 2λ exponentiations, tP = 2λ random bases to known-

exponent exponentiations plus λ inversion in G, and cc = O(λσ)). The proof of these properties is

a direct extension of the proofs for the properties of (bC1, bS1).

We remark that for the typical setting λ = 128, C only performs 256 group multiplications.

This is about 1 order of magnitude smaller than 1.5σ, the average number of group multiplications

in the square-and-multiply algorithm, which can be = 3072 for the setting σ = 2048, which has

been recommended on some commonly used groups in cryptography.
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3.2. Delegating Fixed-Exponent Variable-Base Exponentiation: Improved Security Probabil-

ity Reduction

In this subsection we improve the approach in Section 3.1 by studying computation-efficient (in

terms of C’s parameters tP , tC) reductions of the security probability ǫs. Our overall approach to-

wards this goal can be briefly summarized as follows: first, we propose a basic protocol (bC2, bS2)
with improved constant security probability and then we define a final protocol (fC2, fS2) that

performs a suitable parallel repetition (with a reduced number of repetitions) of this basic protocol.

Theorem 3.1. Let σ, λ be security parameters and c,m be protocol parameters. There exists (con-

structively) a client-server protocol (bC2, bS2) for delegated computation of function FG,exp,k which

satisfies

1. δc-correctness, for δc = 1
2. ǫs-security, where ǫs is a constant that depends on parameter c (see Table 1 for exact values,

ranging between 0.10763, for c = 2,m = 100, to 0.04538, for c = 9,m = 100)

3. ǫp-privacy, for ǫp = 0
4. efficiency with parameters (tF , tP , tC , tS , cc), where

• tF is = 1 group exponentiation in G
• tS is = m group exponentiations in G
• tP is = c group exponentiations with random bases in G and 1 inversion in G
• tC is = 2 group multiplications in G
• cc = 2m elements in G

We remark that this protocol strictly improves the security probability achievable when bC2 only

performs 2 group multiplication in G during the protocol. As a comparison, the atomic protocol

from Section 3.1 was only achieving security probability 1/2. However, there is a tradeoff with the

other metrics, as this protocol does increase the number of group exponentiations from bS2 and the

number of precomputed group exponentiations with random bases. Other comparisons for specific

values of parameter c appear in the proof of the protocol’s properties.

Informal description of protocol (bC2, bS2). Our main approach consists of reducing the secu-

rity probability by a more time-efficient approach than the direct parallel repetition approach in

Section 3.1. While we do not know how to avoid the above parallel repetition, we show that we

can reduce the number of repetitions by designing a more efficient protocol with security probabil-

ity much smaller than 1/2. As a first simple example of this approach, by starting from protocol

(bC1, bS1) with security probability 1/2 from Section 3.1, and including 2 random ‘decoy’ values in

G in the client’s message to the server, we obtain a protocol with the following properties: (1) it does

not increase the client’s number of multiplications, (2) it only slightly increases computation by the

server; and (3) it can be seen to reduce the security probability from 1/2 to 1/3. Our protocol general-

izes this idea of using random decoy values in G to a parameterized number m, also representing an

upper bound on the number of values that the client sends to the server. This generalization reduces

the security probability, even though not as much as we would like. Accordingly, the other idea is

that of increasing the number of equality checks, since these are much less expensive than modular

multiplications. We then introduce a second parameter c, representing an upper bound on the number

of equality checks that the client wants to execute, as well as the number of pre-computed exponen-

tiations that the client can afford. Specifically, in the resulting protocol, of the m values in G sent by

the client to the server, one value is used to compute the function output, c − 1 values are used to

perform equality checks, and m − c values are decoy values. The resulting protocol achieves a se-

curity probability which is, very roughly speaking, linear in 1/c, and thus the number of repetitions

to reduce the probability to 2−λ, can be reduced to about λ/ log2 c. We can actually define a class of

protocols that is parameterized by c and m and analyze what values for these parameters give us a

more time-efficient reduction of the security probability than what achieved in Section 3.1. The two
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main high-level takeaways on that analysis are: (1) a moderately large value for m is just as good as

a huge value; (2) values of c ∈ {4, . . . , 9} result in a reduced number of group multiplications from

the client.

Formal description of protocol (bC2, bS2). Let G be an efficient group of order q, and a known

exponent value k ∈ Zq .

Input to bS2 and bC2: 1σ , desc(FG,exp,k), and parameters 1c, 1m

Input to bC2: x ∈ G

Offline instructions:

1. bC2 randomly chooses distinct j1, . . . , jm ∈ {1, . . . ,m}
2. bC2 randomly chooses ui ∈ G, sets vi = uk

i , for i = 1, . . . , c− 1, vc = u−k
c

and zji = ui, for i = 1, . . . , c
3. bC2 randomly and independently chooses zjc+1

, . . . , zjm ∈ G

Online instructions:

1. bC2 sets zjc = x ∗ uc and sends z1, . . . , zm to bS2

2. bS2 computes wj = zkj for j = 1, . . . ,m
bS2 sends w1, . . . , wm to bC2

3. if wj1 6= vj1 or wj2 6= vj2 or . . . or wjc−1
6= vjc−1

then

bC2 returns: ⊥ and the protocol halts

bC2 computes y = wjc ∗ vc and returns: y

Properties of protocol (bC2, bS2): The efficiency properties are verified by protocol inspection.

In particular, note that during the protocol bC2 only performs 2 multiplications in G, and S per-

forms c exponentiations in G. During the offline phase, bC2 performs c exponentiations in G and 1

subtraction in G.

The correctness properties follows by observing that if bC2 and bS2 follow the protocol, none

of the inequality verifications in step 3 will be satisfied. Thus, bC2’s output is 6=⊥ and is equal to

y = wjc ∗ vc = zkjc ∗ vc = (x ∗ uc)
k ∗ u−k

c = xk, which implies that bC2’s output is = FG,exp,k(x)
for each x ∈ G.

The privacy property follows by observing that the message z1, . . . , zm sent by bC2 does not

leak any information about x. Note that values in this message are generated in 3 different ways, and

are in all 3 cases uniformly and independently distributed in G. Specifically, bC2 sets zj1 , . . . , zjc−1

as equal to u1, . . . , uc−1, respectively, and the latter are uniformly and independently chosen from

G. Moreover, C sets zjc as x ∗ uc, which is still uniformly distributed in G, since so is uc, for any

x ∈ G. Finally, bC2 uniformly and independently chooses zjc+1
, . . . , zjm from G. This concludes

the proof of the privacy, as defined in Section 2. We also observe that, by the same reasons of this

proof, protocol (bC2, bS2) satisfies the following property: for any x, z1, . . . , zm are uniformly and

independently distributed in G. We will use this latter fact in the proof of the security property.

To prove the security property against a malicious bS2 we need to compute an upper bound ǫs
on the security probability that bS2 convinces bC2 to output a y such that y 6= FG,exp,k(x). With

respect to a random execution of (bC2, bS2) where bC2 uses x as input, we define the following

events:

• ey, 6=, defined as ‘bC2 outputs y such that y 6= FG,exp,k(x)’
• ey,=, defined as ‘bC2 outputs y such that y = FG,exp,k(x)’
• e⊥, defined as ‘bC2 outputs ⊥’

By inspection of (bC2, bS2), we see that the events ey, 6=, ey,=, e⊥ are mutually exclusive, and one

of them always happens. We obtain the following fact.

Fact 3.1. Event ey, 6= happens if and only if event (¬ e⊥) ∧ (¬ ey,=) happens.



10 G. Di Crescenzo, M. Khodjaeva, D. Kahrobaei and V. Shpilrain

With respect to a random execution of (bC2, bS2) where bC2 uses x as input, we recall that j1, . . . , jm
denote distinct values randomly chosen from {1, . . . ,m} in step 1 of the protocol in offline phase,

and (w1, . . . , wm) denotes the message sent by bS2 to bC2 in step 2 of the protocol in online

phase. Then, we further define eW as the set {j|wj = FG,exp,k(zj)}and dW the set {j|wj 6=
FG,exp,k(zj)}. Note that (eW, dW ) is a partition of {1, . . . ,m}. We observe that bC2 does not out-

put⊥whenever j1, . . . , jc−1 belong to eW , and that bC2 does not output y = FG,exp,k(x) whenever

jc belong to dW . We obtain the following fact.

Fact 3.2. It holds that:

1. Prob [¬ e⊥ ] = Prob [ j1 ∈ eW ∧ . . . ∧ jc−1 ∈ eW ],
2. Prob [¬ ey,= ] = Prob [ jc ∈ dW ].

Note that since bS2 is malicious, eW could even be the empty set. However, note that the strategy of

incorrectly computing all wi’s is not a good one for bS2 as the resulting message (w1, . . . , wm) will

not pass bC2’s verifications and bC2 will then output failure symbol ⊥. More generally, a malicious

bS2 can choose the wi, as some arbitrary function of the message (z1, . . . , zm), as well as of other

information public to both protocol participants. However, we now observe that bS2 cannot choose

this message as a function of the random values j1, . . . , jm chosen by bC2 in offline phase of the

protocol. This follows from the definition of the values z1, . . . , zm, which makes them to have a

distribution independent from that of j1, . . . , jm. Specifically, as already observed when proving the

privacy property of (bC2, bS2), the values z1, . . . , zm are uniformly and independently distributed

in G, regardless of values j1, . . . , jm. We obtain the following

Fact 3.3. The distribution of values w1, . . . , wm ∈ G is independent from the distribution of values

j1, . . . , jm ∈ {1, . . . ,m}.

This latest fact is important while studying strategies available to S, implying that S cannot compute

the wi’s based on the random values j1, . . . , jc chosen by C in step 1 of the protocol.

The rest of the proof consists of computing an upper bound ǫs on the probability of event

ey, 6= via an analysis of the best strategy for bS2, and considers 4 cases, depending on the value of

parameter c in protocol (bC2, bS2).

Case c = 2. In this case, bC2 is including m − 2 decoy elements in G to its message z1, . . . , zm in

step 1 and then performing a single inequality check in step 3 of the protocol. We have the following

Prob [ ey, 6= ] = Prob [¬ e⊥ ] Prob [¬ ey,=|¬ e⊥ ]

= Prob [ j1 ∈ eW ] Prob [ j2 ∈ dW |j1 ∈ eW ]

=
|eW |
m

|dW |
m− 1

=
|eW |(m− |eW |)

m(m− 1)
,

where the first equality follows from Fact 3.1, the second equality follows from Fact 3.2, the third

equality follows from Fact 3.3, and the last equality from definitions of eW, dW .

Now, note that S can choose message (w1, . . . , wm) arbitrarily so to maximize the above

probability. The above ratio is maximized by setting |eW | = ⌊m/2⌋ (as well as |eW | = ⌈m/2⌉), in

which case we obtain that ǫs = Prob [ ey, 6= ] = m/(4(m − 1)), indicating that ǫs gets very close to

1/4 as m grows.

This result can be interpreted by saying that using m− 2 random decoy elements in G as part

of bC2’s message reduces the probability from 1/2 (as in the atomic protocol from Section 3.1) to

almost 1/4, while requiring no additional computation of group multiplications from bC2.

Case c = 3. In this case, bC2 is including m − 3 decoy elements in G to its message z1, . . . , zm
in step 1, using 3 pre-computed exponentiations with random exponents, and then performing 2

inequality checks in step 3 of the protocol.
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By directly adapting the same probability derivation steps as in the case c = 2, we obtain that

Prob [ ey, 6= ] =
|eW |(|eW | − 1)(m− |eW |)

m(m− 1)(m− 2)
.

As before, note that bS2 can choose message (w1, . . . , wm) arbitrarily so to maximize the

above probability, and, after differentiation, we see that the above ratio is maximized by setting

|eW | = (m + 1 +
√
m2 −m+ 1)/3. By setting m = 100, we obtain that ǫs = Prob [ ey, 6= ] =

0.1504 < 1/6. Further increasing m does not help reducing the probability by much as, for instance,

by setting m = 1000 we obtain that ǫs = Prob [ ey, 6= ] = 0.1484.

This result can be interpreted by saying that using m− 3 random decoy elements in G as part

of bC2’s message and 1 additional precomputed exponentiation of a random exponent reduces the

probability from 1/2 (as in the atomic protocol from Section 3.1) to slightly less than 1/6, while

requiring no additional computation of group multiplications from bC2. As detailed later, when this

protocol is combined with direct parallel repetition to reduce ǫs to 2−λ, the overall number of C’s

group multiplications is smaller than in the case c = 2.

Case c = 4, . . . ,m− 1. In this case, bC2 is including m − c decoy elements in G to its message

z1, . . . , zm in step 1, using c pre-computed exponentiations with random exponents, and then per-

forming c− 1 inequality checks in step 3 of the protocol.

By directly adapting the same probability derivation steps as in the case c = 2, 3, we obtain

that

Prob [ ey, 6= ] = Prob [¬ e⊥ ] Prob [¬ ey,=|¬ e⊥ ]

= Prob [ j1, . . . , jc−1 ∈ eW ] Prob [ jc ∈ dW |j1, . . . , jc−1 ∈ eW ]

=

(

|eW |
c−1

)

(

m
c−1

) · m− |eW |
m− c+ 1

.

As before, note that bS2 can choose message (w1, . . . , wm) arbitrarily so to maximize the

above probability. To analyze the above ratio, differentiation does not help since there is a high-

degree polynomial and known upper bounds on binomial coefficients are too loose. A tool-based

trend analysis revealed that this ratio approximately behaves like O(1/c) when studied as a function

of c. Furthermore, we exactly computed the value

ǫs = Prob [ ey, 6= ] = max
j=4,...,m−1

(

j
c−1

)

(

m
c−1

) · m− j

m− c+ 1
,

for all values of c that guarantee some improved efficiency on the number tC (of bC2’s group mul-

tiplications during the protocol) without making the number tP (of group exponentiations with ran-

dom exponents computed during the offline phase) too much worse. Specifically, we looked at all

values of c such that the obtained ǫs is smaller than what could be obtained by a parallel repetition

of ⌊c/2⌋ executions of the atomic protocol from Section 3.1 with security probability 1/2. It turns

out that values c = 4, 5, 6, 7, 8 and 9 guarantee some improved efficiency on tC without making

tP much worse, but starting from c = 10, the dependency of this protocol’s value tP on c starts

becoming much larger than the one for the protocol in Section 3.1. The obtained values for ǫs when

c = 4, . . . , 10 are reported in Table 1 below.

Note that when c = 4, . . . , 9 the obtained value for ǫs is strictly smaller than the value 2−⌊c/2⌋ that

could be obtained using the protocol from Section 3.1. Instead, when c = 10, the value ǫs = 0.03894
is > 0.03125 = 2−5, and the protocol from Section 3.1 starts arguably offering a much better

efficiency tradeoff.

Overall, this result can be interpreted by saying that using m− c random decoy elements in G
as part of bC2’s message and c − 2 additional precomputed exponentiations with random exponent

reduces the probability from 1/2 (as in the atomic protocol from Section 3.1) to approximately
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TABLE 1. Values of ǫs for protocol (bC2, bS2), for c = 4, . . . , 10 and m = 100, 1000

c = 4 5 6 7 8 9 10

m = 10 .13333 .11111 .10000 .10000 .10000 .10000 .10000

m = 20 .11739 .09391 .07982 .06842 .06316 .05789 .05263

m = 40 .11106 .08212 .07249 .06219 .05465 .04918 .04442

m = 60 .10912 .08403 .07053 .06024 .05117 .04692 .04232

m = 80 .10818 .08457 .06963 .05930 .05169 .04588 .04135

m = 100 .10763 .08403 .06906 .05874 .05117 .04538 .04080

m = 1000 .10568 .08212 .06718 .05685 .04928 .04350 .03894

O(1/c), while requiring no additional group multiplication from bC2. As detailed later, when this

protocol is combined with direct parallel repetition to reduce ǫs to 2−λ, the overall number of bC2’s

group multiplications gets smaller as c increases. This comes at a cost of increasing the number

of precomputed exponentiations with random exponent, but this tradeoff might be acceptable in

applications where many precomputed exponentiations with random exponents are available or easy

to obtain, especially in the parameter setting c ≤ 9.

Case c = m. In this case, C is not including any decoy elements in G to its message z1, . . . , zm in

step 1, is using c = m pre-computed exponentiations with random exponents, and then performing

m−1 inequality checks in step 3 of the protocol. By directly adapting the same probability derivation

steps as in the case c = 2, . . . ,m − 1, we obtain that the probability Prob [ ey, 6= ] is > 0 only when

|eW | = m− 1 and |dW | = 1, in which case we obtain that

ǫs = Prob [ ey, 6= ] = Prob [¬ e⊥ ] Prob [¬ ey,=|¬ e⊥ ]

= Prob [ j1, . . . , jm−1 ∈ eW ] Prob [ jm ∈ dW |j1, . . . , jm−1 ∈ eW ]

=
1

m
· 1 =

1

m
.

This result can be interpreted by saying that this protocol can reduce the security probability to

1/m, even in the potentially interesting case m = ω(1). However, this comes at a cost, in terms

of precomputed exponentiations of random exponents, that is higher than the cost incurred with the

protocol from Section 3.1, when adapted to reach the same security probability. �

A protocol (fC2, fS2) with exponentially small security probability. Protocol (fC2, fS2) consists

of r = ⌈λ/ log(1/ǫs)⌉ parallel executions of the basic protocol (bC2, bS2), with the only additional

modification that the output of fC1 is defined as y if in all λ parallel executions bC1 would return

the same value y, or as failure symbol⊥ otherwise (that is, if bC1 returns⊥ in any one of the parallel

executions, or two different values 6=⊥ in any two of the parallel executions).

We obtain the following

Theorem 3.2. Let σ, λ be security parameters and c,m be protocol parameters. There exists (con-

structively) a client-server protocol (fC2, fS2) for delegated computation of function FG,exp,k

which satisfies

1. δc-correctness, where δc = 1
2. ǫs-security, where ǫs = 2−λ

3. ǫp-privacy, for ǫp = 0
4. efficiency with parameters (tF , tP , tC , tS , cc), where r = ⌈λ/ log2(1/ǫs)⌉ and

• tF is = 1 group exponentiation in G
• tS is = m · r group exponentiations in G
• tP is = c · r group exponentiations with random bases and r inversions in G
• tC is = 2r group multiplications in G
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• cc = 2m · r elements in G.

Protocol (fC2, fS2) satisfies correctness, privacy, security (with probability 1/2λ), and efficiency

(with tC = 2r group multiplications, tS = mr group exponentiations, tP = cr group exponentia-

tions with random bases and r inversions, and cc = 2mrσ).

The proof of these properties is obtained by extension of the proofs for the properties of

(bC2, bS2). We remark that for the typical setting λ = 128, C performs as low as 56 group multi-

plications and the number of group multiplications is 1 to 2 orders of magnitude smaller than 1.5σ,

the average number of group multiplications in the square-and-multiply algorithm, which can be

= 3072 for the setting σ = 2048, recommended on some commonly used groups in cryptography.

To numerically evaluate the efficiency of this protocol, we evaluate its main efficiency metrics,

with the typical setting of λ = 128, in Table 2 below.

TABLE 2. Performance and security parameters for (fC2, fS2) when m = 100
and c = 2, . . . , 9. Here, tP is number of exponentiations, and tC is number of

multiplications.

c 2 3 4 5 6 7 8 9 10

ǫs when r = 1 .2526 .1504 .1076 .0840 .0672 .0588 .0512 .0454 .0408

r 65 47 40 36 33 32 30 29 28

tP 130 141 160 180 198 224 240 261 280

tC 130 94 80 72 66 64 60 58 56

Note that it could be possible to further reduce the number of fC2’s group multiplications during

the protocol below 28 (the number obtained for m = 100, c = 10). However, as mentioned before,

starting from c = 10, the protocol offers an arguably worse tradeoff with the other efficiency metrics

(mainly, the number of group exponentiations with random exponents from the offline phase, the

number of group exponentiations from fS2, etc.) than the protocol from Section 3.1.

3.3. Delegating Variable-Exponent Fixed-Base Exponentiation

We describe our protocols for the delegation of variable-exponent fixed-base exponentiation over

our general class of groups. They are obtained by applying notation changes to the protocols in

Section 3.1 and 3.2, which happen to result in slightly more efficient client online runtime.

Let G be an efficient group of order q, and let g ∈ G be a base value known to both parties.

A protocol (bC3, bS3) with constant security probability. In an offline phase, bC3 randomly chooses

u0, u1 ∈ Zq and computes v0 = gu0 and v1 = gu1 . In the delegation phase, bC3 randomly chooses

bit b ∈ {0, 1} and computes zb = ub and z1−b = x − u1−b mod q, and sends (z0, z1) to bS3.

Next, bS3 computes wi = gzi , for i = 0, 1 and sends (w0, w1) to bC1. Finally, bC3 returns failure

symbol ⊥ if wb 6= vb or returns y = w1−b ∗ v1−b otherwise. We note that bC3 requires one less

multiplication than bC1.

A protocol (fC3, fS3) with exponentially small security probability. Protocol (fC3, fS3) consists

of λ parallel executions of the basic protocol (bC3, bS3), with the only additional modification that

the output of fC3 is defined as y if in all λ parallel executions bC3 would return the same value y,

or as failure symbol ⊥ otherwise (that is, if bC3 returns ⊥ in any one of the parallel executions, or

two different values 6=⊥ in any two of the parallel executions).

A protocol (bC4, bS4) with constant security probability.

Input to bS4 and bC4: 1σ , desc(FG,exp,g), g ∈ G, parameters 1c, 1m

Input to bC4: x ∈ Zq

Offline instructions:
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TABLE 3. Performance of Protocols (bC1, bS1) and (bC2, bS2) on 2048-bit input lengths

(bC1, bS1) (bC2, bS2)

c NA 5 6 7 8

m NA 60 100 60 100 60 100 60 100

ǫs .50000 .08403 .08403 .07053 .06719 .06024 .05875 .05117 .05118

tF .003534 .003631 .003702 .003685 .003650 .003686 .003534 .003728 .003889

tP .007150 .018332 .019067 .022506 .022261 .025946 .025042 .030026 .031786

tC .000012 .000021 .000023 .000021 .000022 .000022 .000021 .000023 .000027

tS .007084 .217909 .369758 .219471 .364578 .219965 .354359 .224488 .381499
tF

tC
290.439 170.183 159.103 173.823 162.595 169.744 169.855 161.170 145.072

1. bC4 randomly chooses distinct j1, . . . , jm ∈ {1, . . . ,m}
2. bC4 randomly chooses ui ∈ Zq , sets vi = gui and zji = ui, for i = 1, . . . , c
3. bC4 randomly and independently chooses zjc+1

, . . . , zjm ∈ Zq

Online instructions:

1. bC4 sets zjc = (x− uc) mod q and sends z1, . . . , zm to bS2

2. bS4 computes wj = gzj for j = 1, . . . ,m
bS2 sends w1, . . . , wm to bC2

3. if wj1 6= vj1 or wj2 6= vj2 or . . . or wjc−1
6= vjc−1

then

bC4 returns: ⊥ and the protocol halts

bC4 computes y = wjc ∗ vc and returns: y

A protocol (fC4, fS4) with exponentially small security probability. Protocol (fC4, fS4) consists

of r = ⌈λ/ log(1/ǫs)⌉ parallel executions of the basic protocol (bC4, bS4), with the only additional

modification that the output of fC4 is defined as y if in all λ parallel executions bC1 would return

the same value y, or as failure symbol⊥ otherwise (that is, if bC4 returns⊥ in any one of the parallel

executions, or two different values 6=⊥ in any two of the parallel executions). This protocol satisfies

correctness, privacy, security (with probability 1/2λ), and efficiency with complexity similar to those

in (fC2, fS2), with the notable difference that the number of online group multiplications by the

client is reduced by a multiplicative factor of 2.

3.4. Software Implementation and Performance Results

We implemented our protocols in Sections 3.3, choosing as example group the multiplicative group

(Z∗
p, · mod p), for p = 2q + 1, and p, q are large primes such that |p| = 2048.

Our implementation was carried out on a macOS High Sierra Version 10.13.4 laptop with 2.7

GHz Intel Core i5 processor with memory 8 GB 1867 MHz DDR3. The protocols were coded in

Python 3.6 using the gmpy2 package.

The obtained performance data is grouped in two tables. Table 3 contains parameters c,m, ǫs,

running times tF , tP , tC , tS and improvement ratio tF /tC for protocol (bC1, bS1) from Section 3.1

and protocol (bC2, bS2) from Section 3.2. Similarly, Table 4 contains parameters c,m, r, running

times tF , tP , tC , tS and improvement ratio tF /tC for protocol (fC1, fS1) from Section 3.1 and

protocol (fC2, fS2) from Section 3.2. Here, parameter r represents the number of parallel repeti-

tions of (bC1, bS1) and (bC2, bS2) needed to get desired security probability ǫs = 2−128 in protocols

(fC1, fS1) and (fC2, fS2), respectively.

A software implementation of protocols in Section 3.1 and 3.2 is expected to produce very

similar (and only slightly less efficient) performance results.
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TABLE 4. Performance of Protocols (fC1, fS1) and (fC2, fS2), for ǫs = 2−128

(fC1, fS1) (fC2, fS2)

c NA 5 6 7 8

m NA 60 100 60 100 60 100 60 100

r 128 36 36 34 33 32 32 30 30

tF .003651 .003799 .003637 .003851 .003804 .003705 .004338 .003709 .004046

tP .953298 .686819 .684862 .769721 .770282 .850836 .862347 .910533 .962034

tC .000779 .000393 .000268 .000443 .000270 .000378 .000289 .000367 .000304

tS .957278 8.05238 13.2509 7.58752 12.4730 7.15478 12.1795 6.70609 11.7280
tF

tC
4.68362 9.67187 13.5511 8.68811 14.0649 9.79045 15.0138 10.1090 13.3077

4. Conclusions

We studied the problem of a computationally weak client delegating group exponentiation to a single,

possibly malicious, computationally powerful server, as originally left open in [30]. We solved this

problem by two protocols that provably satisfy formal correctness, privacy (against adversaries of

unlimited power), security (with exponentially small probability) and efficiency requirements, in a

general class of multiplicative groups, including groups on which no quantum cryptanalysis attacks

are currently known. Open problems include: (a) achieving better efficiency tradeoffs as done in [19]

for discrete logarithm groups and in [20] for RSA groups, where similar improvements on the client’s

online runtime were achieved with only constant overhead to server runtime and communication

complexity; and (b) reducing the dependency of the offline computations on the number of delegated

computations of F (in our protocols, as well as previous protocols in the literature, when delegating

many computations of F , the complexity of the offline phase increases at least linearly with such

computations).
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