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Max-Min Energy-Efficient Resource Allocation for

Wireless Powered Backscatter Networks
Haohang Yang, Yinghui Ye, Xiaoli Chu

Abstract—In this letter, we present the first attempt to solve
an energy efficiency (EE) based max-min fairness problem for
a wireless powered backscatter network where a power beacon
(PB), which is a dedicated radio frequency (RF) power resource,
and multiple backscatter devices work in the same frequency
band. Each backscatter transmitter harvests energy from the
signal transmitted by the PB, modulates its own information
on the received signal, and backscatters the modulated signal
to its associated receiver. We propose to ensure max-min fair-
ness among the backscatter links by jointly optimizing the PB
transmission power and the backscatter reflection coefficients.
For analytical tractability, we solve the optimization problem
for the case of two co-channel backscatter links by employing
Lagrange dual decomposition when it is convex, and analyzing
the monotonicity of the constraints when it is non-convex.
Based on the obtained closed-form expressions of the optimal
PB transmission power and the optimal backscatter reflection
coefficients, we propose an iterative algorithm for max-min EE
resource allocation. Simulation results show that the proposed
iterative algorithm converges very fast and achieves a much fairer
EE performance among backscatter links than maximizing the
system EE of the network.

Index Terms—Backscatter communications, energy efficiency,
energy harvesting, max-min fairness.

I. INTRODUCTION

W IRELESS powered backscatter communication has

been considered as a promising technology to prolong

the network lifetime of Internet of Things (IoT) systems [1]. In

recent years, throughput maximization [2], signal detection [3]

and hardware implementation [4] have been investigated for

wireless powered backscatter communications, but the energy

efficiency (EE) problem has not been sufficiently studied.

The authors in [5] maximized the EE of a backscatter link

by jointly optimizing the reflection coefficient and the power

beacon (PB) transmission power. The EE maximization prob-

lem was studied for radio frequency (RF) powered cognitive

backscatter communications [6]. However, both [5] and [6]

considered only a single backscatter link and their results

cannot be readily applied to multiple co-channel wireless

powered backscatter links. Moreover, when multiple backscat-

ter transmitters share the transmission power from a PB, it

is necessary to ensure the fairness among the co-channel

backscatter links.

In this letter, we consider a wireless powered backscatter

network, where a PB and multiple backscatter links work

in the same frequency band, and propose to maximize the

minimum link EE among all the wireless powered backscatter

links by jointly optimizing the PB transmission power and
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the backscatter reflection coefficients. The mutual interference

between the multiple co-channel backscatter links and the

interference from the PB to the backscatter receivers leads to

complicated coupling effects between the backscatter reflec-

tion coefficients and the PB transmission power, resulting in

a much higher complexity than that of EE maximization for

one single backscatter link. As the complexity of the max-

min EE problem increases with the number of co-channel

links, and allowing more backscatter links to access the same

channel may cause severe co-channel interference and increase

the system complexity, which should be avoided because

backscatter circuitry design needs to be kept simple [1]. For

analytical tractability, we solve the problem for the case of two

co-channel backscatter links. At the end, we obtain closed-

form expressions for the optimal PB transmission power and

the backscatter reflection coefficients. More specifically, the

max-min EE problem is decomposed into two sub-problems

conditioned on the convexity of the objective function: one

is a convex optimization problem, while the other is non-

convex. The convex problem is solved by employing Lagrange

dual decomposition and KKT conditions, and the non-convex

problem is solved by exploiting the characteristics of the

associated constraints. Considering the low complexity and

low cost requirements of backscatter devices [1], based on the

obtained optimal solution, we propose an iterative algorithm

that allows each backscatter transmitter to independently make

optimal resource allocation decisions that maximize their EE

while guaranteeing the fairness among the backscatter links.

II. SYSTEM MODEL

As illustrated in Fig.1, we consider a wireless powered

backscatter network1 with a PB and M co-channel backscatter

links, which are denoted by the set D̂ = {1, 2, · · ·, i, · · ·,M}.

Backscatter link i consists of one backscatter transmitter i and

one receiver i. Each node is equipped with a single antenna.

We assume the availability of perfect channel state information

(CSI) at each backscatter node [5]. In each time block T , the

PB broadcasts a RF signal while each backscatter transmitter

harvests energy from the received RF signal to support its

circuit operation and modulates and reflects the received RF

signal to carry its information to the associated receiver by

properly setting a reflection coefficient.

1Note that different from the energy harvesting sensor or relay nodes in
wireless powered communication networks (WPCN) or simultaneous wireless
information and power transfer (SWIPT) networks that can set their own
transmission power levels, the backscatter nodes directly modulate and reflect
the incident RF signals transmitted by the PB. Furthermore, multiple variables
including the PB transmission power and the reflection coefficients of co-
channel backscatter links need to be jointly optimized in backscatter networks,
while in WPCN or SWIPT networks, only the transmission power and the
transmission time duration or power splitting ratio of sensor or relay nodes
are optimized [7], [8].
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Fig. 1: Wireless powered backscatter networks.

In addition to the information carrying signal from backscat-

ter transmitter i, receiver i also receives the co-channel inter-

ference from the other backscatter transmitters and the PB, and

the received power at receiver i is given by Pagi,1Zigi,2 +

Pagi,3 +
∑M

j=1,j 6=i Pagj,1ZjInj,i + N0, where Pa is the

transmission power of the PB; Zi ∈ [0,1], is the reflection

coefficient of backscatter transmitter i and N0 represents the

additive white Gaussian noise (AWGN) power2; gi,1 and gi,2
denote the channel power gains from the PB to transmitter i
and from backscatter transmitter i to receiver i, respectively;

Inj,i represents the channel power gain from backscatter

transmitter j to receiver i, and gi,3 denotes the channel power

gain from the PB to receiver i. Since the PB serves as a

RF energy source only, the transmitted signal from the PB

is predefined and is known by all the backscatter receivers,

thus receiver i can remove the interference from the PB, i.e.,

Pagi,3 [5]. Accordingly, the SINR at receiver i is written as

SINRi =
Pagi,1Zigi,2

N0 +
∑M

j=1,j 6=i Pagj,1ZjInj,i

. (1)

The throughput (bits/s) of backscatter link i is given by

Ri = T log2(1 + SINRi). (2)

The energy harvested by backscatter transmitter i is

EHi = Pagi,1(1− Zi)ηT, (3)

where η ∈[0,1] is the energy conversion efficiency, for sim-

plicity, the time block T is normalized to one, and we ignore

the energy harvested from the thermal noise since it is very

small [2], [5]. The backscatter transmitters are batteryless and

cannot store the harvested energy. We assume that the energy

harvested by transmitter i is used only for and is sufficient

to support its circuit operation [5], i.e., EHi ≥ PCt, where

PCt denotes the transmitter circuit power consumption and is

assumed to be the same for all backscatter transmitters.

The power consumption for link i is composed of the RF

transmission power Pa of the PB (which covers the backscatter

transmitter circuit power consumption), and the total circuit

power consumption at the PB and at receiver i, which is

2As the backscatter modulation order increases, the backscattered signals
approximately follow a Gaussian distribution [9]-[12].

denoted by PCr and is assumed to be the same for all

receivers. Thus, the EE of backscatter link i is given by

EEi =
Ri

Pa + PCr

. (4)

III. MAX-MIN EE RESOURCE ALLOCATION

A. Problem Formulation

We propose to maximize the minimum link EE among all

co-channel backscatter links in order to improve the EE of

the backscatter network while guaranteeing fairness among

co-channel backscatter links. Accordingly, the optimization

problem is formulated as

P1 : max
{Pa,Zi}

min
{i∈D̂}

EEi

s.t. C1 : 0 < Pa ≤ Pmax,

C2 : 0 ≤ Zi ≤ 1, i ∈ D̂,

C3 : Ri ≥ Rmin, i ∈ D̂,

C4 : EHi ≥ PCt, i ∈ D̂,

(5)

where C1 sets the maximum allowed transmission power

Pmax for the PB transmission power Pa; C2 sets the range

of backscatter reflection coefficients; C3 sets the minimum

throughput requirement Rmin for backscatter links; and C4

ensures that the harvested energy of a backscatter transmitter is

sufficient to cover its circuit power consumption. P1 is a non-

convex fractional optimization problem and is mathematically

difficult to solve due to the coupling between variables Pa and

Zi in (1), (3), and (4).

From (1)−(4) we can see that EEi increases with Zi, while

EHi decreases with Zi. Thus, the maximum EEi is achieved

when EHi = PCt. By solving Pagi,1(1 − Zi)η = PCt for

Zi, we have

Zi = 1− PCt

Pagi,1η
. (6)

By substituting (6) into (5), P1 reduces to an optimization

problem with respect to Pa only, which can be further trans-

formed into a more tractable form following Lemma 1.

Lemma 1 [13]: After substituting (6) into (5), the optimal

solution to P1 can be obtained if and only if max
{Pa}

min
{i∈D̂}

Ri−
Q∗ (Pa + PCr) = min

{i∈D̂}
Ri

∗ − Q∗ (P ∗
a + PCr) = 0, where

Q∗ is the max-min EE, Ri
∗ and P ∗

a are the optimal throughput

of backscatter link i and the optimal PB transmission power,

respectively.

Based on (6) and Lemma 1, P1 is converted to

P2 : max
{Pa}

min
{i∈D̂}

−Q (Pa + PCr)+

log2

(

1 +
Pagi,1gi,2−

PCtgi,2
η

Pa

∑
M
j=1,j 6=i gj,1Inj,i−

∑
M
j=1,j 6=i

PCtInj,i
η

+N0

)

s.t. C1, C5 : Pa ≥ PCt/gi,1η, i ∈ D̂,
C6 :

log2

(

1 +
Pagi,1gi,2−

PCtgi,2
η

Pa

∑
M
j=1,j 6=i gj,1Inj,i−

∑
M
j=1,j 6=i

PCtInj,i
η

+N0

)

≥ Rmin.

By introducing a slack variable Y , P2 can be expressed as

P3 : max
{Pa,Y }

Y

s.t. C1,C5,C6,
(7)
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C7 : log2

(

1+
Pagi,1gi,2−

PCtgi,2
η

Pa

∑
M
j=1,j 6=i gj,1Inj,i−

∑
M
j=1,j 6=i

PCtInj,i
η

+N0

)

−Q(Pa + PCr) ≥ Y, i ∈ D̂.

B. Convexity Analysis of P3

For notational simplicity, we rewrite C7 as

fi(x) = log2

(

1 +
Aix−Bi

Cix−Di

)

−Q(x+PCr)−Y ≥ 0, i ∈ D̂,

(8)

where x = Pa, Ai = gi,1gi,2, Bi =
PCtgi,2

η
, Ci =

∑M
j=1,j 6=i gj,1Inj,i, Di =

∑M
j=1,j 6=i

PCtInj,i

η
− N0, and

Ai, Bi, Ci ≥ 0.

Taking the first-order derivative of fi(x) with respect to x,

i ∈ D̂ we obtain

f ′i(x) =
(BiCi −AiDi)log2e

(Cix−Di +Aix−Bi)(Cix−Di)
−Q. (9)

The second-order derivative of fi(x) is obtained as

f ′′i (x) =
−(BiCi −AiDi)log2e

(Cix−Di +Aix−Bi)(Cix−Di)

× (Ci +Ai)(Cix−Di) + (Cix−Di +Aix−Bi)Ci

(Cix−Di +Aix−Bi)(Cix−Di)
.

(10)

Based on (6) and C2, i ∈ D̂, we have Aix − Bi ≥ 0 and

Cix−Di ≥ 0. If BiCi − AiDi > 0, then f ′′i (x) < 0 and P3

is convex; otherwise, f ′′i (x) ≥ 0 and P3 is non-convex. We

will solve P3 for these two cases, respectively. However, P3

is still intractable mainly due to the complexity of C7, which

increases with M . In the following, we will solve P3 for the

case of M = 2, i.e., when there are two co-channel backscatter

links in the network.

C. Solution of Convex P3

When BiCi − AiDi > 0 for i ∈ {1, 2}, P3 is a convex

problem with respect to Pa and Y . By employing Lagrange

dual decomposition, we obtain

L(x, Y, α, βi, θi, φi) = α (Pmax − x) +
∑2

i=1
βi

(

x− PCt

gi,1

)

+
∑2

i=1
θi

[

log2

(

1 +
Aix−Bi

Cix−Di

)

−Rmin

]

+ Y (11)

+
∑2

i=1
φi

[

log2

(

1 +
Aix−Bi

Cix−Di

)

−Q(x+ PCr)− Y

]

,

where α, βi, θi, φi are the Lagrange multipliers associated with

the constraints of P3.

To solve
∂L(x,Y,α,βi,θi,φi)

∂x
= 0, we rewrite it as

k1x
4 + k2x

3 + k3x
2 + k4x+ k5 = 0, (12)

where k1 = Ja1a2, k2 = −J(b1a2 + a1b2), k3 = JC1a2 +
Jb1b2 + Ja1C2 − Ea2 − Fa1, k4 = Eb2 + Fb1 − JC1b2 −
Jb1C2, k5 = Jc1c2 − Ec2 − Fc1, a1 = C2

1 + A1C1, b1 =
2C1D1 + B1C1 + A1D1, c1 = B1D1 + D2

1, a2 = C2
2 +

A2C2, b2 = 2C2D2 +B2C2 +A2D2, c2 = B2D2 +D2
2, E =

(θ1+φ1)(B1C1−A1D1), F = (θ2+φ2)(B2C2−A2D2), J =
(α− (β1 + β2) + 2Q)ln2.

Then we obtain the four roots of (12) as [14]

x1,2 =

[

− k2
4k1

− S ±
√

−4S2 − 2p+ q
s

2

]+

, (13)

x3,4 =

[

− k2
4k1

+ S ±
√

−4S2 − 2p− q
s

2

]+

, (14)

where [X]+ = max(0, X), p =
8k1k3−3k2

2

8k2
1

, q =

k3

2
−4k1k2k3+8k2

1
k4

8k3
1

, S = 1
2

√

− 2
3p+

T+
∆0

T

3k1
, T =

3

√

∆1+
√

∆2
1
−4∆3

0

2 ,∆1 = 2k33 − 9k2k3k4 + 27k22k5 +
27k1k

2
4 − 72k1k3k5, and ∆0 = k23 − 3k2k4 + 12k1k5.

For any given Y , the optimal value of Pa is given by

P ∗
a = max(x1, x2, x3, x4). (15)

Substituting (15) into (7), we can calculate Y ∗ as

Y ∗ = min
{i∈D̂}

(

log2

(

1 +
AiP

∗
a −Bi

CiP ∗
a −Di

)

−Q (P ∗
a + PCr)

)

.

(16)

The Lagrange multipliers are updated by using the subgra-

dient method [15].

D. Solution of Non-convex P3

If BiCi −AiDi ≤ 0 for i ∈ D̂, then C7 is non-convex and

P3 cannot be solved using convex optimization methods. In

the following, we analyze the monotonicity of C7 to solve P3.

Based on (8), BiCi −AiDi, i ∈ {1, 2} can be written as

B1C1 −A1D1 =
PCtg1,2

η
In2,1(g2,1 − g1,1) + g1,1g1,2N0,

(17)

B2C2 −A2D2 =
PCtg2,2

η
In1,2(g1,1 − g2,1) + g2,1g2,2N0.

(18)

From (17) and (18), we can see that if g2,1 − g1,1 > 0,

then B1C1 − A1D1 > 0 and B2C2 − A2D2 ≤ 0, leading to

f ′′1 (x) < 0 and f ′′2 (x) ≥ 0; Otherwise, B1C1−A1D1 ≤ 0 and

B2C2 −A2D2 > 0, leading to f ′′1 (x) ≥ 0 and f ′′2 (x) < 0.

Without loss of generality, in the following, we assume

B1C1−A1D1 ≤ 0, thus f ′′1 (x) ≥ 0 and f ′′2 (x) < 0. Based on

(8)−(10), we can see that f1(x) is a monotonically decreasing

function of x and f2(x) is a concave function of x while

meeting all the constraints of P3. The relationship between

f1(x) and f2(x) can be analyzed by defining

h(x) = f1(x)− f2(x) = log2

(

1 +
A1x−B1

C1x−D1

)

− log2

(

1 +
A2x−B2

C2x−D2

)

,

(19)

and calculating

h′(x) =
(B1C1 −A1D1)log2e

(C1x−D1 +A1x−B1)(C1x−D1)

− (B2C2 −A2D2)log2e

(C2x−D2 +A2x−B2)(C2x−D2)
.

(20)

Since B1C1 −A1D1 ≤ 0, we have h′(x) ≤ 0, indicating that

there is at most one intersection between f1(x) and f2(x).
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Then we need to find the range of x. Denoting the feasible

value range for x by [xmin, xmax], based on C1, C5 and C6,

we obtain that

xmin = max

(

Bi −Di(2
Rmin − 1)

Ai − Ci(2Rmin − 1)
,
PCt

gi,1η

)

, i ∈ {1, 2},
(21)

xmax = Pmax. (22)

Based on the above analysis, we can solve non-convex P3

under the following 2 conditions.

Condition 1. h(xmin)h(xmax) > 0: f1(x) and f2(x) do

not intersect, and the maximum value of Y is given by

Y ∗ = min(max
{x}

f1(x),max
{x}

f2(x)). (23)

Since f1(x) is a monotonically decreasing function of x,

max
{x}

f1(x) = f1(xmin), and x∗1 = xmin. Since f2(x) is a

concave function, to obtain x∗2 = argmax
{x}

f2(x), we solve

f ′2(x) = 0 for x and get

G =
−u2 ±

√

u22 − 4u1u3
2u1

, G ∈ [xmin, xmax], (24)

where u1 = (C2
2 +A2C2), u2 = −(2C2D2 +B2C2 +A2D2)

and u3 = D2
2 +B2D2 − log2e(B2C2−A2D2)

Q
. Then we have

x∗2 =











xmax, G ≥ xmax,

G, xmin < G < xmax,

xmin, G ≤ xmin.

(25)

Therefore, the optimal value of x is given by

x∗ = argmin
x∗
1
,x∗

2

(f1(x
∗
1), f2(x

∗
2)). (26)

Condition 2. h(xmin)h(xmax) ≤ 0: f1(x) and f2(x)
have one intersection, which can be further divided into the

following three cases.

Case (i). If f ′2(xmin) ≤ 0, then f ′2(x) < 0, x ∈
[xmin, xmax]. In this case, f1(x) and f2(x) are both mono-

tonically decreasing functions of x, and we obtain

x∗ = xmin. (27)

Case (ii). If f ′2(xmax) ≥ 0, then f ′2(x) > 0, x ∈
[xmin, xmax]. In this case, f2(x) is a monotonically increasing

function of x, and the optimal x occurs at the intersection.

Solving f1(x) = f2(x) for x, we obtain

x∗ = H =
−n2 ±

√

n2
2 − 4n1n3

2n1
, x ∈ [xmin, xmax], (28)

where n1 = A1C2 − C1A2, n2 = D1A2 + C1B2 − B1C2 −
A1D2, n3 = B1D2 − B2D1, and H denotes the intersection

value of x.

Case (iii). If f ′2(xmin) > 0 and f ′2(xmax) < 0, then f2(x)
first increases and then decreases with x in [xmin, xmax], and

we obtain

Pa
∗ =











G, f1(xmin) > f2(xmin) & f1(G) ≥ f2(G),

H, f1(xmin) > f2(xmin) & f1(G) ≤ f2(G),

xmin, f1(xmin) ≤ f2(xmin).
(29)

Based on the obtained solutions to convex P3 and non-

convex P3, we propose an iterative algorithm in Algorithm 1

to solve P3 and obtain the global optimal values of P ∗
a and Z∗

i .

In Algorithm 1, t is the index of iteration of the main loop; I
is the predefined maximum allowed number of iteration of the

main loop, and ψ is a very small value set to check whether

the objective function in P3 converges.

Algorithm 1 Iterative algorithm

Input: D̂ = {1, 2}.

Output: P ∗
a , Z

∗
i .

Initialize: Q(t) = Q(0), Y (t) = Y (0), I, ψ, t = 0.

1: while t < I do

2: if BiCi −AiDi > 0, i ∈ D̂ then

3: for n = 1 to I1 do

4: for u = 1 to I2 do

5: We use Qu(t) and Yu(t) to obtain Pa,u(t + 1)
by calculating (15).

6: We use obtained Pa,u(t+1) to calculate Yu(t+
1) by calculating (16).

7: end for

8: Qu(t+ 1) = RiPa,u(t+ 1)/[Pa,u(t+ 1) + PCr].
9: We update Lagrange multipliers by using a sub-

gradient method.

10: end for

11: else

12: We obtain Y (t + 1) and Pa(t + 1) under Condition

1 or Condition 2.

13: Q(t+ 1) = RiPa(t+ 1)/[Pa(t+ 1) + PCr].
14: end if

15: if
∣

∣ min
{i∈D̂}

Ri(Pa(t+1))−Q(t+1)(Pa(t+1)+PCr)
∣

∣ ≤
ψ then

16: P ∗
a = Pa(t + 1), obtain Z∗

i using (6), obtain EE1

and EE2 using (4).

17: Break

18: end if

19: t = t+ 1.

20: end while

IV. SIMULATION RESULTS

In this section, we present the simulation results to evaluate

the performance of our proposed max-min EE resource allo-

cation scheme in comparison with the criterion of maximizing

system EE (max-SEE) under the case of two co-channel

backscatter links. We consider distance dependent pathloss as

large scale fading, where the pathloss exponent is set as 2.5,

and rayleigh fading as small scale fading which follows a unit

mean exponential distribution. The transmission radius of PB

is set as 30 m; the distance between a backscatter transmitter

and its receiver is denoted as r, which is less than 15 m for all

backscatter links. Pmax=23 dBm, N0=−114 dBm, η = 0.6,

PCt=0.1 mw, PCr=110 mw, Rmin=3 bits/Hz.

Fig. 2 shows the convergence of the iterative algorithm for

three cases with different distance (r) between a backscatter

transmitter and its receiver. We can see that the max-min EE

converges in the 4th ∼ 6th iteration, and a higher EE is

obtained for a smaller r. It is because the throughput increases
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Fig. 3: EE versus channel power gain

differences between gi,1 and gj,1.
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Fig. 4: EE versus throughput requirement

for backscatter links.

for a shorter communication distance, leading to a higher EE.

Fig. 2 proves that our proposed iterative algorithm is efficient

to converge fast.

In Fig. 3, we compare the EE under max-min fairness and

max-SEE versus the channel power gain differences between

gi,1 and gj,1. On the one hand, we can see that the max-

SEE algorithm achieves a higher system EE than our proposed

Algorithm 1. However, the EE gap between the best user and

the worst user is too large, which is significantly reduced by

ensuring max-min fairness. On the other hand, in the first

case, the EE of the worst user under the max-SEE criterion

improves 31.53% by employing max-min fairness; while in the

second case, the EE of the worst user improves 25.55%. This

indicates that the max-min fairness is less effective when the

channel power gain difference between gi,1 and gj,1 becomes

larger. This is because when the channel power gain difference

becomes larger, the EE difference between the best user and

the worst user becomes larger so that it will be harder to

achieve fairness. This also proves that the max-SEE algorithm

tends to favour the best user.

Fig. 4 shows the EE versus the throughput requirement for

backscatter links under the criterions of max-min fairness and

max-SEE. A higher throughput requirement reduces the range

of Pa, which may change the obtained optimal solution of

Pa. Before the throughput requirement increases to 8 bits/Hz,

based on the max-SEE, which tends to favour the best user,

when the range of Pa reduces, the best user cannot obtain its

optimal value of Pa which makes its EE lower. But the worst

user forwards to its optimal value so that its EE improves.

When we consider max-min fairness, EE of the best user and

the worst user keeps unchanged and begins to drop after the

throughput requirement greater than 7 bits/Hz, this is because

that the obtained optimal solution of Pa first keeps unchanged

and then changes for both the best user and the worst user.

After the throughput requirement exceeds 8 bits/Hz, the EE of

the best user and the worst user under both criterions reduces

since both the users cannot obtain their optimal value of Pa.

Also, the EE gap between the best user and the worst user

becomes smaller, and the optimal solutions under the criterions

of both max-min fairness and max-SEE are the same.

V. CONCLUSIONS

In this letter, we solve the max-min EE resource allocation

problem in a wireless powered backscatter network. An iter-

ative algorithms is proposed to solve this problem by jointly

optimizing the transmission power of the PB and the reflection

coefficients when the optimization problem is convex or non-

convex. Simulation results show that the iterative algorithm

converges very fast, and the max-min EE resource allocation is

more effective when the throughput requirement is low and the

channel power gain difference from the PB to each backscatter

transmitter is small.
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